research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The synthesis, crystal structure and spectroscopic analysis of (E)-3-(4-chloro­phen­yl)-1-(2,3-di­hydro­benzo[b][1,4]dioxin-6-yl)prop-2-en-1-one

crossmark logo

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India, bAavishkaar Research Centre, Coorg Institute of Dental Sciences, Virajpet 571 218, India, cDepartment of Microbiology, Yuvaraja's College, Mysore 570 005, India, and dDepartment of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA
*Correspondence e-mail: ybb2706@gmail.com, yathirajan@hotmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 20 June 2023; accepted 26 June 2023; online 30 June 2023)

The synthesis, crystal structure and spectroscopic analysis of (E)-1-(2,3-di­hydro­benzo[b][1,4]dioxin-6-yl)-3-(4-chloro­phen­yl)prop-2-en-1-one (C17H13ClO3), a substituted chalcone, are described. The overall geometry of the mol­ecule is largely planar (r.m.s. deviation = 0.1742 Å), but slightly kinked, leading to a dihedral angle between the planes of the benzene rings at either side of the mol­ecule of 8.31 (9)°. In the crystal, only weak inter­actions determine the packing motifs. These include C—H⋯O and C—H⋯Cl hydrogen bonds and ππ overlap of aromatic rings.

1. Chemical context

Chalcones exhibit a wide range of fascinating biological and pharmacological properties. Some of their beneficial attributes include anti-inflammatory, anti­microbial, anti­fungal, anti­oxidant, cytotoxic and anti­cancer activities (Dimmock et al., 1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]). Moreover, several chalcones have demonstrated significant anti­malarial properties (Troeberg et al., 2000[Troeberg, L., Chen, X., Flaherty, T. M., Morty, R. E., Cheng, M., Hua, H., Springer, C., McKerrow, J. H., Kenyon, G. L., Lonsdale-Eccles, J. D., Coetzer, T. H. T. & Cohen, F. E. (2000). Mol. Med. 6, 660-669.]). The efficient second-harmonic generation (SHG) conversion efficiency of some chalcones has also made them promising organic nonlinear optical (NLO) materials (Sarojini et al., 2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54-59.]). The presence of phenolic groups in many chalcones has garnered attention due to their radical quenching capabilities, making these compounds and chalcone-rich plant extracts potential candidates for drug development or food preservation (Dhar et al., 1981[Dhar, D. N. (1981). In The Chemistry of Chalcones and Related Compounds. New York: John Wiley.]; Di Carlo et al., 1999[Di Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337-353.]). The design, synthesis and evaluation of 1,4-benzodioxane-substituted chalcones as selective and reversible inhibitors of human mono­amine oxidase B was reported by Kong et al. (2020[Kong, Z., Sun, D., Jiang, Y. & Hu, Y. (2020). J. Enzyme Inhib. Med. Chem. 35, 1513-1523.]). Furthermore, Shinde et al. (2020[Shinde, R. A., Adole, V. A., Jagdale, B. S. & Pawar, T. B. (2020). Mat. Sci. Res. Ind. 17, 54-72.]) have conducted experimental and theoretical studies on the mol­ecular structure, FT–IR, NMR, HOMO/LUMO frontier orbital, mol­ecular electrostatic potential (MESP) and reactivity descriptors of (E)-1-(2,3-di­hydro­benzo[b][1,4]dioxin-6-yl)-3-(3,4,5-tri­meth­oxy­phen­yl)prop-2-en-1-one. They have also reported the synthesis, anti­bacterial and computational studies of halo-chalcone hybrids derived from 1-(2,3-di­hydro­benzo[b][1,4]dioxin-6-yl)ethan-1-one (Shinde et al., 2021[Shinde, R. A., Adole, V. A., Jagdale, B. S. & Desale, B. S. (2021). J. Indian Chem. Soc. 98, 100051.]) and of two trifluorinated chalcones derived from 1-(2,3-di­hydro­benzo[b][1,4]dioxin-6-yl)ethan-1-one (Shinde et al., 2022a[Shinde, R. A., Adole, V. A. & Jagdale, B. S. (2022a). Polycyclic Aromat. Compd. 42, 6155-6172.]), as well as investigations of (E)-4-(3-(2,3-di­hydro­benzo[b][1,4]dioxin-6-yl)-3-oxoprop-1-en-1-yl)ben­zo­nitrile (Shinde et al., 2022b[Shinde, R. A., Adole, V. A., Shinde, R. S., Desale, B. S. & Jagdale, B. S. (2022b). Results Chem. 4, 100553.]). Additionally, Zhuang et al. (2017[Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762-7810.]) presented a comprehensive review on the chalcone framework as a privileged structure in medicinal chemistry, while Elkanzi et al. (2022[Elkanzi, N. A. A., Hrichi, H., Alolayan, R. A., Derafa, W., Zahou, F. M. & Bakr, R. B. (2022). ACS Omega, 7, 27769-27786.]) have published a review on the synthesis of chalcone derivatives and their biological activities.

