research communications
The synthesis, E)-3-(4-chlorophenyl)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)prop-2-en-1-one
and spectroscopic analysis of (aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India, bAavishkaar Research Centre, Coorg Institute of Dental Sciences, Virajpet 571 218, India, cDepartment of Microbiology, Yuvaraja's College, Mysore 570 005, India, and dDepartment of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA
*Correspondence e-mail: ybb2706@gmail.com, yathirajan@hotmail.com
The synthesis, E)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-3-(4-chlorophenyl)prop-2-en-1-one (C17H13ClO3), a substituted chalcone, are described. The overall geometry of the molecule is largely planar (r.m.s. deviation = 0.1742 Å), but slightly kinked, leading to a dihedral angle between the planes of the benzene rings at either side of the molecule of 8.31 (9)°. In the crystal, only weak interactions determine the packing motifs. These include C—H⋯O and C—H⋯Cl hydrogen bonds and π–π overlap of aromatic rings.
and spectroscopic analysis of (Keywords: crystal structure; chalcone; π–π interaction.
CCDC reference: 2272334
1. Chemical context
et al., 1999). Moreover, several have demonstrated significant antimalarial properties (Troeberg et al., 2000). The efficient second-harmonic generation (SHG) conversion efficiency of some has also made them promising organic nonlinear optical (NLO) materials (Sarojini et al., 2006). The presence of phenolic groups in many has garnered attention due to their radical quenching capabilities, making these compounds and chalcone-rich plant extracts potential candidates for drug development or food preservation (Dhar et al., 1981; Di Carlo et al., 1999). The design, synthesis and evaluation of 1,4-benzodioxane-substituted as selective and reversible inhibitors of human monoamine oxidase B was reported by Kong et al. (2020). Furthermore, Shinde et al. (2020) have conducted experimental and theoretical studies on the molecular structure, FT–IR, NMR, HOMO/LUMO frontier orbital, molecular electrostatic potential (MESP) and reactivity descriptors of (E)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one. They have also reported the synthesis, antibacterial and computational studies of halo-chalcone hybrids derived from 1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)ethan-1-one (Shinde et al., 2021) and of two trifluorinated derived from 1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)ethan-1-one (Shinde et al., 2022a), as well as investigations of (E)-4-(3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-3-oxoprop-1-en-1-yl)benzonitrile (Shinde et al., 2022b). Additionally, Zhuang et al. (2017) presented a comprehensive review on the chalcone framework as a privileged structure in medicinal chemistry, while Elkanzi et al. (2022) have published a review on the synthesis of chalcone derivatives and their biological activities.
exhibit a wide range of fascinating biological and pharmacological properties. Some of their beneficial attributes include anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic and anticancer activities (DimmockGiven the general significance of E)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-3-(4-chlorophenyl)prop-2-en-1-one, C17H13ClO3 (I), along with its and related studies.
we report herein the synthesis of (2. Structural commentary
As shown in Fig. 1, the overall conformation of the molecule of I is determined by the torsion angles C3—C2—C1—C10 [169.9 (2)°], C2—C1—C10—C11 [−171.3 (3)°], C1—C10—C11—C12 [−179.0 (3)°] and C10—C11—C12—C17 [−176.7 (3)°] of the propenone moiety. In magnitude, these are all within about 10° of 180°, which makes the molecule largely flat (r.m.s. deviation for the non-H atoms is 0.1742 Å), though slightly bent, leading to a dihedral angle between the chlorophenyl and dihydrobenzodioxine rings of 8.31 (9)°. The conformation of the dihydrodioxine ring, as determined by its Cremer–Pople puckering parameters (Cremer & Pople, 1975) [Q = 0.466 (3) Å, θ = 51.2 (4)° and φ = 282.6 (4)°], is closest to half-chair (Boeyens, 1978). This puckering places atoms C5 and C6 at 0.499 (4) and −0.207 (4) Å on either side of the mean plane of the dihydrobenzodioxine ring. All bond lengths and angles lie within the typical ranges found in organic structures.