[Scheme 1]

Given the general significance of chalcones, we report herein the synthesis of (E)-1-(2,3-di­hydro­benzo[b][1,4]dioxin-6-yl)-3-(4-chloro­phen­yl)prop-2-en-1-one, C17H13ClO3 (I), along with its crystal structure and related studies.

2. Structural commentary

As shown in Fig. 1[link], the overall conformation of the mol­ecule of I is determined by the torsion angles C3—C2—C1—C10 [169.9 (2)°], C2—C1—C10—C11 [−171.3 (3)°], C1—C10—C11—C12 [−179.0 (3)°] and C10—C11—C12—C17 [−176.7 (3)°] of the propenone moiety. In magnitude, these are all within about 10° of 180°, which makes the mol­ecule largely flat (r.m.s. deviation for the non-H atoms is 0.1742 Å), though slightly bent, leading to a dihedral angle between the chloro­phenyl and di­hydro­benzodioxine rings of 8.31 (9)°. The conformation of the di­hydro­dioxine ring, as determined by its Cremer–Pople puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) [Q = 0.466 (3) Å, θ = 51.2 (4)° and φ = 282.6 (4)°], is closest to half-chair (Boeyens, 1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]). This puckering places atoms C5 and C6 at 0.499 (4) and −0.207 (4) Å on either side of the mean plane of the di­hydro­benzodioxine ring. All bond lengths and angles lie within the typical ranges found in organic structures.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

The crystal packing in I is governed solely by weak inter­actions, as the only possible hydrogen-bond donors are of type C—H. The absence of any sharp spikes protruding to the lower left in the Hirshfeld surface fingerprint plots (Fig. 2[link]) calculated using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) clearly marks the absence of any very close contacts. Indeed, only two such contacts are flagged as inter­molecular hydrogen-bond-type inter­actions by the default SHELXL HTAB command. These are C5—H5A⋯O3i and C5—H5B⋯Clii [symmetry codes: (i) x − [{1\over 2}], −y + [{3\over 2}], z; (ii) x − 1, y, z − 1], shown in Table 1[link]. The benzene rings of the 4-chloro­phenyl and di­hydro­benzodioxine groups, however, exhibit ππ overlap, which link the mol­ecules into chains that extend parallel to [001], as shown in Fig. 3[link]. The centroid–centroid distances [3.747 (18) Å] and the dihedral angle between the participating rings [6.12 (11)°] imply that these are rather weak inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O3i 0.99 2.61 3.595 (4) 172
C5—H5B⋯Cl1ii 0.99 2.80 3.455 (3) 124
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [x-1, y, z-1].
[Figure 2]
Figure 2
Hirshfeld surface fingerprint plots showing (a) H⋯H contacts = 30.4% coverage, (b) H⋯C = 26.8%, (c) H⋯O = 20.6% and (d) H⋯Cl = 12.7%. Reciprocal contacts are included in the coverage fractions. Other contact types were unremarkable.
[Figure 3]
Figure 3
A partial packing plot of I, viewed approximately down the a axis. The stacking of the aromatic rings is shown by dotted lines between ring centroids, which lead to chains of mol­ecules that extend parallel to [001].