3. Supramolecular features
The crystal packing in I is governed solely by weak interactions, as the only possible hydrogen-bond donors are of type C—H. The absence of any sharp spikes protruding to the lower left in the Hirshfeld surface fingerprint plots (Fig. 2) calculated using CrystalExplorer (Spackman et al., 2021) clearly marks the absence of any very close contacts. Indeed, only two such contacts are flagged as intermolecular hydrogen-bond-type interactions by the default SHELXL HTAB command. These are C5—H5A⋯O3i and C5—H5B⋯Clii [symmetry codes: (i) x − , −y + , z; (ii) x − 1, y, z − 1], shown in Table 1. The benzene rings of the 4-chlorophenyl and dihydrobenzodioxine groups, however, exhibit π–π overlap, which link the molecules into chains that extend parallel to [001], as shown in Fig. 3. The centroid–centroid distances [3.747 (18) Å] and the dihedral angle between the participating rings [6.12 (11)°] imply that these are rather weak interactions.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.43 with updates to November 2022; Groom et al., 2016) using a molecular fragment consisting of chalcone (C6H5C=OCH=CHC6H5) with no specific substituents returned 4725 hits. With hydrogen attached across the C=C double bond, the search gave 1200 hits. Of these entries, 155 had `any halogen' at the equivalent of C15 in I, 62 of which had Cl. A search fragment without the halogen but with `any oxygen bound' substituent at the equivalent of C4 and C7 produced 78 matches. Addition of the aforementioned halogen reduced this to 14 structures, seven of which were chlorides, but only five are unique. These are: BOJFIQ [(2E)-1-(1,3-benzodioxol-5-yl)-3-(4-chlorophenyl)prop-2-en-1-one; Jasinski et al., 2008], FATFIR [(E)-3-(2,4-dichlorophenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one; Wu et al., 2012], TICDIT [3-(4-chlorophenyl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one; Teh et al., 2007], VIDDIW [3-(2,4-dichlorophenyl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one; Ng et al., 2007] and XOLLOC [3-(4-chloro-3-fluorophenyl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one; Çelikesir et al., 2019]. A few other related chalcone structures include: QERYOC [(2E)-3-(1,3-benzodioxol-5-yl)-1-(4-bromophenyl)prop-2-en-1-one; Harrison et al., 2006], KUYWOR [(2E)-3-(1,3-benzodioxol-5-yl)-1-(3-bromo-2-thienyl)prop-2-en-1-one; Harrison et al., 2010], TUNTAY [(2E)-1-(1,3-benzodioxol-5-yl)-3-(2-bromophenyl)prop-2-en-1-one; Li et al., 2010], and UNUZUZ {(E)-3-(8-benzyloxy-2,3-dihydro-1,4-benzodioxin-6-yl)-1-[2-hydroxy-4,6-bis(methoxymethoxy)phenyl]prop-2-en-1-one; Zhang et al., 2011}.
5. Synthesis, crystallization, and spectroscopic data
1-(2,3-Dihydrobenzo[1,4]dioxin-6-yl)ethanone was prepared by Friedel–Crafts acylation of benzo[1,4]dioxane using ether as solvent (Fig. 4). 1-(2,3-Dihydrobenzo[1,4]dioxin-6-yl)ethanone (1.78 g, 0.01 mol) and 4-chlorobenzaldehyde (1.40 g, 0.01 mol) were stirred in a 30% ethanolic NaOH and water mixture at 293 K for 4–6 h. The reaction mixture was refrigerated overnight. The precipitate that formed was filtered off and dried. X-ray-quality crystals were obtained from a solvent mixture of DMF–DMSO (dimethylformamide–dimethyl sulfoxide) (1:1 v/v) and the corresponding melting point was found to be 410–411 K.