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43 with updates to November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using a mol­ecular fragment consisting of chalcone (C6H5C=OCH=CHC6H5) with no specific substituents returned 4725 hits. With hydrogen attached across the C=C double bond, the search gave 1200 hits. Of these entries, 155 had `any halogen' at the equivalent of C15 in I, 62 of which had Cl. A search fragment without the halogen but with `any oxygen bound' substituent at the equivalent of C4 and C7 pro­duced 78 matches. Addition of the aforementioned halogen reduced this to 14 structures, seven of which were chlorides, but only five are unique. These are: BOJFIQ [(2E)-1-(1,3-benzodioxol-5-yl)-3-(4-chloro­phen­yl)prop-2-en-1-one; Jasinski et al., 2008[Jasinski, J. P., Butcher, R. J., Sreevidya, T. V., Yathirajan, H. S. & Narayana, B. (2008). Anal. Sci. X, 24, X245-X246.]], FATFIR [(E)-3-(2,4-di­chloro­phen­yl)-1-(3,4,5-tri­meth­oxy­phen­yl)prop-2-en-1-one; Wu et al., 2012[Wu, J.-Z., Jiang, X., Zhao, C.-G., Li, X.-K. & Yang, S.-L. (2012). Z. Kristallogr. New Cryst. Struct. 227, 215-216.]], TICDIT [3-(4-chloro­phen­yl)-1-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one; Teh et al., 2007[Teh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o1783-o1784.]], VIDDIW [3-(2,4-di­chloro­phen­yl)-1-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one; Ng et al., 2007[Ng, S.-L., Patil, P. S., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o1897-o1898.]] and XOLLOC [3-(4-chloro-3-fluoro­phen­yl)-1-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one; Çelikesir et al., 2019[Çelikesir, S. T., Sheshadri, S. N., Akkurt, M., Chidan Kumar, C. S. & Veeraiah, M. K. (2019). Acta Cryst. E75, 942-945.]]. A few other related chalcone structures include: QERYOC [(2E)-3-(1,3-benzodioxol-5-yl)-1-(4-bromo­phen­yl)prop-2-en-1-one; Harrison et al., 2006[Harrison, W. T. A., Bindya, S., Yathirajan, H. S., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o5293-o5295.]], KUYWOR [(2E)-3-(1,3-ben­zodioxol-5-yl)-1-(3-bromo-2-thien­yl)prop-2-en-1-one; Har­rison et al., 2010[Harrison, W. T. A., Chidan Kumar, C. S., Yathirajan, H. S., Ashalatha, B. V. & Narayana, B. (2010). Acta Cryst. E66, o2477.]], TUNTAY [(2E)-1-(1,3-benzodioxol-5-yl)-3-(2-bromo­phen­yl)prop-2-en-1-one; Li et al., 2010[Li, H., Rathore, R. S., Prakash Kamath, K., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o1289-o1290.]], and UNUZUZ {(E)-3-(8-ben­z­yloxy-2,3-di­hydro-1,4-benzodioxin-6-yl)-1-[2-hy­droxy-4,6-bis­(meth­oxy­meth­oxy)phen­yl]prop-2-en-1-one; Zhang et al., 2011[Zhang, Y., Zhang, Y.-N., Liu, M.-M., Ryu, K.-C. & Ye, D.-Y. (2011). Acta Cryst. E67, o912-o913.]}.

5. Synthesis, crystallization, and spectroscopic data

1-(2,3-Di­hydro­benzo[1,4]dioxin-6-yl)ethanone was prepared by Friedel–Crafts acyl­ation of benzo[1,4]dioxane using ether as solvent (Fig. 4[link]). 1-(2,3-Di­hydro­benzo[1,4]dioxin-6-yl)ethanone (1.78 g, 0.01 mol) and 4-chloro­benzaldehyde (1.40 g, 0.01 mol) were stirred in a 30% ethano­lic NaOH and water mixture at 293 K for 4–6 h. The reaction mixture was refrigerated overnight. The precipitate that formed was filtered off and dried. X-ray-quality crystals were obtained from a solvent mixture of DMF–DMSO (di­methyl­formamide–dimethyl sulfoxide) (1:1 v/v) and the corresponding melting point was found to be 410–411 K.