FT–IR (ν in cm−1): 3156–2934 (Ar-CH), 1655 (C=O), 1575 (C=C); 1H NMR (CDCl3, 400 MHz): δ 7.71 (d, 1H, β-CH), 7.92 (d, 2H, Ar-H), 7.62 (d, 2H, Ar-H), 7.23 (d, 1H, 2,3-dihydrobenzo[1,4]dioxine Ar-H), 7.21 (d, 1H, 2,3-dihydrobenzo[1,4]dioxine Ar-H), 7.01 (d, 1H, α-CH), 6.93 (s, 1H, 2,3-dihydrobenzo[1,4]dioxine Ar-H), 4.14 (m, 4H, 1,4-dioxane CH2); 13C NMR (CDCl3, 100 MHz): δ 196.1, 156.5, 149.8, 145.1, 133.5, 133.3, 129.0, 128.7, 122.1, 121.4, 121.3, 112.0, 106.8, 64.2.
6. Refinement
Crystal data, data collection and structure . All H atoms were found in difference Fourier maps and subsequently included in the using riding models, with constrained distances set to 0.95 [C(sp2)H] and 0.99 Å (R2CH2). Uiso(H) values were set to 1.2Ueq of the attached atom. The was determined using 1035 quotients of the form [(I+) − (I−)]/[(I+) + (I−)] (Parsons et al., 2013).
details are summarized in Table 2Supporting information
CCDC reference: 2272334
https://doi.org/10.1107/S2056989023005613/vm2285sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023005613/vm2285Isup2.hkl
Data collection: APEX3 (Bruker, 2016); cell
APEX3 (Bruker, 2016); data reduction: APEX3 (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELX (Sheldrick, 2008) and publCIF (Westrip, 2010).C17H13ClO3 | Dx = 1.440 Mg m−3 |
Mr = 300.72 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 9943 reflections |
a = 5.8655 (5) Å | θ = 2.5–27.6° |
b = 14.3499 (17) Å | µ = 0.28 mm−1 |
c = 16.4803 (19) Å | T = 200 K |
V = 1387.1 (3) Å3 | Cut block, pale yellow |
Z = 4 | 0.26 × 0.23 × 0.22 mm |
F(000) = 624 |
Bruker D8 Venture dual source diffractometer | 2896 independent reflections |
Radiation source: microsource | 2694 reflections with I > 2σ(I) |
Detector resolution: 7.41 pixels mm-1 | Rint = 0.038 |
φ and ω scans | θmax = 27.6°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −7→7 |
Tmin = 0.788, Tmax = 0.971 | k = −18→18 |
17057 measured reflections | l = −19→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.083 | w = 1/[σ2(Fo2) + (0.0322P)2 + 0.4666P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
2896 reflections | Δρmax = 0.21 e Å−3 |
190 parameters | Δρmin = −0.16 e Å−3 |
1 restraint | Absolute structure: Flack x determined using 1035 quotients [(I+)-(I-)]/[(I+)+(I-)] [Parsons et al. (2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.01 (2) |
Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998). The crystals appeared to undergo a destructive phase transition when cooled to 90K. Visual inspection of crystal integrity and diffraction quality vs temperature established a safe temperature for data collection of -73° C. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.86056 (16) | 0.65710 (6) | 0.91506 (5) | 0.0577 (3) | |
O1 | −0.0096 (3) | 0.59370 (18) | 0.48876 (12) | 0.0505 (6) | |
O2 | 0.0030 (3) | 0.57318 (14) | 0.18914 (12) | 0.0416 (5) | |
O3 | 0.4399 (4) | 0.64129 (16) | 0.14256 (12) | 0.0443 (5) | |
C1 | 0.1903 (5) | 0.6112 (2) | 0.47247 (15) | 0.0338 (6) | |
C2 | 0.2634 (4) | 0.61897 (18) | 0.38646 (15) | 0.0286 (5) | |
C3 | 0.1080 (4) | 0.59307 (18) | 0.32641 (17) | 0.0318 (5) | |
H3 | −0.038161 | 0.570520 | 0.341626 | 0.038* | |
C4 | 0.1637 (4) | 0.59976 (17) | 0.24503 (16) | 0.0300 (5) | |
C5 | 0.0414 (6) | 0.6143 (2) | 0.11107 (17) | 0.0453 (7) | |
H5A | 0.008461 | 0.681919 | 0.113519 | 0.054* | |
H5B | −0.062554 | 0.585853 | 0.070731 | 0.054* | |
C6 | 0.2829 (6) | 0.5995 (2) | 0.08557 (18) | 0.0475 (8) | |
H6A | 0.313824 | 0.531780 | 0.081738 | 0.057* | |
H6B | 0.306758 | 0.627076 | 0.031178 | 0.057* | |
C7 | 0.3778 (5) | 0.63300 (19) | 0.22209 (16) | 0.0320 (6) | |
C8 | 0.5313 (5) | 0.66010 (18) | 0.28102 (18) | 0.0343 (6) | |
H8 | 0.675979 | 0.683954 | 0.265581 | 0.041* | |
C9 | 0.4761 (5) | 0.65280 (18) | 0.36243 (17) | 0.0329 (6) | |
H9 | 0.584046 | 0.671004 | 0.402365 | 0.040* | |
C10 | 0.3628 (5) | 0.62304 (19) | 0.53720 (16) | 0.0361 (6) | |
H10 | 0.511960 | 0.643759 | 0.523877 | 0.043* | |
C11 | 0.3090 (5) | 0.60465 (18) | 0.61436 (15) | 0.0314 (6) | |
H11 | 0.158246 | 0.583195 | 0.624038 | 0.038* | |
C12 | 0.4563 (4) | 0.61380 (17) | 0.68570 (15) | 0.0297 (5) | |
C13 | 0.6738 (4) | 0.65334 (18) | 0.68259 (17) | 0.0326 (5) | |
H13 | 0.737075 | 0.671519 | 0.631943 | 0.039* | |
C14 | 0.7979 (5) | 0.66609 (18) | 0.75398 (18) | 0.0347 (6) | |
H14 | 0.945533 | 0.693264 | 0.752293 | 0.042* | |
C15 | 0.7047 (5) | 0.63898 (18) | 0.82670 (18) | 0.0355 (6) | |
C16 | 0.4927 (5) | 0.59816 (19) | 0.83158 (18) | 0.0367 (6) | |
H16 | 0.432553 | 0.578743 | 0.882366 | 0.044* | |
C17 | 0.3696 (5) | 0.58612 (18) | 0.76102 (16) | 0.0330 (6) | |
H17 | 0.222733 | 0.558409 | 0.763644 | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0663 (5) | 0.0745 (5) | 0.0324 (4) | −0.0046 (4) | −0.0248 (4) | 0.0048 (4) |
O1 | 0.0324 (10) | 0.0939 (18) | 0.0252 (10) | −0.0057 (11) | 0.0000 (9) | 0.0001 (10) |
O2 | 0.0414 (11) | 0.0586 (12) | 0.0248 (9) | −0.0105 (10) | −0.0082 (9) | 0.0018 (9) |
O3 | 0.0440 (11) | 0.0634 (14) | 0.0254 (10) | −0.0025 (10) | 0.0040 (9) | 0.0059 (9) |
C1 | 0.0345 (14) | 0.0442 (15) | 0.0226 (13) | 0.0005 (12) | −0.0028 (11) | −0.0017 (12) |
C2 | 0.0283 (12) | 0.0340 (13) | 0.0234 (12) | 0.0011 (10) | −0.001 (1) | 0.0006 (10) |
C3 | 0.0312 (12) | 0.0381 (13) | 0.0261 (13) | −0.0009 (10) | −0.0011 (11) | 0.0015 (11) |
C4 | 0.0313 (13) | 0.0327 (12) | 0.0259 (12) | −0.0001 (11) | −0.0058 (11) | 0.0007 (10) |
C5 | 0.0526 (18) | 0.0612 (18) | 0.0221 (13) | −0.0025 (15) | −0.0101 (13) | 0.0041 (13) |
C6 | 0.0591 (19) | 0.062 (2) | 0.0217 (13) | 0.0047 (16) | −0.0007 (14) | −0.0005 (13) |
C7 | 0.0326 (14) | 0.0374 (13) | 0.0259 (13) | 0.0032 (11) | 0.0014 (11) | 0.004 (1) |
C8 | 0.0288 (13) | 0.0410 (14) | 0.0330 (14) | −0.0026 (11) | 0.0014 (12) | 0.0034 (12) |
C9 | 0.0303 (12) | 0.0380 (14) | 0.0305 (13) | −0.0033 (10) | −0.0059 (11) | −0.0012 (11) |
C10 | 0.0326 (13) | 0.0489 (16) | 0.0268 (14) | −0.0015 (13) | −0.0020 (11) | −0.0015 (13) |
C11 | 0.0291 (13) | 0.0403 (14) | 0.0247 (13) | −0.0004 (11) | −0.0012 (10) | −0.0031 (11) |
C12 | 0.0316 (13) | 0.0330 (13) | 0.0246 (13) | 0.0023 (10) | 0.0005 (11) | −0.0017 (11) |
C13 | 0.0324 (13) | 0.0396 (13) | 0.0259 (13) | −0.0005 (10) | −0.0024 (11) | 0.0010 (11) |
C14 | 0.0321 (13) | 0.0387 (14) | 0.0332 (14) | 0.0003 (11) | −0.0069 (12) | 0.0010 (12) |
C15 | 0.0416 (15) | 0.0393 (13) | 0.0255 (12) | 0.0060 (11) | −0.0117 (12) | 0.0000 (11) |
C16 | 0.0430 (15) | 0.0416 (14) | 0.0256 (13) | 0.0023 (12) | −0.0005 (12) | 0.0033 (12) |
C17 | 0.0337 (13) | 0.0362 (13) | 0.0292 (14) | −0.0005 (10) | 0.0021 (11) | 0.0013 (11) |
Cl1—C15 | 1.739 (3) | C7—C8 | 1.380 (4) |
O1—C1 | 1.229 (3) | C8—C9 | 1.384 (4) |
O2—C4 | 1.372 (3) | C8—H8 | 0.9500 |
O2—C5 | 1.433 (3) | C9—H9 | 0.9500 |
O3—C7 | 1.366 (3) | C10—C11 | 1.336 (4) |
O3—C6 | 1.446 (4) | C10—H10 | 0.9500 |
C1—C10 | 1.480 (4) | C11—C12 | 1.465 (4) |
C1—C2 | 1.485 (3) | C11—H11 | 0.9500 |
C2—C3 | 1.396 (4) | C12—C13 | 1.397 (4) |
C2—C9 | 1.396 (4) | C12—C17 | 1.399 (4) |
C3—C4 | 1.384 (4) | C13—C14 | 1.396 (4) |
C3—H3 | 0.9500 | C13—H13 | 0.9500 |
C4—C7 | 1.395 (4) | C14—C15 | 1.373 (4) |
C5—C6 | 1.493 (5) | C14—H14 | 0.9500 |
C5—H5A | 0.9900 | C15—C16 | 1.377 (4) |
C5—H5B | 0.9900 | C16—C17 | 1.379 (4) |
C6—H6A | 0.9900 | C16—H16 | 0.9500 |
C6—H6B | 0.9900 | C17—H17 | 0.9500 |
C4—O2—C5 | 112.4 (2) | C7—C8—H8 | 119.7 |
C7—O3—C6 | 114.7 (2) | C9—C8—H8 | 119.7 |
O1—C1—C10 | 121.2 (2) | C8—C9—C2 | 120.7 (2) |
O1—C1—C2 | 120.0 (2) | C8—C9—H9 | 119.7 |
C10—C1—C2 | 118.8 (2) | C2—C9—H9 | 119.7 |
C3—C2—C9 | 118.4 (2) | C11—C10—C1 | 120.1 (3) |