[Figure 4]
Figure 4
A generalized reaction scheme for the synthesis of I.

FT–IR (ν in cm−1): 3156–2934 (Ar-CH), 1655 (C=O), 1575 (C=C); 1H NMR (CDCl3, 400 MHz): δ 7.71 (d, 1H, β-CH), 7.92 (d, 2H, Ar-H), 7.62 (d, 2H, Ar-H), 7.23 (d, 1H, 2,3-di­hydro­benzo[1,4]dioxine Ar-H), 7.21 (d, 1H, 2,3-di­hydro­benzo[1,4]dioxine Ar-H), 7.01 (d, 1H, α-CH), 6.93 (s, 1H, 2,3-di­hydro­benzo[1,4]dioxine Ar-H), 4.14 (m, 4H, 1,4-dioxane CH2); 13C NMR (CDCl3, 100 MHz): δ 196.1, 156.5, 149.8, 145.1, 133.5, 133.3, 129.0, 128.7, 122.1, 121.4, 121.3, 112.0, 106.8, 64.2.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were found in difference Fourier maps and subsequently included in the refinement using riding models, with constrained distances set to 0.95 [C(sp2)H] and 0.99 Å (R2CH2). Uiso(H) values were set to 1.2Ueq of the attached atom. The absolute structure was determined using 1035 quotients of the form [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).

Table 2
Experimental details

Crystal data
Chemical formula C17H13ClO3
Mr 300.72
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 200
a, b, c (Å) 5.8655 (5), 14.3499 (17), 16.4803 (19)
V3) 1387.1 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.26 × 0.23 × 0.22
 
Data collection
Diffractometer Bruker D8 Venture dual source
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.788, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 17057, 2896, 2694
Rint 0.038
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.083, 1.07
No. of reflections 2896
No. of parameters 190
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.16
Absolute structure Flack x determined using 1035 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.01 (2)
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), SHELX (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: APEX3 (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELX (Sheldrick, 2008) and publCIF (Westrip, 2010).

(E)-3-(4-Chlorophenyl)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)prop-2-en-1-one top
Crystal data top
C17H13ClO3Dx = 1.440 Mg m3
Mr = 300.72Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 9943 reflections
a = 5.8655 (5) Åθ = 2.5–27.6°
b = 14.3499 (17) ŵ = 0.28 mm1
c = 16.4803 (19) ÅT = 200 K
V = 1387.1 (3) Å3Cut block, pale yellow
Z = 40.26 × 0.23 × 0.22 mm
F(000) = 624
Data collection top
Bruker D8 Venture dual source
diffractometer
2896 independent reflections
Radiation source: microsource2694 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.038
φ and ω scansθmax = 27.6°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 77
Tmin = 0.788, Tmax = 0.971k = 1818
17057 measured reflectionsl = 1921
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0322P)2 + 0.4666P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2896 reflectionsΔρmax = 0.21 e Å3
190 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack x determined using 1035 quotients [(I+)-(I-)]/[(I+)+(I-)] [Parsons et al. (2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

The crystals appeared to undergo a destructive phase transition when cooled to 90K. Visual inspection of crystal integrity and diffraction quality vs temperature established a safe temperature for data collection of -73° C.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.86056 (16)0.65710 (6)0.91506 (5)0.0577 (3)
O10.0096 (3)0.59370 (18)0.48876 (12)0.0505 (6)
O20.0030 (3)0.57318 (14)0.18914 (12)0.0416 (5)
O30.4399 (4)0.64129 (16)0.14256 (12)0.0443 (5)
C10.1903 (5)0.6112 (2)0.47247 (15)0.0338 (6)
C20.2634 (4)0.61897 (18)0.38646 (15)0.0286 (5)
C30.1080 (4)0.59307 (18)0.32641 (17)0.0318 (5)
H30.0381610.5705200.3416260.038*
C40.1637 (4)0.59976 (17)0.24503 (16)0.0300 (5)
C50.0414 (6)0.6143 (2)0.11107 (17)0.0453 (7)
H5A0.0084610.6819190.1135190.054*
H5B0.0625540.5858530.0707310.054*
C60.2829 (6)0.5995 (2)0.08557 (18)0.0475 (8)
H6A0.3138240.5317800.0817380.057*
H6B0.3067580.6270760.0311780.057*
C70.3778 (5)0.63300 (19)0.22209 (16)0.0320 (6)
C80.5313 (5)0.66010 (18)0.28102 (18)0.0343 (6)
H80.6759790.6839540.2655810.041*
C90.4761 (5)0.65280 (18)0.36243 (17)0.0329 (6)
H90.5840460.6710040.4023650.040*
C100.3628 (5)0.62304 (19)0.53720 (16)0.0361 (6)
H100.5119600.6437590.5238770.043*
C110.3090 (5)0.60465 (18)0.61436 (15)0.0314 (6)
H110.1582460.5831950.6240380.038*
C120.4563 (4)0.61380 (17)0.68570 (15)0.0297 (5)
C130.6738 (4)0.65334 (18)0.68259 (17)0.0326 (5)
H130.7370750.6715190.6319430.039*
C140.7979 (5)0.66609 (18)0.75398 (18)0.0347 (6)
H140.9455330.6932640.7522930.042*
C150.7047 (5)0.63898 (18)0.82670 (18)0.0355 (6)
C160.4927 (5)0.59816 (19)0.83158 (18)0.0367 (6)
H160.4325530.5787430.8823660.044*
C170.3696 (5)0.58612 (18)0.76102 (16)0.0330 (6)
H170.2227330.5584090.7636440.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0663 (5)0.0745 (5)0.0324 (4)0.0046 (4)0.0248 (4)0.0048 (4)
O10.0324 (10)0.0939 (18)0.0252 (10)0.0057 (11)0.0000 (9)0.0001 (10)
O20.0414 (11)0.0586 (12)0.0248 (9)0.0105 (10)0.0082 (9)0.0018 (9)
O30.0440 (11)0.0634 (14)0.0254 (10)0.0025 (10)0.0040 (9)0.0059 (9)
C10.0345 (14)0.0442 (15)0.0226 (13)0.0005 (12)0.0028 (11)0.0017 (12)
C20.0283 (12)0.0340 (13)0.0234 (12)0.0011 (10)0.001 (1)0.0006 (10)
C30.0312 (12)0.0381 (13)0.0261 (13)0.0009 (10)0.0011 (11)0.0015 (11)
C40.0313 (13)0.0327 (12)0.0259 (12)0.0001 (11)0.0058 (11)0.0007 (10)
C50.0526 (18)0.0612 (18)0.0221 (13)0.0025 (15)0.0101 (13)0.0041 (13)
C60.0591 (19)0.062 (2)0.0217 (13)0.0047 (16)0.0007 (14)0.0005 (13)
C70.0326 (14)0.0374 (13)0.0259 (13)0.0032 (11)0.0014 (11)0.004 (1)
C80.0288 (13)0.0410 (14)0.0330 (14)0.0026 (11)0.0014 (12)0.0034 (12)
C90.0303 (12)0.0380 (14)0.0305 (13)0.0033 (10)0.0059 (11)0.0012 (11)
C100.0326 (13)0.0489 (16)0.0268 (14)0.0015 (13)0.0020 (11)0.0015 (13)
C110.0291 (13)0.0403 (14)0.0247 (13)0.0004 (11)0.0012 (10)0.0031 (11)
C120.0316 (13)0.0330 (13)0.0246 (13)0.0023 (10)0.0005 (11)0.0017 (11)