C3—C2—C1 | 117.9 (2) | C11—C10—H10 | 119.9 |
C9—C2—C1 | 123.7 (2) | C1—C10—H10 | 119.9 |
C4—C3—C2 | 121.0 (2) | C10—C11—C12 | 127.4 (3) |
C4—C3—H3 | 119.5 | C10—C11—H11 | 116.3 |
C2—C3—H3 | 119.5 | C12—C11—H11 | 116.3 |
O2—C4—C3 | 118.0 (2) | C13—C12—C17 | 118.7 (2) |
O2—C4—C7 | 122.1 (3) | C13—C12—C11 | 123.0 (2) |
C3—C4—C7 | 119.9 (2) | C17—C12—C11 | 118.2 (2) |
O2—C5—C6 | 110.0 (3) | C14—C13—C12 | 119.9 (3) |
O2—C5—H5A | 109.7 | C14—C13—H13 | 120.0 |
C6—C5—H5A | 109.7 | C12—C13—H13 | 120.0 |
O2—C5—H5B | 109.7 | C15—C14—C13 | 119.4 (3) |
C6—C5—H5B | 109.7 | C15—C14—H14 | 120.3 |
H5A—C5—H5B | 108.2 | C13—C14—H14 | 120.3 |
O3—C6—C5 | 111.2 (2) | C14—C15—C16 | 122.1 (3) |
O3—C6—H6A | 109.4 | C14—C15—Cl1 | 118.6 (2) |
C5—C6—H6A | 109.4 | C16—C15—Cl1 | 119.3 (2) |
O3—C6—H6B | 109.4 | C15—C16—C17 | 118.5 (3) |
C5—C6—H6B | 109.4 | C15—C16—H16 | 120.8 |
H6A—C6—H6B | 108.0 | C17—C16—H16 | 120.8 |
O3—C7—C8 | 118.5 (3) | C16—C17—C12 | 121.5 (3) |
O3—C7—C4 | 122.0 (3) | C16—C17—H17 | 119.3 |
C8—C7—C4 | 119.5 (3) | C12—C17—H17 | 119.3 |
C7—C8—C9 | 120.5 (2) | ||
O1—C1—C2—C3 | −8.9 (4) | C4—C7—C8—C9 | 1.3 (4) |
C10—C1—C2—C3 | 169.9 (2) | C7—C8—C9—C2 | −0.8 (4) |
O1—C1—C2—C9 | 169.5 (3) | C3—C2—C9—C8 | −0.2 (4) |
C10—C1—C2—C9 | −11.7 (4) | C1—C2—C9—C8 | −178.6 (3) |
C9—C2—C3—C4 | 0.7 (4) | O1—C1—C10—C11 | 7.4 (4) |
C1—C2—C3—C4 | 179.1 (2) | C2—C1—C10—C11 | −171.3 (3) |
C5—O2—C4—C3 | 158.0 (3) | C1—C10—C11—C12 | −179.0 (2) |
C5—O2—C4—C7 | −21.8 (4) | C10—C11—C12—C13 | 6.8 (4) |
C2—C3—C4—O2 | −180.0 (2) | C10—C11—C12—C17 | −176.7 (3) |
C2—C3—C4—C7 | −0.1 (4) | C17—C12—C13—C14 | −1.2 (4) |
C4—O2—C5—C6 | 50.4 (3) | C11—C12—C13—C14 | 175.3 (2) |
C7—O3—C6—C5 | 38.6 (4) | C12—C13—C14—C15 | 0.4 (4) |
O2—C5—C6—O3 | −60.1 (4) | C13—C14—C15—C16 | 0.9 (4) |
C6—O3—C7—C8 | 171.8 (3) | C13—C14—C15—Cl1 | −179.0 (2) |
C6—O3—C7—C4 | −9.4 (4) | C14—C15—C16—C17 | −1.3 (4) |
O2—C4—C7—O3 | 0.2 (4) | Cl1—C15—C16—C17 | 178.7 (2) |
C3—C4—C7—O3 | −179.6 (3) | C15—C16—C17—C12 | 0.4 (4) |
O2—C4—C7—C8 | 179.0 (2) | C13—C12—C17—C16 | 0.8 (4) |
C3—C4—C7—C8 | −0.8 (4) | C11—C12—C17—C16 | −175.8 (2) |
O3—C7—C8—C9 | −179.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5A···O3i | 0.99 | 2.61 | 3.595 (4) | 172 |
C5—H5B···Cl1ii | 0.99 | 2.80 | 3.455 (3) | 124 |
Symmetry codes: (i) x−1/2, −y+3/2, z; (ii) x−1, y, z−1. |
Acknowledgements
One of the authors (V) is grateful to the DST–PURSE Project, Vijnana Bhavana, UOM for providing research facilities. HSY thanks UGC for a BSR Faculty fellowship for three years.
Funding information
Funding for this research was provided by: NSF (MRI CHE1625732) and the University of Kentucky (Bruker D8 Venture diffractometer) to SP.
References
Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320. CrossRef Web of Science Google Scholar
Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Çelikesir, S. T., Sheshadri, S. N., Akkurt, M., Chidan Kumar, C. S. & Veeraiah, M. K. (2019). Acta Cryst. E75, 942–945. CrossRef IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dhar, D. N. (1981). In The Chemistry of Chalcones and Related Compounds. New York: John Wiley. Google Scholar
Di Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337–353. Web of Science CrossRef PubMed CAS Google Scholar
Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149. Web of Science CrossRef PubMed CAS Google Scholar
Elkanzi, N. A. A., Hrichi, H., Alolayan, R. A., Derafa, W., Zahou, F. M. & Bakr, R. B. (2022). ACS Omega, 7, 27769–27786. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Harrison, W. T. A., Bindya, S., Yathirajan, H. S., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o5293–o5295. Web of Science CSD CrossRef IUCr Journals Google Scholar
Harrison, W. T. A., Chidan Kumar, C. S., Yathirajan, H. S., Ashalatha, B. V. & Narayana, B. (2010). Acta Cryst. E66, o2477. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jasinski, J. P., Butcher, R. J., Sreevidya, T. V., Yathirajan, H. S. & Narayana, B. (2008). Anal. Sci. X, 24, X245–X246. CAS Google Scholar
Kong, Z., Sun, D., Jiang, Y. & Hu, Y. (2020). J. Enzyme Inhib. Med. Chem. 35, 1513–1523. CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Li, H., Rathore, R. S., Prakash Kamath, K., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o1289–o1290. CrossRef IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ng, S.-L., Patil, P. S., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o1897–o1898. CrossRef IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54–59. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shinde, R. A., Adole, V. A. & Jagdale, B. S. (2022a). Polycyclic Aromat. Compd. 42, 6155–6172. CrossRef CAS Google Scholar
Shinde, R. A., Adole, V. A., Jagdale, B. S. & Desale, B. S. (2021). J. Indian Chem. Soc. 98, 100051. CrossRef Google Scholar
Shinde, R. A., Adole, V. A., Jagdale, B. S. & Pawar, T. B. (2020). Mat. Sci. Res. Ind. 17, 54–72. CAS Google Scholar
Shinde, R. A., Adole, V. A., Shinde, R. S., Desale, B. S. & Jagdale, B. S. (2022b). Results Chem. 4, 100553. CrossRef Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Teh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o1783–o1784. Web of Science CSD CrossRef IUCr Journals Google Scholar
Troeberg, L., Chen, X., Flaherty, T. M., Morty, R. E., Cheng, M., Hua, H., Springer, C., McKerrow, J. H., Kenyon, G. L., Lonsdale-Eccles, J. D., Coetzer, T. H. T. & Cohen, F. E. (2000). Mol. Med. 6, 660–669. CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, J.-Z., Jiang, X., Zhao, C.-G., Li, X.-K. & Yang, S.-L. (2012). Z. Kristallogr. New Cryst. Struct. 227, 215–216. CAS Google Scholar
Zhang, Y., Zhang, Y.-N., Liu, M.-M., Ryu, K.-C. & Ye, D.-Y. (2011). Acta Cryst. E67, o912–o913. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762–7810. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.