C130.0324 (13)0.0396 (13)0.0259 (13)0.0005 (10)0.0024 (11)0.0010 (11)
C140.0321 (13)0.0387 (14)0.0332 (14)0.0003 (11)0.0069 (12)0.0010 (12)
C150.0416 (15)0.0393 (13)0.0255 (12)0.0060 (11)0.0117 (12)0.0000 (11)
C160.0430 (15)0.0416 (14)0.0256 (13)0.0023 (12)0.0005 (12)0.0033 (12)
C170.0337 (13)0.0362 (13)0.0292 (14)0.0005 (10)0.0021 (11)0.0013 (11)
Geometric parameters (Å, º) top
Cl1—C151.739 (3)C7—C81.380 (4)
O1—C11.229 (3)C8—C91.384 (4)
O2—C41.372 (3)C8—H80.9500
O2—C51.433 (3)C9—H90.9500
O3—C71.366 (3)C10—C111.336 (4)
O3—C61.446 (4)C10—H100.9500
C1—C101.480 (4)C11—C121.465 (4)
C1—C21.485 (3)C11—H110.9500
C2—C31.396 (4)C12—C131.397 (4)
C2—C91.396 (4)C12—C171.399 (4)
C3—C41.384 (4)C13—C141.396 (4)
C3—H30.9500C13—H130.9500
C4—C71.395 (4)C14—C151.373 (4)
C5—C61.493 (5)C14—H140.9500
C5—H5A0.9900C15—C161.377 (4)
C5—H5B0.9900C16—C171.379 (4)
C6—H6A0.9900C16—H160.9500
C6—H6B0.9900C17—H170.9500
C4—O2—C5112.4 (2)C7—C8—H8119.7
C7—O3—C6114.7 (2)C9—C8—H8119.7
O1—C1—C10121.2 (2)C8—C9—C2120.7 (2)
O1—C1—C2120.0 (2)C8—C9—H9119.7
C10—C1—C2118.8 (2)C2—C9—H9119.7
C3—C2—C9118.4 (2)C11—C10—C1120.1 (3)
C3—C2—C1117.9 (2)C11—C10—H10119.9
C9—C2—C1123.7 (2)C1—C10—H10119.9
C4—C3—C2121.0 (2)C10—C11—C12127.4 (3)
C4—C3—H3119.5C10—C11—H11116.3
C2—C3—H3119.5C12—C11—H11116.3
O2—C4—C3118.0 (2)C13—C12—C17118.7 (2)
O2—C4—C7122.1 (3)C13—C12—C11123.0 (2)
C3—C4—C7119.9 (2)C17—C12—C11118.2 (2)
O2—C5—C6110.0 (3)C14—C13—C12119.9 (3)
O2—C5—H5A109.7C14—C13—H13120.0
C6—C5—H5A109.7C12—C13—H13120.0
O2—C5—H5B109.7C15—C14—C13119.4 (3)
C6—C5—H5B109.7C15—C14—H14120.3
H5A—C5—H5B108.2C13—C14—H14120.3
O3—C6—C5111.2 (2)C14—C15—C16122.1 (3)
O3—C6—H6A109.4C14—C15—Cl1118.6 (2)
C5—C6—H6A109.4C16—C15—Cl1119.3 (2)
O3—C6—H6B109.4C15—C16—C17118.5 (3)
C5—C6—H6B109.4C15—C16—H16120.8
H6A—C6—H6B108.0C17—C16—H16120.8
O3—C7—C8118.5 (3)C16—C17—C12121.5 (3)
O3—C7—C4122.0 (3)C16—C17—H17119.3
C8—C7—C4119.5 (3)C12—C17—H17119.3
C7—C8—C9120.5 (2)
O1—C1—C2—C38.9 (4)C4—C7—C8—C91.3 (4)
C10—C1—C2—C3169.9 (2)C7—C8—C9—C20.8 (4)
O1—C1—C2—C9169.5 (3)C3—C2—C9—C80.2 (4)
C10—C1—C2—C911.7 (4)C1—C2—C9—C8178.6 (3)
C9—C2—C3—C40.7 (4)O1—C1—C10—C117.4 (4)
C1—C2—C3—C4179.1 (2)C2—C1—C10—C11171.3 (3)
C5—O2—C4—C3158.0 (3)C1—C10—C11—C12179.0 (2)
C5—O2—C4—C721.8 (4)C10—C11—C12—C136.8 (4)
C2—C3—C4—O2180.0 (2)C10—C11—C12—C17176.7 (3)
C2—C3—C4—C70.1 (4)C17—C12—C13—C141.2 (4)
C4—O2—C5—C650.4 (3)C11—C12—C13—C14175.3 (2)
C7—O3—C6—C538.6 (4)C12—C13—C14—C150.4 (4)
O2—C5—C6—O360.1 (4)C13—C14—C15—C160.9 (4)
C6—O3—C7—C8171.8 (3)C13—C14—C15—Cl1179.0 (2)
C6—O3—C7—C49.4 (4)C14—C15—C16—C171.3 (4)
O2—C4—C7—O30.2 (4)Cl1—C15—C16—C17178.7 (2)
C3—C4—C7—O3179.6 (3)C15—C16—C17—C120.4 (4)
O2—C4—C7—C8179.0 (2)C13—C12—C17—C160.8 (4)
C3—C4—C7—C80.8 (4)C11—C12—C17—C16175.8 (2)
O3—C7—C8—C9179.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O3i0.992.613.595 (4)172
C5—H5B···Cl1ii0.992.803.455 (3)124
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x1, y, z1.
 

Acknowledgements

One of the authors (V) is grateful to the DST–PURSE Project, Vijnana Bhavana, UOM for providing research facilities. HSY thanks UGC for a BSR Faculty fellowship for three years.

Funding information

Funding for this research was provided by: NSF (MRI CHE1625732) and the University of Kentucky (Bruker D8 Venture diffractometer) to SP.

References

First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇelikesir, S. T., Sheshadri, S. N., Akkurt, M., Chidan Kumar, C. S. & Veeraiah, M. K. (2019). Acta Cryst. E75, 942–945.  CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDhar, D. N. (1981). In The Chemistry of Chalcones and Related Compounds. New York: John Wiley.  Google Scholar
First citationDi Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337–353.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science CrossRef PubMed CAS Google Scholar
First citationElkanzi, N. A. A., Hrichi, H., Alolayan, R. A., Derafa, W., Zahou, F. M. & Bakr, R. B. (2022). ACS Omega, 7, 27769–27786.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Bindya, S., Yathirajan, H. S., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o5293–o5295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Chidan Kumar, C. S., Yathirajan, H. S., Ashalatha, B. V. & Narayana, B. (2010). Acta Cryst. E66, o2477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Sreevidya, T. V., Yathirajan, H. S. & Narayana, B. (2008). Anal. Sci. X, 24, X245–X246.  CAS Google Scholar
First citationKong, Z., Sun, D., Jiang, Y. & Hu, Y. (2020). J. Enzyme Inhib. Med. Chem. 35, 1513–1523.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, H., Rathore, R. S., Prakash Kamath, K., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o1289–o1290.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNg, S.-L., Patil, P. S., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o1897–o1898.  CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShinde, R. A., Adole, V. A. & Jagdale, B. S. (2022a). Polycyclic Aromat. Compd. 42, 6155–6172.  CrossRef CAS Google Scholar
First citationShinde, R. A., Adole, V. A., Jagdale, B. S. & Desale, B. S. (2021). J. Indian Chem. Soc. 98, 100051.  CrossRef Google Scholar
First citationShinde, R. A., Adole, V. A., Jagdale, B. S. & Pawar, T. B. (2020). Mat. Sci. Res. Ind. 17, 54–72.  CAS Google Scholar
First citationShinde, R. A., Adole, V. A., Shinde, R. S., Desale, B. S. & Jagdale, B. S. (2022b). Results Chem. 4, 100553.  CrossRef Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o1783–o1784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTroeberg, L., Chen, X., Flaherty, T. M., Morty, R. E., Cheng, M., Hua, H., Springer, C., McKerrow, J. H., Kenyon, G. L., Lonsdale-Eccles, J. D., Coetzer, T. H. T. & Cohen, F. E. (2000). Mol. Med. 6, 660–669.  CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J.-Z., Jiang, X., Zhao, C.-G., Li, X.-K. & Yang, S.-L. (2012). Z. Kristallogr. New Cryst. Struct. 227, 215–216.  CAS Google Scholar
First citationZhang, Y., Zhang, Y.-N., Liu, M.-M., Ryu, K.-C. & Ye, D.-Y. (2011). Acta Cryst. E67, o912–o913.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762–7810.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds