- 1. Chemical context
- 2. Structural commentary
- 3. Supramolecular features
- 4. Phase formation at different pH values
- 5. Analysis of luminescence spectra for samples obtained at different pH values
- 6. Database survey
- 7. Synthesis and crystallization
- 8. Other experimental procedures
- 9. Refinement
- Supporting information
- References
- 1. Chemical context
- 2. Structural commentary
- 3. Supramolecular features
- 4. Phase formation at different pH values
- 5. Analysis of luminescence spectra for samples obtained at different pH values
- 6. Database survey
- 7. Synthesis and crystallization
- 8. Other experimental procedures
- 9. Refinement
- Supporting information
- References
research communications
Crystal structures of two SmIII complexes with dipicolinate [DPA]2− ligands: comparison of luminescent properties of products obtained at different pH values
aDepartment of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
*Correspondence e-mail: sabina.svava.mortensen@hotmail.com
The formation of the two title compounds, Na3[Sm(DPA)3]·14H2O trisodium tris(pyridine-2,6-dicarboxylato-κ3O2,N,O6)samarate(III) tetradecahydrate, Na3[Sm(C7H3NO4)3]·14H2O, and catena-poly[[[diaqua(6-carboxypyridine-2-carboxylato-κ3O2,N,O6)samarium(III)]-μ-pyridine-2,6-dicarboxylato-κ4O2,N,O6:O2] tetrahydrate], {[Sm(C7H3NO4)(C7H4NO4)(H2O)2]·4H2O}n, depends on the pH value adjusted with NaOH solution. In both crystal structures, the coordination spheres of the SmIII cations were found to be best described by a tricapped trigonal prism (TTP), with a more regular O6N3 donor set for Na3[Sm(DPA)3]·14H2O than that of O7N2 for [Sm(DPA)(HDPA)(H2O)2]·4H2O. The supramolecular features of both crystal structures are dominated by O—H⋯O hydrogen bonds between water molecules and the O atoms of the dipicolinato ligands. Samples were made from solutions at pH = 2, pH = 5, pH = 7, and pH = 10, and the crystals present in each sample were ground to a powder. The powder samples were analyzed with powder X-ray diffraction and luminescence spectroscopy. The splitting of the bands in the luminescence spectra recorded on powders at 77 K was observed to vary with the pH.
Keywords: crystal structure; luminescence; samarium(III); PXRD; hydrogen bonding.
1. Chemical context
The luminescent properties of lanthanide(III) complexes involving the tridentate dipicolinato ligand, [DPA]2–, have been studied in great detail (Aebischer et al., 2009; Brayshaw et al., 1995; Chauvin et al., 2004; Kim et al., 1998; Kofod et al., 2020; Mondry & Starynowicz, 1995; Murray et al., 1990; Salaam et al., 2022; Zhou et al., 1994). The luminescent characteristics can be explained by the fact that the formed lanthanide(III) complex with three [DPA]2– ligands coordinating to the central lanthanide(III) cation exhibits an almost perfect tricapped trigonal prism (TTP) coordination environment (Albertsson, 1970; Brayshaw et al., 1995; Kim et al., 1998; Li et al., 2019; Murray et al., 1990; Salaam et al., 2022; Zhou et al., 1994). The luminescence properties have been studied in great depth; however, our knowledge of SmIII with [DPA]2– as the ligand is rather limited (Chuasaard et al., 2017; Kumar et al., 2019; Sharif et al., 2016; Viveros-Andrade et al., 2017).
In the present communication, we report the crystal structures of two compounds with SmIII cations and [DPA]2– ligands, viz. salt-like Na3[Sm(DPA)3]·14H2O and polymeric [Sm(DPA)(HDPA)(H2O)2]·4H2O. Both crystallized from mixtures of Sm(CF3SO3)3 and H2DPA solutions at different pH values adjusted with NaOH solution. The amount of the two compounds crystallized in each sample was found to be controlled by the pH value. This behavior was also monitored by powder X-ray diffraction (PXRD) of the bulk products and their luminescence spectra.
2. Structural commentary
Fig. 1 shows the coordination environment of the central SmIII cation in the of Na3[Sm(DPA)3]·14H2O (CCDC number: 2246128). The donor set consists of six oxygen atoms from three chelating [DPA2–] ligands, forming the top and bottom plane of a trigonal prism, and of three capping nitrogen donor atoms placed in the central plane of the trigonal prism. Each of the four NaI cations (two on general positions and two on inversion centers) coordinates by aqua ligands and carboxylate O atoms, thus linking the [Sm(DPA)3]3– anions into a tri-periodic structure.
Fig. 2 illustrates the coordination environment of the central SmIII cation in the of [Sm(DPA)(HDPA)(H2O)2]·4H2O(CCDC number: 2246127). Although the of 9 is the same as in Na3[Sm(DPA)3]·14H2O, here the donor set consists of seven oxygen atoms and two nitrogen atoms. Both [HDPA]− and [DPA]2– ligands N,O,O′-chelate the metal cation. The coordination sphere is completed by two aqua ligands and the carboxylate O atom of another symmetry-related [DPA]2– anion, making it a polymeric structure, with chains of molecules extending parallel to [001].
For both coordination environments of the SmIII cation in the title compounds, a symmetry-deviation analysis was performed to determine the deviation from an ideal coordination environment for 9. This was achieved by calculating a symmetry-deviation value, σideal, using AlignIt (Storm Thomsen et al., 2022). More details of this method are described in the supporting information. Na3[Sm(DPA)3]·14H2O was found to be best described as having the shape of a tricapped trigonal prism (TTP), with σideal = 1.16, which is in good agreement with what has been reported for other isostructural LnIII complexes (Albertsson, 1970, 1972; Hojnik et al., 2015; Mondry & Starynowicz, 1995; Tancrez et al., 2005; Elahi & Rajasekharan, 2016). The donor set in [Sm(DPA)(HDPA)(H2O)2]·4H2O is less symmetric compared to Na3[Sm(DPA)3]·14H2O, consisting of two nitrogen atoms and seven oxygen atoms. Nevertheless, the SmIII cation in [Sm(DPA)(HDPA)(H2O)2]·4H2O was also found to have a derived from a TTP, with σideal = 0.73. This is in good agreement with what was reported for the EuIII analogue (Liu et al., 2014).
3. Supramolecular features
Both Na3[Sm(DPA)3]·14H2O and [Sm(DPA)(HDPA)(H2O)2]·4H2O contain water molecules, either solely present as solvent molecules for the Na-containing phase (14 per formula unit), or as solvent molecules and as ligands (2 and 4, respectively) for the other phase. Hence, the packing of the structural entities is mainly consolidated by O—H⋯O hydrogen-bonding networks (Tables 1, 2; Figs. 3, 4). The shortest hydrogen bonds in the two structures are formed between the carboxylate and carboxylic acid groups in [DPA]2– and [HDPA]− to the water molecules, including, for example, O4W—H4WB⋯O5W, O8W—H8WA⋯O10vii, and O9W—H9WB⋯O1viii in the Na3[Sm(DPA)3]·14H2O structure, and O1W—H1WB⋯O7, O4W—H4WA⋯O2v, and O6W—H6WB⋯O6 in the [Sm(DPA)(HDPA)(H2O)2]·4H2O structure. Notably, in [Sm(DPA)(HDPA)(H2O)2]·4H2O a very strong hydrogen bond [O4⋯O4W = 2.4703 (19) Å] is established between the carboxy group of the [HDPA]− ligand and a solvent water molecule.
|
4. Phase formation at different pH values
By combining a solution of Sm(CF3SO3)3 and H2DPA solutions at different pH values, the two title compounds crystallized in each batch. However, the amounts of each compound in a batch were found to be dependent on the pH value of the H2DPA solution, which was controlled by addition of NaOH solution. Samples were made at pH = 2, pH = 5, pH = 7, and pH = 10, and the varying amount of the two compounds could be observed from the crystal photographs of each batch (Fig. 5). [Sm(DPA)(HDPA)(H2O)2]·4H2O was the dominating compound at pH = 2 (Fig. 5a), while Na3[Sm(DPA)3]·14H2O was found to dominate at pH = 5, pH = 7, and pH = 10 (Fig. 5b,c,d). This finding is supported by PXRD data recorded from crystals crushed to a powder for all samples (Fig. 6).
5. Analysis of luminescence spectra for samples obtained at different pH values
The ). As SmIII is a luminescent lanthanide(III) cation, the of the spin-orbit defined SLJ term into the individual electronic states, here double-degenerate Kramers doublets defined by ±mJ values, can be observed from the luminescence spectra (Cheisson & Schelter, 2019; Wybourne, 2004; Chen et al., 2005; Mortensen et al., 2022; Carnall et al., 1968). Because SmIII is a Kramers cation, it has an uneven number of electrons (4f5) and all states will be double degenerate without the presence of a magnetic field (Eliseeva & Bünzli, 2010). The electronic states in SmIII are a complicated 6H5/2 ground state and a 4G5/2 emitting state that both have a large multiplicity (Eliseeva & Bünzli, 2010; Chen et al., 2005). The emitting state, 4G5/2, can split into maximum Kramers levels. The maximum splitting is calculated as (2J + 1)/2 (Eliseeva & Bünzli, 2010). For the states observed from the emission spectra, the maximum splitting is three, four, five, and six for 6H5/2, 6H7/2, 6H9/2, and 6H11/2, respectively. To avoid deconvolution of nine bands or more in each transition, the spectra were recorded at 77 K for the polycrystalline material. At 77 K, one of the ±mJ doublets is predominately populated in 4G5/2. Thus, only three bands will be observed for the 4G5/2 → 6H5/2 transition (Lupei et al., 2012; Chen et al., 2005; Skaudzius et al., 2018; Sakirzanovas et al., 2011). The number of observed bands for a 4G5/2 → 6HJ transition should correspond to the maximum splitting of 6HJ (Eliseeva & Bünzli, 2010; Lupei et al., 2012; Chen et al., 2005; Skaudzius et al., 2018; Sakirzanovas et al., 2011). Additional bands can be an indicator for transitions from the less populated higher-energy 4G5/2 states or the presence of more than one emitting species (Chen et al., 2005; Sakirzanovas et al., 2011). Because both Na3[Sm(DPA)3]·14H2O and [Sm(DPA)(HDPA)(H2O)2]·4H2O are present in the samples, more bands than the maximum splitting are expected (Judd, 1962; Ofelt, 1962).
is sensitive to the coordination environment and the donor atoms (Eliseeva & Bünzli, 2010The luminescent properties of the samples obtained at different pH values were investigated in order to evaluate the effect of having different compounds present in each sample. From the emission spectra it was apparent that there is a change in the luminescenct properties with the change in compound distribution at different pH values (Fig. 7).
Five bands are observed for the 4G5/2 → 6H7/2 transition in the emission spectra from all samples. This indicates that more than one species is present in the solid reaction product, as this is one more band than the maximum splitting for 6H7/2 would allow per SmIII atom. Hence, SmIII exists in more than one coordination environment in the powdered samples of the bulk material. Thermal populations of more Kramers levels in 4G5/2 would result in eight bands (Lupei et al., 2012; Chen et al., 2005; Skaudzius et al., 2018, Sakirzanovas et al., 2011). As this is not the case, the five bands are ascribed as a result of the presence of both Na3[Sm(DPA)3]·14H2O and [Sm(DPA)(HDPA)(H2O)2]·4H2O, which both have a significant contribution to the of the samples obtained at different pH.
The change in the luminescent properties is apparent in the 4G5/2 → 6H9/2 transition, where the splitting patterns clearly varies. Additionally, there is a change in the intensity of the 4G5/2 → 6H9/2 transition compared to the the 4G5/2 → 6H7/2 transition. At pH = 2, the 4G5/2 → 6H7/2 transition is the most intense, whereas at pH = 10, the 4G5/2 → 6H9/2 transition has a higher intensity compared to 4G5/2 → 6H7/2 transition. Also, the 4G5/2 → 6H5/2 transition increased in intensity compared to the 4G5/2 → 6H7/2 band with increasing pH. However, no clear spectral components could be assigned to either Na3[Sm(DPA)3]·14H2O or [Sm(DPA)(HDPA)(H2O)2]·4H2O. Additional spectra are included in the supporting information.
6. Database survey
Na3[Sm(DPA)3]·14H2O is isostructural with other Na3[Ln(DPA)3]·14H2O compounds previously reported for LaIII, CeIII, PrIII, NdIII, SmIII, EuIII, GdIII, TbIII, DyIII, HoIII, YbIII, and LuIII (Albertsson, 1970; Hojnik et al., 2015; Albertsson, 1972; Albertsson et al., 1972; Mondry & Starynowicz, 1995; Tancrez et al., 2005; Elahi & Rajasekharan, 2016). Crystal data of Na3[Sm(DPA)3]·14H2O have been deposited at the CCDC (CSD code SOPGOT; Hu et al., 1989); however, without atomic coordinates, which motivated us to reinvestigate the crystal structure.
[Sm(DPA)(HDPA)(H2O)2]·4H2O is isostructural with other [Ln(DPA)(HDPA)(H2O)2]·4H2O compounds previously reported for CeIII, PrIII, NdIII, SmIII, EuIII, GdIII, TbIII, DyIII, and ErIII (Brayshaw et al., 2005; Cheng et al., 2007; Chuasaard et al., 2017; Ghosh & Bharadwaj, 2003; Hou et al., 2011; Kang, 2011; Liu et al., 2005; Moghzi et al., 2020; Najafi et al., 2017; Rafizadeh et al., 2005; Song et al., 2005; Wang et al., 2012; Xu et al., 2009; Kong et al., 2022). The of [Sm(DPA)(HDPA)(H2O)2]·4H2O has been reported previously several times (CSD code FONCUH; best result in terms of reliability factors: FONCUH01; Rafizadeh et al., 2005). For interpretation of the luminescence spectra and a comparison with Na3[Sm(DPA)3]·14H2O, we have also reinvestigated the of [Sm(DPA)(HDPA)(H2O)2]·4H2O.
7. Synthesis and crystallization
All chemicals were used as received without further purification. All crystallization experiments were conducted three times.
0.2 M Sm(CF3SO3)3 stock solution
Sm(CF3SO3)3 (2.39 g, 0.400 mmol; 98% from STREM Chemicals) was used to create a 0.20 M stock solution by dissolving the salt in water to create a solution with a volume of 20.0±0.04 ml.
0.2 M H2DPA stock solution
H2DPA (pyridine-2,6-dicarboxylic acid; 0.669 g, 4.01 mmol; Riedel-De Haën) was used to create a 0.2 M stock solution by dissolving the acid in water to create a solution with a volume of 20±0.04 ml.
Sm(DPA) at pH = 2 – crystallization
1.0 ml of the 0.2 M Sm(CF3SO3)3 stock solution was added to a sample vial with 3.0 ml of the 0.2 M H2DPA stock solution. The sample was heated at 353 K for 1 h. The sample vial was closed with a lid and left in a dark place. After 1 d crystals had formed.
Sm(DPA) at pH = 5 – crystallization
NaOH (1.0 M) was added to the H2DPA stock solution to adjust the pH to 5. 0.5 ml of the 0.2 M Sm(CF3SO3)3 solution were added to a sample vial with 1.5 ml of the 0.2 M H2DPA stock solution. The sample was heated at 353 K for 1 h. The sample vial was placed in a container with acetone, placing a lid on top of the container and left for acetone diffusion. After 3 d crystals had formed.
Sm(DPA) at pH = 7 – crystallization
NaOH (1.0 M) was added to the H2DPA stock solution to adjust the pH to 7. 0.5 ml of the 0.2 M Sm(CF3SO3)3 solution were added to a sample vial with 1.5 ml of the 0.2 M H2DPA stock solution. The sample was heated at 353 K for 1 h. The sample was then filtered through a Q-Max RR syringe filter from Frisinette and transferred to a vial. The latter was placed in a container with acetone, placing a lid on top of the container and left for an acetone diffusion. After 1 d crystals had formed.
Sm(DPA) at pH = 10 – crystallization
NaOH (1.0 M) was added to the H2DPA stock solution to adjust the pH to 10. 0.5 ml of the 0.2 M Sm(CF3SO3)3 solution were added to a sample vial with 1.5 ml of the 0.2 M H2DPA stock solution. The sample was heated at 353 K for 1 h. The sample was then filtered through a Q-Max RR syringe filter from Frisinette and transferred to a vial. The later was placed in a container with acetone, placing a lid on top of the container and left for an acetone diffusion. After 1 d crystals had formed.
8. Other experimental procedures
For both PXRD and
measurements, the crystals, which had precipitated in each sample, were collected by suction filtration with a vacuum pump. The crystals were removed from the filter, dried in air and ground to a powder.Powder X-ray Diffraction
PXRD diffractograms were recorded for all samples prepared at different pH values. Data were collected using a Bruker D8 Advance diffractometer using a Cu Kα source (λ = 1.5406 Å). Samples were measured using a low-background silica sample holder at 293 K.
Optical Spectroscopy
Crystal powders from all samples prepared at different pH were added to a 5.0 mm diameter NMR silica cylinder (Bruker) together with 2-methyltetrahydrofuran glass. The samples were cooled using liquid nitrogen and were measured using a cold-finger setup. This setup was used for both the emission and excitation spectra and for determination of luminescent lifetimes.
Emission and excitation spectra were measured with a xenon arc lamp as the excitation source on a PTI QuantaMaster8075 from Horiba Scientific.
For emission spectroscopy, an excitation wavelength at 401 nm (24938 cm−1) was used. Emission was detected from 550 nm (18182 cm−1) to 760 nm (13158 cm−1). The emission slits were kept at 1.0 nm for the two outermost slits and 5.0 nm or the middle slit for all samples, and the excitation slits were all kept at 8.0 nm. The voltage bias was kept at 3.2 V for the reference detector.
For excitation spectroscopy, an emission wavelength at 598 nm (16722 cm−1) was used. Excitation was detected from 250 nm (40000 cm−1) to 590 nm (16949 cm−1). Emission slits were all kept at 8.0 nm and excitation slits were kept at 1.0 nm for the two outermost slits and 5.0 nm for the middle slit for all samples. The voltage bias was kept at 6.8 V for the reference detector.
Luminescence Lifetimes
The luminescence lifetimes were determined for all powder samples using a TCSPC FluoTime300 from PicoQuant. The excitation wavelength was 405 nm (24691 cm−1), and the emission wavelength 600 nm (16667 cm−1). The effective sync rate was kept at 1 kHz, with 5000 pulses, a period length of 1.0 ms, a burst length of 625 µs, and a time/channel at 80 ns. The temperature was kept at 298 K. The luminescence lifetimes were fitted using a mono-exponential decay function using the software EasyTau 2 (PicoQuant, 2018).
9. Refinement
Crystal data, data collection and structure . Hydrogen atoms attached to aromatic carbon atoms were added automatically using a riding model with Uiso(H) = 1.2Ueq(C). All hydrogen atoms of water molecules were discernible in difference-Fourier maps. They were refined with a distance restraint of 0.85 Å, and with Uiso(H) = 1.5Ueq(C). The H atom of the carboxylate group (H4) in [Sm(DPA)(HDPA)(H2O)2]·4H2O was found in difference-Fourier maps and was refined freely. The comparatively high residual positive electron density in Na3[Sm(DPA)3]·14H2O is located at distances of ≃1.4 Å from atoms H6WA and H6WB. Contributions of additional atoms and/or disorder did not result in other reasonable models.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989023004814/wm5678sup1.cif
contains datablocks mo_d8v5334_0m_a, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023004814/wm5678Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989023004814/wm5678IIsup3.hkl
Spectra, symmetry deviation analysis, and PXRD. DOI: https://doi.org/10.1107/S2056989023004814/wm5678sup3.pdf
For both structures, data collection: APEX2 (Bruker, 2019); cell
SAINT (Bruker, 2019); data reduction: SAINT (Bruker, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).Na3[Sm(C7H3NO4)3]·14H2O | Z = 2 |
Mr = 966.85 | F(000) = 974 |
Triclinic, P1 | Dx = 1.830 Mg m−3 |
a = 10.2674 (10) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.9688 (10) Å | Cell parameters from 9982 reflections |
c = 17.1570 (16) Å | θ = 2.4–33.2° |
α = 73.835 (3)° | µ = 1.81 mm−1 |
β = 77.573 (3)° | T = 100 K |
γ = 72.894 (3)° | Prism, colourless |
V = 1754.9 (3) Å3 | 0.78 × 0.58 × 0.26 mm |
Bruker APEXII CCD diffractometer | 12700 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.045 |
Absorption correction: multi-scan (SADABS; Bruker, 2019) | θmax = 33.2°, θmin = 2.0° |
Tmin = 0.615, Tmax = 0.747 | h = −15→15 |
107477 measured reflections | k = −16→16 |
13465 independent reflections | l = −26→26 |
Refinement on F2 | 28 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.023 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.058 | w = 1/[σ2(Fo2) + (0.021P)2 + 2.2772P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max = 0.004 |
13465 reflections | Δρmax = 3.32 e Å−3 |
574 parameters | Δρmin = −1.15 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sm1 | 0.48815 (2) | 0.74844 (2) | 0.75088 (2) | 0.00321 (2) | |
Na1 | 0.500000 | 0.500000 | 0.500000 | 0.00980 (16) | |
Na2 | 0.50358 (6) | 0.25158 (6) | 0.75459 (4) | 0.00837 (11) | |
Na3 | 0.14568 (7) | 1.30026 (7) | 0.74024 (5) | 0.01388 (13) | |
Na4 | 0.500000 | 0.000000 | 1.000000 | 0.00854 (16) | |
O1 | 0.32228 (11) | 0.96519 (11) | 0.72600 (7) | 0.00735 (19) | |
O2 | 0.10717 (12) | 1.09223 (11) | 0.74353 (8) | 0.0111 (2) | |
O3 | 0.42909 (11) | 0.53805 (11) | 0.78804 (7) | 0.00775 (19) | |
O4 | 0.29239 (12) | 0.41204 (11) | 0.78682 (8) | 0.0117 (2) | |
O5 | 0.47032 (11) | 0.71148 (11) | 0.62035 (7) | 0.00748 (19) | |
O6 | 0.55858 (13) | 0.70498 (12) | 0.49004 (7) | 0.0109 (2) | |
O7 | 0.60619 (11) | 0.90222 (11) | 0.77079 (7) | 0.00738 (19) | |
O8 | 0.69830 (11) | 1.07466 (11) | 0.72233 (7) | 0.00862 (19) | |
O9 | 0.39263 (11) | −0.21216 (11) | 0.88660 (7) | 0.00830 (19) | |
O10 | 0.43084 (12) | −0.19347 (12) | 1.00559 (7) | 0.0103 (2) | |
O11 | 0.70788 (11) | −0.41510 (11) | 0.71542 (7) | 0.00843 (19) | |
O12 | 0.89428 (11) | −0.57662 (11) | 0.74960 (7) | 0.0100 (2) | |
N1 | 0.23451 (12) | 0.75259 (12) | 0.76118 (8) | 0.0053 (2) | |
N2 | 0.60933 (13) | 0.87570 (12) | 0.62274 (8) | 0.0055 (2) | |
N3 | 0.63346 (13) | −0.37902 (12) | 0.86490 (8) | 0.0059 (2) | |
C1 | 0.19098 (15) | 0.98546 (14) | 0.73974 (9) | 0.0061 (2) | |
C2 | 0.13830 (14) | 0.86619 (14) | 0.75074 (9) | 0.0065 (2) | |
C3 | 0.00166 (16) | 0.87325 (16) | 0.74916 (11) | 0.0123 (3) | |
H3 | −0.063565 | 0.953392 | 0.742608 | 0.015* | |
C4 | −0.03531 (17) | 0.75749 (17) | 0.75761 (13) | 0.0169 (3) | |
H4 | −0.125743 | 0.759170 | 0.755871 | 0.020* | |
C5 | 0.06437 (16) | 0.63935 (16) | 0.76868 (12) | 0.0132 (3) | |
H5 | 0.042040 | 0.560674 | 0.774643 | 0.016* | |
C6 | 0.19804 (14) | 0.64151 (14) | 0.77064 (9) | 0.0065 (2) | |
C7 | 0.31407 (15) | 0.51924 (14) | 0.78274 (9) | 0.0066 (2) | |
C8 | 0.54421 (15) | 0.74740 (14) | 0.55205 (9) | 0.0065 (2) | |
C9 | 0.61918 (15) | 0.84837 (14) | 0.55005 (9) | 0.0063 (2) | |
C10 | 0.69509 (17) | 0.90667 (16) | 0.47973 (10) | 0.0110 (3) | |
H10 | 0.702967 | 0.884285 | 0.430172 | 0.013* | |
C11 | 0.75889 (19) | 0.99887 (18) | 0.48485 (10) | 0.0141 (3) | |
H11 | 0.809417 | 1.039876 | 0.438477 | 0.017* | |
C12 | 0.74666 (17) | 1.02945 (16) | 0.55983 (10) | 0.0114 (3) | |
H12 | 0.787242 | 1.092062 | 0.564500 | 0.014* | |
C13 | 0.67220 (15) | 0.96399 (14) | 0.62765 (9) | 0.0062 (2) | |
C14 | 0.65829 (14) | 0.98425 (14) | 0.71282 (9) | 0.0059 (2) | |
C15 | 0.46267 (15) | −0.24388 (14) | 0.94523 (9) | 0.0068 (2) | |
C16 | 0.59566 (15) | −0.34874 (15) | 0.93826 (9) | 0.0072 (2) | |
C17 | 0.67366 (17) | −0.40708 (17) | 1.00180 (10) | 0.0134 (3) | |
H17 | 0.646641 | −0.382103 | 1.051571 | 0.016* | |
C18 | 0.79362 (18) | −0.50416 (19) | 0.98895 (11) | 0.0167 (3) | |
H18 | 0.847093 | −0.546644 | 1.030714 | 0.020* | |
C19 | 0.83254 (16) | −0.53684 (17) | 0.91333 (10) | 0.0122 (3) | |
H19 | 0.911577 | −0.602159 | 0.903756 | 0.015* | |
C20 | 0.75090 (15) | −0.46988 (14) | 0.85216 (9) | 0.0066 (2) | |
C21 | 0.78861 (15) | −0.49090 (14) | 0.76585 (9) | 0.0068 (2) | |
O1W | 0.04883 (15) | 1.24786 (15) | 1.03199 (9) | 0.0206 (3) | |
H1WA | −0.008 (2) | 1.201 (2) | 1.0422 (18) | 0.031* | |
H1WB | 0.1197 (19) | 1.203 (2) | 1.0544 (16) | 0.031* | |
O2W | 0.14195 (14) | 1.18981 (14) | 0.88110 (9) | 0.0173 (2) | |
H2WA | 0.122 (3) | 1.1150 (15) | 0.8944 (17) | 0.026* | |
H2WB | 0.114 (3) | 1.223 (3) | 0.9238 (11) | 0.026* | |
O3W | 0.13440 (13) | 1.42018 (13) | 0.60105 (9) | 0.0175 (3) | |
H3WA | 0.190 (2) | 1.467 (2) | 0.5968 (17) | 0.026* | |
H3WB | 0.0554 (15) | 1.470 (2) | 0.5944 (17) | 0.026* | |
O4W | 0.28586 (13) | 0.60772 (13) | 0.57011 (8) | 0.0153 (2) | |
H4WA | 0.221 (2) | 0.665 (2) | 0.5476 (15) | 0.023* | |
H4WB | 0.331 (2) | 0.644 (2) | 0.5892 (15) | 0.023* | |
O5W | 0.05492 (16) | 0.76417 (16) | 0.50456 (10) | 0.0248 (3) | |
H5WA | −0.011 (2) | 0.728 (3) | 0.5275 (18) | 0.037* | |
H5WB | 0.078 (3) | 0.751 (3) | 0.4552 (9) | 0.037* | |
O6W | 0.16147 (15) | 0.72091 (14) | 0.34836 (9) | 0.0194 (3) | |
H6WA | 0.133 (3) | 0.686 (3) | 0.3180 (15) | 0.029* | |
H6WB | 0.179 (3) | 0.7923 (17) | 0.3158 (14) | 0.029* | |
O7W | 0.42934 (13) | 0.58120 (12) | 0.36593 (8) | 0.0119 (2) | |
H7WA | 0.3439 (11) | 0.614 (2) | 0.3659 (16) | 0.018* | |
H7WB | 0.444 (3) | 0.5135 (17) | 0.3476 (15) | 0.018* | |
O8W | 0.62364 (12) | 0.31062 (11) | 0.83406 (7) | 0.0097 (2) | |
H8WA | 0.597 (2) | 0.276 (2) | 0.8833 (7) | 0.015* | |
H8WB | 0.569 (2) | 0.3851 (13) | 0.8228 (15) | 0.015* | |
O9W | 0.37670 (12) | 0.20510 (11) | 0.67876 (7) | 0.00911 (19) | |
H9WA | 0.391 (2) | 0.233 (2) | 0.6273 (6) | 0.014* | |
H9WB | 0.365 (2) | 0.1282 (13) | 0.6909 (15) | 0.014* | |
O10W | 0.42198 (12) | 0.09077 (12) | 0.86809 (7) | 0.0103 (2) | |
H10A | 0.3359 (10) | 0.122 (2) | 0.8710 (15) | 0.016* | |
H10B | 0.442 (3) | 0.0245 (17) | 0.8480 (14) | 0.016* | |
O11W | 0.12847 (13) | −0.08265 (14) | 0.95098 (9) | 0.0170 (2) | |
H11A | 0.2100 (14) | −0.117 (3) | 0.9312 (16) | 0.025* | |
H11B | 0.132 (3) | −0.091 (3) | 1.0010 (7) | 0.025* | |
O12W | 0.13612 (13) | −0.11638 (14) | 1.12813 (9) | 0.0168 (2) | |
H12A | 0.0624 (18) | −0.111 (3) | 1.1623 (13) | 0.025* | |
H12B | 0.187 (2) | −0.1918 (15) | 1.1490 (16) | 0.025* | |
O13W | 0.71107 (12) | −0.07398 (12) | 0.91019 (7) | 0.0118 (2) | |
H13A | 0.751 (2) | −0.0124 (18) | 0.8938 (15) | 0.018* | |
H13B | 0.688 (3) | −0.077 (2) | 0.8664 (10) | 0.018* | |
O14W | 0.87868 (14) | −0.40551 (14) | 0.56379 (8) | 0.0173 (2) | |
H14A | 0.820 (2) | −0.413 (3) | 0.6072 (11) | 0.026* | |
H14B | 0.849 (3) | −0.412 (3) | 0.5230 (12) | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sm1 | 0.00305 (3) | 0.00300 (3) | 0.00357 (3) | −0.00045 (2) | −0.00041 (2) | −0.00111 (2) |
Na1 | 0.0114 (4) | 0.0097 (4) | 0.0094 (4) | −0.0041 (3) | −0.0013 (3) | −0.0026 (3) |
Na2 | 0.0084 (3) | 0.0083 (3) | 0.0095 (3) | −0.0017 (2) | −0.0021 (2) | −0.0035 (2) |
Na3 | 0.0141 (3) | 0.0118 (3) | 0.0153 (3) | −0.0031 (2) | −0.0016 (3) | −0.0031 (3) |
Na4 | 0.0096 (4) | 0.0086 (4) | 0.0074 (4) | −0.0014 (3) | −0.0015 (3) | −0.0024 (3) |
O1 | 0.0053 (4) | 0.0053 (4) | 0.0107 (5) | −0.0013 (3) | −0.0009 (4) | −0.0009 (4) |
O2 | 0.0087 (5) | 0.0051 (5) | 0.0181 (6) | 0.0005 (4) | −0.0007 (4) | −0.0038 (4) |
O3 | 0.0057 (4) | 0.0051 (4) | 0.0116 (5) | −0.0010 (3) | −0.0013 (4) | −0.0008 (4) |
O4 | 0.0104 (5) | 0.0048 (5) | 0.0199 (6) | −0.0029 (4) | 0.0004 (4) | −0.0039 (4) |
O5 | 0.0089 (4) | 0.0099 (5) | 0.0054 (4) | −0.0053 (4) | 0.0004 (4) | −0.0025 (4) |
O6 | 0.0172 (5) | 0.0126 (5) | 0.0061 (5) | −0.0080 (4) | 0.0004 (4) | −0.0041 (4) |
O7 | 0.0092 (5) | 0.0075 (5) | 0.0064 (5) | −0.0036 (4) | −0.0016 (4) | −0.0013 (4) |
O8 | 0.0089 (5) | 0.0072 (5) | 0.0121 (5) | −0.0031 (4) | −0.0019 (4) | −0.0044 (4) |
O9 | 0.0072 (4) | 0.0106 (5) | 0.0060 (5) | 0.0009 (4) | −0.0017 (4) | −0.0031 (4) |
O10 | 0.0138 (5) | 0.0098 (5) | 0.0069 (5) | −0.0004 (4) | −0.0012 (4) | −0.0043 (4) |
O11 | 0.0069 (4) | 0.0097 (5) | 0.0071 (5) | 0.0006 (4) | −0.0012 (4) | −0.0020 (4) |
O12 | 0.0064 (4) | 0.0098 (5) | 0.0127 (5) | 0.0014 (4) | −0.0005 (4) | −0.0052 (4) |
N1 | 0.0051 (5) | 0.0045 (5) | 0.0060 (5) | −0.0007 (4) | −0.0003 (4) | −0.0014 (4) |
N2 | 0.0059 (5) | 0.0047 (5) | 0.0061 (5) | −0.0016 (4) | −0.0009 (4) | −0.0015 (4) |
N3 | 0.0060 (5) | 0.0049 (5) | 0.0064 (5) | −0.0010 (4) | −0.0007 (4) | −0.0014 (4) |
C1 | 0.0065 (6) | 0.0045 (6) | 0.0070 (6) | −0.0012 (4) | −0.0011 (4) | −0.0008 (5) |
C2 | 0.0053 (5) | 0.0054 (6) | 0.0085 (6) | −0.0009 (4) | −0.0007 (4) | −0.0017 (5) |
C3 | 0.0053 (6) | 0.0076 (6) | 0.0239 (8) | 0.0002 (5) | −0.0031 (5) | −0.0048 (6) |
C4 | 0.0070 (6) | 0.0100 (7) | 0.0358 (10) | −0.0024 (5) | −0.0046 (6) | −0.0071 (7) |
C5 | 0.0068 (6) | 0.0081 (7) | 0.0260 (9) | −0.0025 (5) | −0.0019 (6) | −0.0057 (6) |
C6 | 0.0054 (5) | 0.0050 (6) | 0.0092 (6) | −0.0015 (4) | 0.0006 (4) | −0.0028 (5) |
C7 | 0.0059 (5) | 0.0052 (6) | 0.0079 (6) | −0.0008 (4) | 0.0006 (4) | −0.0018 (5) |
C8 | 0.0075 (6) | 0.0065 (6) | 0.0060 (6) | −0.0022 (5) | −0.0012 (4) | −0.0015 (5) |
C9 | 0.0074 (6) | 0.0062 (6) | 0.0056 (6) | −0.0023 (5) | −0.0011 (4) | −0.0010 (5) |
C10 | 0.0148 (7) | 0.0134 (7) | 0.0070 (6) | −0.0086 (6) | 0.0001 (5) | −0.0018 (5) |
C11 | 0.0204 (8) | 0.0174 (8) | 0.0077 (7) | −0.0131 (6) | 0.0019 (6) | −0.0017 (6) |
C12 | 0.0151 (7) | 0.0125 (7) | 0.0093 (6) | −0.0099 (6) | 0.0002 (5) | −0.0016 (5) |
C13 | 0.0067 (5) | 0.0054 (6) | 0.0070 (6) | −0.0022 (4) | −0.0013 (4) | −0.0011 (5) |
C14 | 0.0037 (5) | 0.0055 (6) | 0.0091 (6) | −0.0001 (4) | −0.0022 (4) | −0.0026 (5) |
C15 | 0.0079 (6) | 0.0062 (6) | 0.0054 (6) | −0.0018 (5) | 0.0003 (4) | −0.0010 (5) |
C16 | 0.0074 (6) | 0.0071 (6) | 0.0067 (6) | −0.0004 (5) | −0.0022 (5) | −0.0014 (5) |
C17 | 0.0128 (7) | 0.0162 (7) | 0.0085 (7) | 0.0035 (6) | −0.0050 (5) | −0.0033 (6) |
C18 | 0.0136 (7) | 0.0210 (8) | 0.0108 (7) | 0.0062 (6) | −0.0072 (6) | −0.0033 (6) |
C19 | 0.0091 (6) | 0.0129 (7) | 0.0110 (7) | 0.0038 (5) | −0.0041 (5) | −0.0023 (5) |
C20 | 0.0061 (5) | 0.0057 (6) | 0.0073 (6) | −0.0007 (4) | −0.0015 (4) | −0.0011 (5) |
C21 | 0.0051 (5) | 0.0067 (6) | 0.0087 (6) | −0.0016 (4) | 0.0003 (5) | −0.0029 (5) |
O1W | 0.0154 (6) | 0.0214 (7) | 0.0224 (7) | 0.0007 (5) | −0.0086 (5) | −0.0020 (5) |
O2W | 0.0145 (6) | 0.0194 (6) | 0.0200 (6) | −0.0046 (5) | −0.0026 (5) | −0.0076 (5) |
O3W | 0.0104 (5) | 0.0145 (6) | 0.0238 (7) | −0.0024 (4) | 0.0002 (5) | −0.0012 (5) |
O4W | 0.0120 (5) | 0.0174 (6) | 0.0193 (6) | −0.0056 (5) | −0.0020 (4) | −0.0070 (5) |
O5W | 0.0208 (7) | 0.0254 (8) | 0.0269 (8) | −0.0074 (6) | −0.0052 (6) | −0.0008 (6) |
O6W | 0.0188 (6) | 0.0178 (6) | 0.0235 (7) | −0.0049 (5) | −0.0067 (5) | −0.0045 (5) |
O7W | 0.0143 (5) | 0.0099 (5) | 0.0121 (5) | −0.0025 (4) | −0.0024 (4) | −0.0040 (4) |
O8W | 0.0101 (5) | 0.0073 (5) | 0.0109 (5) | −0.0004 (4) | −0.0035 (4) | −0.0010 (4) |
O9W | 0.0127 (5) | 0.0082 (5) | 0.0078 (5) | −0.0047 (4) | −0.0021 (4) | −0.0014 (4) |
O10W | 0.0105 (5) | 0.0090 (5) | 0.0102 (5) | 0.0008 (4) | −0.0025 (4) | −0.0027 (4) |
O11W | 0.0093 (5) | 0.0195 (6) | 0.0188 (6) | 0.0020 (5) | −0.0015 (5) | −0.0056 (5) |
O12W | 0.0098 (5) | 0.0183 (6) | 0.0216 (7) | −0.0027 (5) | 0.0017 (5) | −0.0076 (5) |
O13W | 0.0107 (5) | 0.0146 (6) | 0.0096 (5) | −0.0023 (4) | −0.0026 (4) | −0.0023 (4) |
O14W | 0.0132 (6) | 0.0215 (6) | 0.0118 (6) | −0.0012 (5) | −0.0001 (4) | −0.0002 (5) |
Sm1—O1 | 2.4700 (11) | N3—C20 | 1.3400 (19) |
Sm1—O3 | 2.4367 (11) | C1—C2 | 1.508 (2) |
Sm1—O5 | 2.4371 (11) | C2—C3 | 1.388 (2) |
Sm1—O7 | 2.4764 (11) | C3—H3 | 0.9300 |
Sm1—O9i | 2.4288 (11) | C3—C4 | 1.391 (2) |
Sm1—O11i | 2.5128 (11) | C4—H4 | 0.9300 |
Sm1—N1 | 2.5597 (12) | C4—C5 | 1.389 (2) |
Sm1—N2 | 2.5428 (12) | C5—H5 | 0.9300 |
Sm1—N3i | 2.5522 (13) | C5—C6 | 1.387 (2) |
Na1—O6ii | 2.4461 (12) | C6—C7 | 1.507 (2) |
Na1—O6 | 2.4461 (12) | C8—C9 | 1.513 (2) |
Na1—O4W | 2.4087 (13) | C9—C10 | 1.389 (2) |
Na1—O4Wii | 2.4087 (13) | C10—H10 | 0.9300 |
Na1—H4WB | 2.54 (3) | C10—C11 | 1.387 (2) |
Na1—O7Wii | 2.4100 (13) | C11—H11 | 0.9300 |
Na1—O7W | 2.4100 (13) | C11—C12 | 1.389 (2) |
Na2—Na3iii | 3.6071 (10) | C12—H12 | 0.9300 |
Na2—O4 | 2.4261 (13) | C12—C13 | 1.389 (2) |
Na2—O8iii | 2.4308 (13) | C13—C14 | 1.509 (2) |
Na2—C7 | 3.1086 (16) | C15—C16 | 1.511 (2) |
Na2—C14iii | 3.0944 (16) | C16—C17 | 1.387 (2) |
Na2—O7Wii | 2.4764 (14) | C17—H17 | 0.9300 |
Na2—O8W | 2.3415 (13) | C17—C18 | 1.393 (2) |
Na2—H8WB | 2.41 (2) | C18—H18 | 0.9300 |
Na2—O9W | 2.2670 (13) | C18—C19 | 1.387 (2) |
Na2—O10W | 2.4208 (14) | C19—H19 | 0.9300 |
Na3—O2 | 2.4117 (14) | C19—C20 | 1.389 (2) |
Na3—O4i | 2.5614 (14) | C20—C21 | 1.512 (2) |
Na3—O12iv | 2.5306 (13) | O1W—H1WA | 0.852 (10) |
Na3—O2W | 2.3805 (16) | O1W—H1WB | 0.850 (10) |
Na3—O3W | 2.3931 (16) | O2W—H2WA | 0.861 (10) |
Na3—H3WA | 2.66 (3) | O2W—H2WB | 0.862 (10) |
Na3—O9Wi | 2.4307 (14) | O3W—H3WA | 0.847 (10) |
Na4—O10 | 2.4001 (12) | O3W—H3WB | 0.846 (10) |
Na4—O10v | 2.4001 (12) | O4W—H4WA | 0.849 (10) |
Na4—O10Wv | 2.4107 (12) | O4W—H4WB | 0.847 (10) |
Na4—O10W | 2.4107 (12) | O5W—H5WA | 0.852 (10) |
Na4—O13Wv | 2.4400 (12) | O5W—H5WB | 0.871 (10) |
Na4—O13W | 2.4400 (12) | O6W—H6WA | 0.862 (10) |
O1—C1 | 1.2800 (17) | O6W—H6WB | 0.867 (10) |
O2—C1 | 1.2416 (18) | O7W—H7WA | 0.844 (10) |
O3—C7 | 1.2828 (17) | O7W—H7WB | 0.847 (10) |
O4—C7 | 1.2404 (18) | O8W—H8WA | 0.844 (9) |
O5—C8 | 1.2806 (18) | O8W—H8WB | 0.844 (9) |
O6—C8 | 1.2401 (18) | O9W—H9WA | 0.846 (9) |
O7—C14 | 1.2810 (18) | O9W—H9WB | 0.848 (9) |
O8—C14 | 1.2399 (17) | O10W—H10A | 0.845 (10) |
O9—C15 | 1.2724 (18) | O10W—H10B | 0.843 (10) |
O10—C15 | 1.2458 (18) | O11W—H11A | 0.848 (10) |
O11—C21 | 1.2766 (18) | O11W—H11B | 0.846 (10) |
O12—C21 | 1.2468 (18) | O12W—H12A | 0.849 (10) |
N1—C2 | 1.3372 (19) | O12W—H12B | 0.862 (10) |
N1—C6 | 1.3354 (18) | O13W—H13A | 0.845 (10) |
N2—C9 | 1.3386 (19) | O13W—H13B | 0.846 (10) |
N2—C13 | 1.3409 (18) | O14W—H14A | 0.852 (10) |
N3—C16 | 1.3387 (19) | O14W—H14B | 0.846 (10) |
O1—Sm1—O7 | 74.91 (4) | O10—Na4—O13Wv | 90.20 (4) |
O1—Sm1—O11i | 153.30 (4) | O10Wv—Na4—O10W | 180.0 |
O1—Sm1—N1 | 62.60 (4) | O10W—Na4—O13W | 79.58 (4) |
O1—Sm1—N2 | 77.31 (4) | O10W—Na4—O13Wv | 100.42 (4) |
O1—Sm1—N3i | 133.62 (4) | O10Wv—Na4—O13Wv | 79.58 (4) |
O3—Sm1—O1 | 125.28 (4) | O10Wv—Na4—O13W | 100.42 (4) |
O3—Sm1—O5 | 75.87 (4) | O13Wv—Na4—O13W | 180.0 |
O3—Sm1—O7 | 152.08 (4) | C1—O1—Sm1 | 125.52 (9) |
O3—Sm1—O11i | 74.52 (4) | C1—O2—Na3 | 130.03 (10) |
O3—Sm1—N1 | 62.70 (4) | C7—O3—Sm1 | 126.16 (9) |
O3—Sm1—N2 | 134.63 (4) | Na2—O4—Na3iii | 92.60 (5) |
O3—Sm1—N3i | 78.41 (4) | C7—O4—Na2 | 111.84 (10) |
O5—Sm1—O1 | 92.07 (4) | C7—O4—Na3iii | 144.16 (11) |
O5—Sm1—O7 | 126.55 (4) | C8—O5—Sm1 | 124.80 (9) |
O5—Sm1—O11i | 74.58 (4) | C8—O6—Na1 | 120.67 (10) |
O5—Sm1—N1 | 75.42 (4) | C14—O7—Sm1 | 124.81 (9) |
O5—Sm1—N2 | 63.44 (4) | C14—O8—Na2i | 110.69 (9) |
O5—Sm1—N3i | 134.19 (4) | C15—O9—Sm1iii | 123.86 (10) |
O7—Sm1—O11i | 94.32 (4) | C15—O10—Na4 | 120.46 (10) |
O7—Sm1—N1 | 133.37 (4) | C21—O11—Sm1iii | 125.58 (10) |
O7—Sm1—N2 | 63.14 (4) | C21—O12—Na3vi | 157.96 (10) |
O7—Sm1—N3i | 73.78 (4) | C2—N1—Sm1 | 120.78 (9) |
O9i—Sm1—O1 | 75.25 (4) | C6—N1—Sm1 | 120.08 (9) |
O9i—Sm1—O3 | 91.81 (4) | C6—N1—C2 | 118.93 (12) |
O9i—Sm1—O5 | 152.88 (4) | C9—N2—Sm1 | 119.93 (9) |
O9i—Sm1—O7 | 73.85 (4) | C9—N2—C13 | 119.10 (13) |
O9i—Sm1—O11i | 125.88 (4) | C13—N2—Sm1 | 120.81 (10) |
O9i—Sm1—N1 | 77.46 (4) | C16—N3—Sm1iii | 118.99 (10) |
O9i—Sm1—N2 | 133.52 (4) | C16—N3—C20 | 118.90 (13) |
O9i—Sm1—N3i | 63.72 (4) | C20—N3—Sm1iii | 121.98 (10) |
O11i—Sm1—N1 | 132.31 (4) | O1—C1—C2 | 114.80 (13) |
O11i—Sm1—N2 | 76.04 (4) | O2—C1—O1 | 125.97 (14) |
O11i—Sm1—N3i | 62.28 (4) | O2—C1—C2 | 119.22 (13) |
N2—Sm1—N1 | 120.44 (4) | N1—C2—C1 | 114.50 (12) |
N2—Sm1—N3i | 116.16 (4) | N1—C2—C3 | 122.49 (14) |
N3i—Sm1—N1 | 123.40 (4) | C3—C2—C1 | 123.00 (13) |
O6ii—Na1—O6 | 180.00 (5) | C2—C3—H3 | 120.8 |
O6ii—Na1—H4WB | 113.8 (4) | C2—C3—C4 | 118.35 (14) |
O6—Na1—H4WB | 66.2 (4) | C4—C3—H3 | 120.8 |
O4Wii—Na1—O6 | 97.97 (4) | C3—C4—H4 | 120.4 |
O4W—Na1—O6ii | 97.97 (4) | C5—C4—C3 | 119.25 (15) |
O4Wii—Na1—O6ii | 82.03 (4) | C5—C4—H4 | 120.4 |
O4W—Na1—O6 | 82.03 (4) | C4—C5—H5 | 120.8 |
O4W—Na1—O4Wii | 180.0 | C6—C5—C4 | 118.42 (14) |
O4W—Na1—H4WB | 19.5 (3) | C6—C5—H5 | 120.8 |
O4Wii—Na1—H4WB | 160.5 (3) | N1—C6—C5 | 122.55 (14) |
O4Wii—Na1—O7W | 85.01 (4) | N1—C6—C7 | 114.55 (12) |
O4W—Na1—O7Wii | 85.01 (4) | C5—C6—C7 | 122.90 (13) |
O4W—Na1—O7W | 94.99 (4) | O3—C7—Na2 | 81.93 (8) |
O4Wii—Na1—O7Wii | 94.99 (4) | O3—C7—C6 | 114.75 (12) |
O7Wii—Na1—O6ii | 91.13 (4) | O4—C7—Na2 | 46.42 (8) |
O7Wii—Na1—O6 | 88.87 (4) | O4—C7—O3 | 125.91 (14) |
O7W—Na1—O6 | 91.13 (4) | O4—C7—C6 | 119.34 (13) |
O7W—Na1—O6ii | 88.87 (4) | C6—C7—Na2 | 157.60 (10) |
O7Wii—Na1—H4WB | 74.3 (5) | O5—C8—C9 | 115.43 (13) |
O7W—Na1—H4WB | 105.7 (5) | O6—C8—O5 | 125.08 (14) |
O7W—Na1—O7Wii | 180.0 | O6—C8—C9 | 119.48 (13) |
Na3iii—Na2—H8WB | 119.8 (4) | N2—C9—C8 | 114.36 (12) |
O4—Na2—Na3iii | 45.18 (3) | N2—C9—C10 | 121.99 (13) |
O4—Na2—O8iii | 173.35 (5) | C10—C9—C8 | 123.64 (13) |
O4—Na2—C7 | 21.74 (4) | C9—C10—H10 | 120.6 |
O4—Na2—C14iii | 151.35 (4) | C11—C10—C9 | 118.75 (15) |
O4—Na2—O7Wii | 89.10 (5) | C11—C10—H10 | 120.6 |
O4—Na2—H8WB | 75.0 (4) | C10—C11—H11 | 120.3 |
O8iii—Na2—Na3iii | 128.45 (4) | C10—C11—C12 | 119.43 (15) |
O8iii—Na2—C7 | 164.79 (4) | C12—C11—H11 | 120.3 |
O8iii—Na2—C14iii | 22.02 (4) | C11—C12—H12 | 120.9 |
O8iii—Na2—O7Wii | 94.67 (5) | C13—C12—C11 | 118.19 (14) |
O8iii—Na2—H8WB | 111.1 (4) | C13—C12—H12 | 120.9 |
C7—Na2—Na3iii | 65.15 (3) | N2—C13—C12 | 122.50 (14) |
C7—Na2—H8WB | 57.5 (3) | N2—C13—C14 | 114.75 (12) |
C14iii—Na2—Na3iii | 106.82 (3) | C12—C13—C14 | 122.74 (13) |
C14iii—Na2—C7 | 171.39 (4) | O7—C14—Na2i | 103.23 (9) |
C14iii—Na2—H8WB | 131.1 (3) | O7—C14—C13 | 115.40 (12) |
O7Wii—Na2—Na3iii | 101.31 (4) | O8—C14—Na2i | 47.30 (7) |
O7Wii—Na2—C7 | 74.28 (4) | O8—C14—O7 | 125.03 (14) |
O7Wii—Na2—C14iii | 105.37 (5) | O8—C14—C13 | 119.55 (13) |
O7Wii—Na2—H8WB | 80.2 (5) | C13—C14—Na2i | 121.13 (9) |
O8W—Na2—Na3iii | 135.37 (4) | O9—C15—C16 | 116.08 (13) |
O8W—Na2—O4 | 92.78 (5) | O10—C15—O9 | 124.98 (14) |
O8W—Na2—O8iii | 92.68 (5) | O10—C15—C16 | 118.92 (13) |
O8W—Na2—C7 | 77.19 (4) | N3—C16—C15 | 114.28 (13) |
O8W—Na2—C14iii | 111.41 (4) | N3—C16—C17 | 122.66 (14) |
O8W—Na2—O7Wii | 90.09 (5) | C17—C16—C15 | 123.05 (14) |
O8W—Na2—H8WB | 20.4 (3) | C16—C17—H17 | 120.9 |
O8W—Na2—O10W | 93.71 (5) | C16—C17—C18 | 118.15 (15) |
O9W—Na2—Na3iii | 41.54 (3) | C18—C17—H17 | 120.9 |
O9W—Na2—O4 | 83.79 (5) | C17—C18—H18 | 120.3 |
O9W—Na2—O8iii | 90.77 (5) | C19—C18—C17 | 119.40 (15) |
O9W—Na2—C7 | 99.36 (5) | C19—C18—H18 | 120.3 |
O9W—Na2—C14iii | 72.04 (4) | C18—C19—H19 | 120.7 |
O9W—Na2—O7Wii | 89.31 (5) | C18—C19—C20 | 118.56 (15) |
O9W—Na2—O8W | 176.53 (5) | C20—C19—H19 | 120.7 |
O9W—Na2—H8WB | 156.3 (3) | N3—C20—C19 | 122.26 (14) |
O9W—Na2—O10W | 86.76 (5) | N3—C20—C21 | 114.72 (12) |
O10W—Na2—Na3iii | 74.40 (3) | C19—C20—C21 | 123.01 (13) |
O10W—Na2—O4 | 88.49 (5) | O11—C21—C20 | 115.27 (13) |
O10W—Na2—O8iii | 87.38 (4) | O12—C21—O11 | 126.00 (14) |
O10W—Na2—C7 | 104.39 (4) | O12—C21—C20 | 118.71 (13) |
O10W—Na2—C14iii | 75.29 (4) | H1WA—O1W—H1WB | 109 (3) |
O10W—Na2—O7Wii | 175.59 (5) | Na3—O2W—H2WA | 116.0 (19) |
O10W—Na2—H8WB | 102.7 (5) | Na3—O2W—H2WB | 128.6 (19) |
Na2i—Na3—H3WA | 86.7 (4) | H2WA—O2W—H2WB | 107 (3) |
O2—Na3—Na2i | 108.54 (4) | Na3—O3W—H3WA | 99.2 (19) |
O2—Na3—O4i | 144.68 (5) | Na3—O3W—H3WB | 112.4 (19) |
O2—Na3—O12iv | 95.66 (5) | H3WA—O3W—H3WB | 109 (3) |
O2—Na3—H3WA | 119.8 (4) | Na1—O4W—H4WA | 126.1 (18) |
O2—Na3—O9Wi | 83.28 (4) | Na1—O4W—H4WB | 88.8 (18) |
O4i—Na3—Na2i | 42.21 (3) | H4WA—O4W—H4WB | 110 (3) |
O4i—Na3—H3WA | 83.5 (3) | H5WA—O5W—H5WB | 107 (3) |
O12iv—Na3—Na2i | 154.56 (4) | H6WA—O6W—H6WB | 104 (3) |
O12iv—Na3—O4i | 112.43 (5) | Na1—O7W—Na2ii | 131.75 (5) |
O12iv—Na3—H3WA | 88.0 (6) | Na1—O7W—H7WA | 114.8 (18) |
O2W—Na3—Na2i | 81.53 (4) | Na1—O7W—H7WB | 104.9 (18) |
O2W—Na3—O2 | 76.69 (5) | Na2ii—O7W—H7WA | 94.6 (18) |
O2W—Na3—O4i | 78.94 (5) | Na2ii—O7W—H7WB | 104.5 (18) |
O2W—Na3—O12iv | 97.00 (5) | H7WA—O7W—H7WB | 103 (2) |
O2W—Na3—O3W | 176.16 (6) | Na2—O8W—H8WA | 106.0 (17) |
O2W—Na3—H3WA | 162.4 (4) | Na2—O8W—H8WB | 84.7 (17) |
O2W—Na3—O9Wi | 103.12 (5) | H8WA—O8W—H8WB | 106 (2) |
O3W—Na3—Na2i | 101.53 (4) | Na2—O9W—Na3iii | 100.26 (5) |
O3W—Na3—O2 | 104.30 (5) | Na2—O9W—H9WA | 117.2 (17) |
O3W—Na3—O4i | 101.73 (5) | Na2—O9W—H9WB | 118.1 (17) |
O3W—Na3—O12iv | 79.24 (5) | Na3iii—O9W—H9WA | 113.2 (17) |
O3W—Na3—H3WA | 18.3 (3) | Na3iii—O9W—H9WB | 94.1 (17) |
O3W—Na3—O9Wi | 80.70 (5) | H9WA—O9W—H9WB | 111 (2) |
O9Wi—Na3—Na2i | 38.20 (3) | Na2—O10W—H10A | 101.1 (17) |
O9Wi—Na3—O4i | 77.79 (4) | Na2—O10W—H10B | 102.4 (17) |
O9Wi—Na3—O12iv | 158.99 (5) | Na4—O10W—Na2 | 128.07 (5) |
O9Wi—Na3—H3WA | 74.6 (6) | Na4—O10W—H10A | 113.7 (17) |
O10v—Na4—O10 | 180.00 (6) | Na4—O10W—H10B | 102.6 (17) |
O10—Na4—O10Wv | 92.22 (4) | H10A—O10W—H10B | 107 (2) |
O10—Na4—O10W | 87.78 (4) | H11A—O11W—H11B | 105 (3) |
O10v—Na4—O10W | 92.22 (4) | H12A—O12W—H12B | 103 (3) |
O10v—Na4—O10Wv | 87.78 (4) | Na4—O13W—H13A | 107.4 (17) |
O10v—Na4—O13Wv | 89.80 (4) | Na4—O13W—H13B | 107.5 (17) |
O10—Na4—O13W | 89.80 (4) | H13A—O13W—H13B | 102 (2) |
O10v—Na4—O13W | 90.20 (4) | H14A—O14W—H14B | 112 (3) |
Sm1—O1—C1—O2 | 164.44 (12) | O9—C15—C16—C17 | −170.69 (15) |
Sm1—O1—C1—C2 | −16.46 (18) | O10—C15—C16—N3 | −168.08 (13) |
Sm1—O3—C7—Na2 | 149.87 (9) | O10—C15—C16—C17 | 10.7 (2) |
Sm1—O3—C7—O4 | 165.65 (12) | N1—C2—C3—C4 | −0.9 (3) |
Sm1—O3—C7—C6 | −14.47 (18) | N1—C6—C7—Na2 | −130.8 (2) |
Sm1—O5—C8—O6 | 162.94 (12) | N1—C6—C7—O3 | 4.68 (19) |
Sm1—O5—C8—C9 | −16.30 (18) | N1—C6—C7—O4 | −175.43 (14) |
Sm1—O7—C14—Na2i | 121.58 (8) | N2—C9—C10—C11 | −2.0 (2) |
Sm1—O7—C14—O8 | 168.27 (11) | N2—C13—C14—Na2i | −115.99 (12) |
Sm1—O7—C14—C13 | −12.81 (17) | N2—C13—C14—O7 | 9.65 (19) |
Sm1iii—O9—C15—O10 | 157.66 (12) | N2—C13—C14—O8 | −171.36 (13) |
Sm1iii—O9—C15—C16 | −20.84 (17) | N3—C16—C17—C18 | −2.2 (3) |
Sm1iii—O11—C21—O12 | 176.34 (11) | N3—C20—C21—O11 | 3.42 (19) |
Sm1iii—O11—C21—C20 | −5.05 (17) | N3—C20—C21—O12 | −177.86 (13) |
Sm1—N1—C2—C1 | −4.62 (17) | C1—C2—C3—C4 | 178.19 (16) |
Sm1—N1—C2—C3 | 174.58 (12) | C2—N1—C6—C5 | 1.1 (2) |
Sm1—N1—C6—C5 | −173.65 (12) | C2—N1—C6—C7 | −179.45 (13) |
Sm1—N1—C6—C7 | 5.79 (17) | C2—C3—C4—C5 | 1.1 (3) |
Sm1—N2—C9—C8 | 4.58 (16) | C3—C4—C5—C6 | −0.2 (3) |
Sm1—N2—C9—C10 | −174.00 (12) | C4—C5—C6—N1 | −0.9 (3) |
Sm1—N2—C13—C12 | 175.90 (12) | C4—C5—C6—C7 | 179.67 (16) |
Sm1—N2—C13—C14 | −2.79 (16) | C5—C6—C7—Na2 | 48.6 (3) |
Sm1iii—N3—C16—C15 | 3.18 (16) | C5—C6—C7—O3 | −175.88 (15) |
Sm1iii—N3—C16—C17 | −175.62 (12) | C5—C6—C7—O4 | 4.0 (2) |
Sm1iii—N3—C20—C19 | 178.06 (12) | C6—N1—C2—C1 | −179.35 (13) |
Sm1iii—N3—C20—C21 | −0.53 (16) | C6—N1—C2—C3 | −0.1 (2) |
Na1—O6—C8—O5 | −17.7 (2) | C8—C9—C10—C11 | 179.54 (15) |
Na1—O6—C8—C9 | 161.50 (10) | C9—N2—C13—C12 | 0.5 (2) |
Na2—O4—C7—O3 | −21.8 (2) | C9—N2—C13—C14 | −178.15 (13) |
Na2—O4—C7—C6 | 158.31 (11) | C9—C10—C11—C12 | 0.7 (3) |
Na2i—O8—C14—O7 | −74.53 (16) | C10—C11—C12—C13 | 1.1 (3) |
Na2i—O8—C14—C13 | 106.58 (12) | C11—C12—C13—N2 | −1.8 (2) |
Na3—O2—C1—O1 | −6.3 (2) | C11—C12—C13—C14 | 176.80 (15) |
Na3—O2—C1—C2 | 174.60 (10) | C12—C13—C14—Na2i | 65.32 (17) |
Na3iii—O4—C7—Na2 | −129.7 (2) | C12—C13—C14—O7 | −169.04 (14) |
Na3iii—O4—C7—O3 | −151.47 (13) | C12—C13—C14—O8 | 10.0 (2) |
Na3iii—O4—C7—C6 | 28.6 (3) | C13—N2—C9—C8 | 179.98 (13) |
Na3vi—O12—C21—O11 | 125.3 (3) | C13—N2—C9—C10 | 1.4 (2) |
Na3vi—O12—C21—C20 | −53.3 (3) | C15—C16—C17—C18 | 179.08 (16) |
Na4—O10—C15—O9 | −87.53 (17) | C16—N3—C20—C19 | 2.1 (2) |
Na4—O10—C15—C16 | 90.94 (14) | C16—N3—C20—C21 | −176.44 (13) |
O1—C1—C2—N1 | 12.93 (19) | C16—C17—C18—C19 | 1.5 (3) |
O1—C1—C2—C3 | −166.27 (15) | C17—C18—C19—C20 | 0.9 (3) |
O2—C1—C2—N1 | −167.90 (14) | C18—C19—C20—N3 | −2.8 (2) |
O2—C1—C2—C3 | 12.9 (2) | C18—C19—C20—C21 | 175.69 (15) |
O5—C8—C9—N2 | 6.77 (19) | C19—C20—C21—O11 | −175.16 (14) |
O5—C8—C9—C10 | −174.68 (15) | C19—C20—C21—O12 | 3.6 (2) |
O6—C8—C9—N2 | −172.51 (14) | C20—N3—C16—C15 | 179.22 (12) |
O6—C8—C9—C10 | 6.0 (2) | C20—N3—C16—C17 | 0.4 (2) |
O9—C15—C16—N3 | 10.52 (19) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z; (iv) x−1, y+2, z; (v) −x+1, −y, −z+2; (vi) x+1, y−2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WB···O13Wvii | 0.85 (1) | 1.98 (1) | 2.8163 (19) | 167 (3) |
O2W—H2WA···O11Wi | 0.86 (1) | 2.10 (1) | 2.927 (2) | 160 (3) |
O2W—H2WA···O12Wviii | 0.86 (1) | 2.76 (3) | 3.2317 (19) | 116 (2) |
O2W—H2WB···O1W | 0.86 (1) | 1.90 (1) | 2.742 (2) | 164 (3) |
O4W—H4WA···O5W | 0.85 (1) | 1.91 (1) | 2.741 (2) | 167 (3) |
O4W—H4WB···O5 | 0.85 (1) | 2.02 (1) | 2.8534 (17) | 169 (3) |
O6W—H6WA···O12ix | 0.86 (1) | 2.00 (1) | 2.8435 (19) | 168 (3) |
O6W—H6WB···O8x | 0.87 (1) | 2.09 (2) | 2.8645 (18) | 149 (3) |
O7W—H7WA···O6W | 0.84 (1) | 1.93 (1) | 2.7611 (19) | 167 (3) |
O7W—H7WB···O3ii | 0.85 (1) | 2.54 (2) | 3.1551 (17) | 131 (2) |
O7W—H7WB···O5ii | 0.85 (1) | 2.31 (2) | 3.0267 (17) | 142 (2) |
O8W—H8WA···O10v | 0.84 (1) | 1.87 (1) | 2.7065 (17) | 171 (2) |
O9W—H9WA···O6ii | 0.85 (1) | 1.94 (1) | 2.7871 (16) | 175 (2) |
O9W—H9WB···O1iii | 0.85 (1) | 1.87 (1) | 2.7160 (16) | 173 (2) |
O10W—H10A···O2Wiii | 0.85 (1) | 1.90 (1) | 2.7419 (18) | 178 (2) |
O11W—H11A···O9 | 0.85 (1) | 1.97 (1) | 2.8128 (17) | 174 (3) |
O11W—H11B···O12W | 0.85 (1) | 2.13 (1) | 2.973 (2) | 178 (3) |
O12W—H12A···O2viii | 0.85 (1) | 2.11 (1) | 2.9542 (18) | 173 (3) |
O12W—H12B···O8Wv | 0.86 (1) | 2.03 (2) | 2.8057 (18) | 149 (3) |
O13W—H13A···O12Wv | 0.85 (1) | 1.99 (1) | 2.8235 (18) | 170 (2) |
O13W—H13B···O7iii | 0.85 (1) | 2.09 (1) | 2.9274 (17) | 171 (2) |
O13W—H13B···O8iii | 0.85 (1) | 2.57 (2) | 3.1929 (17) | 132 (2) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z; (v) −x+1, −y, −z+2; (vii) −x+1, −y+1, −z+2; (viii) −x, −y+1, −z+2; (ix) −x+1, −y, −z+1; (x) −x+1, −y+2, −z+1. |
[Sm(C7H3NO4)(C7H4NO4)(H2O)2]·4H2O | F(000) = 1164 |
Mr = 589.66 | Dx = 2.013 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.9292 (8) Å | Cell parameters from 9554 reflections |
b = 11.1969 (7) Å | θ = 2.4–35.1° |
c = 12.8086 (7) Å | µ = 3.10 mm−1 |
β = 103.049 (2)° | T = 100 K |
V = 1946.1 (2) Å3 | Plate, colourless |
Z = 4 | 0.48 × 0.40 × 0.15 mm |
Bruker APEXII CCD diffractometer | 6679 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.044 |
Absorption correction: multi-scan (SADABS; Bruker, 2019) | θmax = 33.1°, θmin = 2.4° |
Tmin = 0.575, Tmax = 0.747 | h = −21→21 |
74345 measured reflections | k = −17→17 |
7424 independent reflections | l = −17→19 |
Refinement on F2 | 12 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.018 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.042 | w = 1/[σ2(Fo2) + (0.012P)2 + 2.2391P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.007 |
7424 reflections | Δρmax = 0.73 e Å−3 |
319 parameters | Δρmin = −1.09 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sm1 | 0.73193 (2) | 0.29610 (2) | 0.84878 (2) | 0.00303 (2) | |
O1 | 0.65850 (8) | 0.10076 (9) | 0.86514 (9) | 0.00783 (19) | |
O2 | 0.53228 (8) | −0.01891 (10) | 0.87649 (10) | 0.0123 (2) | |
O3 | 0.64950 (8) | 0.49371 (9) | 0.85969 (9) | 0.00847 (19) | |
O4 | 0.51949 (9) | 0.60513 (11) | 0.87239 (10) | 0.0145 (2) | |
H4 | 0.5646 (18) | 0.676 (2) | 0.875 (2) | 0.022* | |
O5 | 0.84574 (8) | 0.07310 (10) | 0.27878 (9) | 0.00810 (19) | |
O6 | 0.92027 (9) | −0.10506 (10) | 0.28114 (9) | 0.0106 (2) | |
O7 | 0.72787 (8) | 0.22062 (9) | 0.54309 (8) | 0.00693 (18) | |
O8 | 0.78295 (8) | 0.16945 (10) | 0.71580 (8) | 0.00725 (18) | |
C1 | 0.56995 (11) | 0.08151 (13) | 0.86995 (12) | 0.0074 (2) | |
C2 | 0.50502 (11) | 0.18986 (13) | 0.86725 (12) | 0.0083 (2) | |
C3 | 0.40535 (12) | 0.18312 (16) | 0.86702 (17) | 0.0177 (3) | |
H3 | 0.374223 | 0.108078 | 0.869860 | 0.021* | |
C4 | 0.35229 (13) | 0.28896 (17) | 0.8625 (2) | 0.0240 (4) | |
H4A | 0.283664 | 0.286989 | 0.860236 | 0.029* | |
C5 | 0.40023 (12) | 0.39746 (16) | 0.86144 (16) | 0.0176 (3) | |
H5 | 0.365676 | 0.470880 | 0.859381 | 0.021* | |
C6 | 0.50027 (11) | 0.39530 (14) | 0.86343 (12) | 0.0091 (2) | |
C7 | 0.56268 (11) | 0.50434 (13) | 0.86471 (12) | 0.0083 (3) | |
C8 | 0.88073 (10) | −0.02353 (13) | 0.32337 (11) | 0.0061 (2) | |
C9 | 0.87488 (10) | −0.03865 (12) | 0.43907 (11) | 0.0052 (2) | |
C10 | 0.90835 (11) | −0.13997 (13) | 0.49895 (12) | 0.0073 (2) | |
H10 | 0.934576 | −0.205672 | 0.467574 | 0.009* | |
C11 | 0.90257 (11) | −0.14290 (13) | 0.60575 (12) | 0.0084 (2) | |
H11 | 0.925058 | −0.210990 | 0.648565 | 0.010* | |
C12 | 0.86374 (10) | −0.04573 (13) | 0.64965 (11) | 0.0066 (2) | |
H12 | 0.861422 | −0.044590 | 0.723200 | 0.008* | |
C13 | 0.82835 (10) | 0.04988 (12) | 0.58257 (11) | 0.0049 (2) | |
C14 | 0.77620 (10) | 0.15538 (12) | 0.61763 (11) | 0.0049 (2) | |
N1 | 0.55123 (9) | 0.29383 (11) | 0.86438 (10) | 0.0063 (2) | |
N2 | 0.83414 (9) | 0.05330 (11) | 0.47961 (9) | 0.0046 (2) | |
O1W | 0.63395 (9) | 0.34532 (11) | 0.67167 (9) | 0.0117 (2) | |
H1WA | 0.5864 (10) | 0.3940 (15) | 0.6529 (18) | 0.018* | |
H1WB | 0.6530 (15) | 0.3178 (19) | 0.6179 (11) | 0.018* | |
O2W | 0.87579 (8) | 0.18700 (10) | 0.93554 (9) | 0.0091 (2) | |
H2WA | 0.8967 (16) | 0.1939 (19) | 1.0029 (3) | 0.014* | |
H2WB | 0.9169 (11) | 0.1431 (15) | 0.9135 (16) | 0.014* | |
O3W | 0.95920 (8) | 0.19105 (10) | 1.14835 (9) | 0.00890 (19) | |
H3WA | 0.9230 (12) | 0.1699 (19) | 1.1904 (13) | 0.013* | |
H3WB | 0.9949 (13) | 0.2501 (12) | 1.1748 (16) | 0.013* | |
O4W | 0.63135 (11) | 0.77889 (12) | 0.89098 (16) | 0.0307 (4) | |
H4WA | 0.6029 (18) | 0.8463 (11) | 0.888 (2) | 0.046* | |
H4WB | 0.6931 (4) | 0.785 (3) | 0.896 (3) | 0.046* | |
O5W | 0.80409 (10) | 0.90705 (12) | 0.90443 (12) | 0.0217 (3) | |
H5WA | 0.7688 (15) | 0.9695 (12) | 0.900 (2) | 0.033* | |
H5WB | 0.8408 (15) | 0.919 (2) | 0.9662 (9) | 0.033* | |
O6W | 0.96769 (9) | −0.05672 (10) | 0.09389 (9) | 0.0116 (2) | |
H6WA | 0.9816 (16) | 0.0173 (5) | 0.0980 (18) | 0.017* | |
H6WB | 0.9508 (15) | −0.072 (2) | 0.1523 (9) | 0.017* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sm1 | 0.00394 (3) | 0.00300 (3) | 0.00234 (3) | −0.00019 (2) | 0.00113 (2) | −0.00035 (2) |
O1 | 0.0069 (4) | 0.0056 (4) | 0.0115 (5) | −0.0009 (4) | 0.0033 (4) | 0.0000 (4) |
O2 | 0.0093 (5) | 0.0066 (5) | 0.0214 (6) | −0.0034 (4) | 0.0040 (4) | 0.0004 (4) |
O3 | 0.0085 (5) | 0.0062 (4) | 0.0105 (5) | 0.0012 (4) | 0.0017 (4) | −0.0005 (4) |
O4 | 0.0147 (5) | 0.0075 (5) | 0.0220 (6) | 0.0043 (4) | 0.0055 (5) | −0.0020 (4) |
O5 | 0.0116 (5) | 0.0074 (4) | 0.0064 (4) | 0.0034 (4) | 0.0044 (4) | 0.0019 (4) |
O6 | 0.0176 (5) | 0.0080 (5) | 0.0085 (5) | 0.0054 (4) | 0.0075 (4) | 0.0001 (4) |
O7 | 0.0088 (4) | 0.0078 (5) | 0.0043 (4) | 0.0032 (4) | 0.0018 (4) | 0.0014 (3) |
O8 | 0.0109 (5) | 0.0079 (4) | 0.0035 (4) | 0.0020 (4) | 0.0025 (4) | −0.0006 (4) |
C1 | 0.0078 (6) | 0.0066 (6) | 0.0074 (6) | −0.0014 (5) | 0.0010 (5) | −0.0009 (5) |
C2 | 0.0064 (6) | 0.0084 (6) | 0.0109 (6) | 0.0005 (5) | 0.0032 (5) | 0.0002 (5) |
C3 | 0.0078 (6) | 0.0134 (7) | 0.0341 (10) | −0.0006 (5) | 0.0090 (6) | 0.0023 (7) |
C4 | 0.0089 (7) | 0.0171 (8) | 0.0493 (13) | 0.0024 (6) | 0.0136 (8) | 0.0039 (8) |
C5 | 0.0113 (7) | 0.0137 (7) | 0.0301 (9) | 0.0049 (6) | 0.0095 (6) | 0.0018 (7) |
C6 | 0.0092 (6) | 0.0083 (6) | 0.0106 (6) | 0.0025 (5) | 0.0036 (5) | 0.0005 (5) |
C7 | 0.0112 (6) | 0.0071 (6) | 0.0070 (6) | 0.0033 (5) | 0.0025 (5) | −0.0001 (5) |
C8 | 0.0080 (6) | 0.0061 (6) | 0.0053 (6) | 0.0007 (4) | 0.0034 (5) | −0.0003 (5) |
C9 | 0.0060 (5) | 0.0052 (5) | 0.0049 (5) | 0.0004 (4) | 0.0022 (4) | 0.0000 (4) |
C10 | 0.0095 (6) | 0.0058 (6) | 0.0067 (6) | 0.0021 (5) | 0.0024 (5) | 0.0000 (5) |
C11 | 0.0117 (6) | 0.0069 (6) | 0.0066 (6) | 0.0021 (5) | 0.0017 (5) | 0.0022 (5) |
C12 | 0.0087 (6) | 0.0064 (6) | 0.0042 (6) | 0.0004 (5) | 0.0006 (5) | 0.0002 (4) |
C13 | 0.0060 (5) | 0.0055 (5) | 0.0033 (5) | −0.0003 (4) | 0.0014 (4) | 0.0001 (4) |
C14 | 0.0057 (5) | 0.0041 (5) | 0.0051 (5) | −0.0007 (4) | 0.0018 (4) | −0.0006 (4) |
N1 | 0.0066 (5) | 0.0069 (5) | 0.0059 (5) | 0.0008 (4) | 0.0023 (4) | −0.0001 (4) |
N2 | 0.0057 (5) | 0.0044 (5) | 0.0041 (5) | −0.0002 (4) | 0.0023 (4) | −0.0003 (4) |
O1W | 0.0127 (5) | 0.0169 (6) | 0.0049 (5) | 0.0090 (4) | 0.0012 (4) | −0.0004 (4) |
O2W | 0.0088 (5) | 0.0123 (5) | 0.0055 (4) | 0.0047 (4) | 0.0003 (4) | −0.0017 (4) |
O3W | 0.0100 (5) | 0.0109 (5) | 0.0065 (5) | −0.0018 (4) | 0.0032 (4) | −0.0005 (4) |
O4W | 0.0192 (7) | 0.0093 (6) | 0.0653 (12) | 0.0012 (5) | 0.0129 (7) | −0.0009 (6) |
O5W | 0.0188 (6) | 0.0118 (6) | 0.0316 (8) | 0.0030 (5) | −0.0005 (5) | −0.0017 (5) |
O6W | 0.0169 (5) | 0.0098 (5) | 0.0107 (5) | 0.0030 (4) | 0.0087 (4) | 0.0015 (4) |
Sm1—O2W | 2.3952 (11) | C6—N1 | 1.3382 (19) |
Sm1—O1W | 2.4320 (11) | C6—C7 | 1.497 (2) |
Sm1—O8 | 2.4422 (10) | C8—C9 | 1.512 (2) |
Sm1—O1 | 2.4434 (11) | C9—N2 | 1.3360 (18) |
Sm1—O5i | 2.4707 (11) | C9—C10 | 1.3896 (19) |
Sm1—O7i | 2.5092 (11) | C10—C11 | 1.389 (2) |
Sm1—O3 | 2.5112 (11) | C10—H10 | 0.9500 |
Sm1—N2i | 2.5693 (12) | C11—C12 | 1.389 (2) |
Sm1—N1 | 2.5695 (12) | C11—H11 | 0.9500 |
O1—C1 | 1.2673 (17) | C12—C13 | 1.3914 (19) |
O2—C1 | 1.2516 (18) | C12—H12 | 0.9500 |
O3—C7 | 1.2313 (18) | C13—N2 | 1.3399 (18) |
O4—C7 | 1.2930 (18) | C13—C14 | 1.507 (2) |
O4—H4 | 1.01 (3) | O1W—H1WA | 0.8499 (10) |
O5—C8 | 1.2683 (17) | O1W—H1WB | 0.8500 (10) |
O6—C8 | 1.2505 (17) | O2W—H2WA | 0.8500 (10) |
O7—C14 | 1.2681 (17) | O2W—H2WB | 0.8500 (10) |
O8—C14 | 1.2495 (17) | O3W—H3WA | 0.8499 (10) |
C1—C2 | 1.509 (2) | O3W—H3WB | 0.8499 (10) |
C2—N1 | 1.3348 (19) | O4W—H4 | 1.47 (3) |
C2—C3 | 1.390 (2) | O4W—H4WA | 0.8499 (10) |
C3—C4 | 1.391 (2) | O4W—H4WB | 0.8499 (11) |
C3—H3 | 0.9500 | O5W—H5WA | 0.8499 (10) |
C4—C5 | 1.388 (3) | O5W—H5WB | 0.8499 (10) |
C4—H4A | 0.9500 | O6W—H6WA | 0.8499 (10) |
C5—C6 | 1.388 (2) | O6W—H6WB | 0.8499 (10) |
C5—H5 | 0.9500 | ||
O2W—Sm1—O1W | 141.52 (4) | C5—C4—C3 | 119.59 (16) |
O2W—Sm1—O8 | 71.50 (4) | C5—C4—H4A | 120.2 |
O1W—Sm1—O8 | 70.81 (4) | C3—C4—H4A | 120.2 |
O2W—Sm1—O1 | 79.99 (4) | C4—C5—C6 | 117.89 (15) |
O1W—Sm1—O1 | 97.19 (4) | C4—C5—H5 | 121.1 |
O8—Sm1—O1 | 74.54 (4) | C6—C5—H5 | 121.1 |
O2W—Sm1—O5i | 86.13 (4) | N1—C6—C5 | 122.90 (15) |
O1W—Sm1—O5i | 78.35 (4) | N1—C6—C7 | 112.76 (13) |
O8—Sm1—O5i | 77.26 (4) | C5—C6—C7 | 124.34 (14) |
O1—Sm1—O5i | 151.28 (4) | O3—C7—O4 | 124.59 (14) |
O2W—Sm1—O7i | 72.88 (4) | O3—C7—C6 | 119.70 (13) |
O1W—Sm1—O7i | 143.96 (4) | O4—C7—C6 | 115.71 (13) |
O8—Sm1—O7i | 136.37 (4) | O6—C8—O5 | 126.15 (13) |
O1—Sm1—O7i | 75.20 (3) | O6—C8—C9 | 117.94 (13) |
O5i—Sm1—O7i | 124.35 (3) | O5—C8—C9 | 115.89 (12) |
O2W—Sm1—O3 | 140.24 (4) | N2—C9—C10 | 122.25 (13) |
O1W—Sm1—O3 | 71.63 (4) | N2—C9—C8 | 114.60 (12) |
O8—Sm1—O3 | 139.39 (4) | C10—C9—C8 | 123.15 (12) |
O1—Sm1—O3 | 125.34 (4) | C11—C10—C9 | 118.44 (13) |
O5i—Sm1—O3 | 80.61 (4) | C11—C10—H10 | 120.8 |
O7i—Sm1—O3 | 84.12 (4) | C9—C10—H10 | 120.8 |
O2W—Sm1—N2i | 75.51 (4) | C10—C11—C12 | 119.64 (13) |
O1W—Sm1—N2i | 124.84 (4) | C10—C11—H11 | 120.2 |
O8—Sm1—N2i | 129.07 (4) | C12—C11—H11 | 120.2 |
O1—Sm1—N2i | 135.45 (4) | C11—C12—C13 | 117.95 (13) |
O5i—Sm1—N2i | 62.69 (4) | C11—C12—H12 | 121.0 |
O7i—Sm1—N2i | 62.31 (4) | C13—C12—H12 | 121.0 |
O3—Sm1—N2i | 65.06 (4) | N2—C13—C12 | 122.55 (13) |
O2W—Sm1—N1 | 133.67 (4) | N2—C13—C14 | 114.27 (12) |
O1W—Sm1—N1 | 73.83 (4) | C12—C13—C14 | 123.12 (12) |
O8—Sm1—N1 | 119.53 (4) | O8—C14—O7 | 126.27 (13) |
O1—Sm1—N1 | 63.14 (4) | O8—C14—C13 | 117.83 (12) |
O5i—Sm1—N1 | 138.95 (4) | O7—C14—C13 | 115.90 (12) |
O7i—Sm1—N1 | 71.36 (4) | C2—N1—C6 | 118.86 (13) |
O3—Sm1—N1 | 62.37 (4) | C2—N1—Sm1 | 119.84 (9) |
N2i—Sm1—N1 | 111.35 (4) | C6—N1—Sm1 | 121.18 (10) |
C1—O1—Sm1 | 125.96 (9) | C9—N2—C13 | 119.07 (12) |
C7—O3—Sm1 | 123.70 (10) | C9—N2—Sm1ii | 118.28 (9) |
C7—O4—H4 | 113.1 (14) | C13—N2—Sm1ii | 120.87 (9) |
C8—O5—Sm1ii | 123.71 (9) | Sm1—O1W—H1WA | 130.3 (16) |
C14—O7—Sm1ii | 125.23 (9) | Sm1—O1W—H1WB | 117.5 (15) |
C14—O8—Sm1 | 143.85 (10) | H1WA—O1W—H1WB | 112 (2) |
O2—C1—O1 | 125.69 (14) | Sm1—O2W—H2WA | 119.0 (15) |
O2—C1—C2 | 117.75 (13) | Sm1—O2W—H2WB | 134.2 (14) |
O1—C1—C2 | 116.56 (13) | H2WA—O2W—H2WB | 107 (2) |
N1—C2—C3 | 122.34 (14) | H3WA—O3W—H3WB | 110 (2) |
N1—C2—C1 | 114.31 (12) | H4—O4W—H4WA | 115 (2) |
C3—C2—C1 | 123.35 (14) | H4—O4W—H4WB | 132 (2) |
C2—C3—C4 | 118.37 (16) | H4WA—O4W—H4WB | 113 (3) |
C2—C3—H3 | 120.8 | H5WA—O5W—H5WB | 99 (2) |
C4—C3—H3 | 120.8 | H6WA—O6W—H6WB | 104 (2) |
Sm1—O1—C1—O2 | 178.70 (11) | C10—C11—C12—C13 | 2.4 (2) |
Sm1—O1—C1—C2 | −1.16 (18) | C11—C12—C13—N2 | −2.8 (2) |
O2—C1—C2—N1 | 177.56 (14) | C11—C12—C13—C14 | 174.28 (13) |
O1—C1—C2—N1 | −2.6 (2) | Sm1—O8—C14—O7 | −0.5 (3) |
O2—C1—C2—C3 | −2.8 (2) | Sm1—O8—C14—C13 | −179.20 (10) |
O1—C1—C2—C3 | 177.02 (16) | Sm1ii—O7—C14—O8 | 172.44 (11) |
N1—C2—C3—C4 | 0.7 (3) | Sm1ii—O7—C14—C13 | −8.81 (17) |
C1—C2—C3—C4 | −178.89 (18) | N2—C13—C14—O8 | −167.61 (13) |
C2—C3—C4—C5 | −1.8 (3) | C12—C13—C14—O8 | 15.1 (2) |
C3—C4—C5—C6 | 0.9 (3) | N2—C13—C14—O7 | 13.53 (18) |
C4—C5—C6—N1 | 1.3 (3) | C12—C13—C14—O7 | −163.75 (13) |
C4—C5—C6—C7 | −178.78 (18) | C3—C2—N1—C6 | 1.4 (2) |
Sm1—O3—C7—O4 | 178.63 (11) | C1—C2—N1—C6 | −179.02 (13) |
Sm1—O3—C7—C6 | −0.58 (19) | C3—C2—N1—Sm1 | −174.76 (13) |
N1—C6—C7—O3 | 4.5 (2) | C1—C2—N1—Sm1 | 4.83 (17) |
C5—C6—C7—O3 | −175.46 (16) | C5—C6—N1—C2 | −2.4 (2) |
N1—C6—C7—O4 | −174.77 (13) | C7—C6—N1—C2 | 177.65 (13) |
C5—C6—C7—O4 | 5.3 (2) | C5—C6—N1—Sm1 | 173.72 (13) |
Sm1ii—O5—C8—O6 | 163.39 (12) | C7—C6—N1—Sm1 | −6.26 (17) |
Sm1ii—O5—C8—C9 | −17.75 (17) | C10—C9—N2—C13 | 2.4 (2) |
O6—C8—C9—N2 | 178.29 (13) | C8—C9—N2—C13 | −178.01 (12) |
O5—C8—C9—N2 | −0.67 (19) | C10—C9—N2—Sm1ii | −162.53 (11) |
O6—C8—C9—C10 | −2.1 (2) | C8—C9—N2—Sm1ii | 17.07 (15) |
O5—C8—C9—C10 | 178.93 (13) | C12—C13—N2—C9 | 0.4 (2) |
N2—C9—C10—C11 | −2.6 (2) | C14—C13—N2—C9 | −176.91 (12) |
C8—C9—C10—C11 | 177.79 (13) | C12—C13—N2—Sm1ii | 164.91 (10) |
C9—C10—C11—C12 | 0.1 (2) | C14—C13—N2—Sm1ii | −12.39 (16) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O2iii | 0.85 (1) | 1.88 (1) | 2.7218 (16) | 169 (2) |
O1W—H1WB···O7 | 0.85 (1) | 1.91 (1) | 2.7103 (15) | 157 (2) |
O2W—H2WA···O3W | 0.85 (1) | 1.87 (1) | 2.7115 (16) | 170 (2) |
O2W—H2WB···O6Wiv | 0.85 (1) | 1.90 (1) | 2.7193 (16) | 163 (2) |
O3W—H3WA···O5v | 0.85 (1) | 2.04 (1) | 2.8679 (15) | 164 (2) |
O3W—H3WB···O6vi | 0.85 (1) | 2.01 (1) | 2.8568 (16) | 173 (2) |
O4W—H4WA···O2vii | 0.85 (1) | 1.79 (1) | 2.6360 (18) | 174 (3) |
O4W—H4WB···O5W | 0.85 (1) | 2.05 (2) | 2.773 (2) | 143 (3) |
O5W—H5WA···O1vii | 0.85 (1) | 2.10 (1) | 2.9340 (17) | 167 (2) |
O5W—H5WB···O6Wviii | 0.85 (1) | 2.14 (1) | 2.9579 (19) | 162 (2) |
O6W—H6WA···O3Wix | 0.85 (1) | 2.10 (1) | 2.8696 (16) | 151 (2) |
O6W—H6WB···O6 | 0.85 (1) | 1.83 (1) | 2.6828 (16) | 177 (2) |
O4—H4···O4W | 1.01 (3) | 1.47 (3) | 2.4703 (19) | 174 (2) |
Symmetry codes: (iii) −x+1, y+1/2, −z+3/2; (iv) −x+2, −y, −z+1; (v) x, y, z+1; (vi) −x+2, y+1/2, −z+3/2; (vii) x, y+1, z; (viii) x, y+1, z+1; (ix) x, y, z−1. |
Acknowledgements
The Villum Foundation, the Carlsberg Foundation, and the University of Copenhagen are thanked for generous support.
Funding information
Funding for this research was provided by: Villum Fonden; Carlsbergfondet; Københavns Universitet.
References
Aebischer, A., Gumy, F. & Bünzli, J. G. (2009). Phys. Chem. Chem. Phys. 11, 1346–1353. Web of Science CrossRef PubMed CAS Google Scholar
Albertsson, J. (1970). Acta Chem. Scand. 24, 3527–3541. CSD CrossRef CAS Web of Science Google Scholar
Albertsson, J. (1972). Acta Chem. Scand. 26, 985–1004. CSD CrossRef CAS Web of Science Google Scholar
Brayshaw, P. A., Buenzli, J. G., Froidevaux, P., Harrowfield, J. M., Kim, Y. & Sobolev, A. N. (1995). Inorg. Chem. 34, 2068–2076. CSD CrossRef CAS Web of Science Google Scholar
Brayshaw, P. A., Hall, A. K., Harrison, W. T., Harrowfield, J. M., Pearce, D., Shand, T. M., Skelton, B. W., Whitaker, C. R. & White, A. H. (2005). Eur. J. Inorg. Chem. pp. 1127–1141. Web of Science CSD CrossRef Google Scholar
Bruker (2019). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carnall, W., Fields, P. & Rajnak, K. (1968). J. Chem. Phys. 49, 4424–4442. CrossRef CAS Web of Science Google Scholar
Chauvin, A. S., Gumy, F., Imbert, D. & Bünzli, J. G. (2004). Spectrosc. Lett. 37, 517–532. Web of Science CrossRef CAS Google Scholar
Cheisson, T. & Schelter, E. J. (2019). Science, 363, 489–493. Web of Science CrossRef CAS PubMed Google Scholar
Chen, X., Jensen, M. & Liu, G. (2005). J. Phys. Chem. B, 109, 13991–13999. Web of Science CrossRef PubMed CAS Google Scholar
Cheng, C.-X., Liu, H.-W., Hu, Z.-Q., Luo, F.-H. & Cao, M.-N. (2007). Acta Cryst. E63, m1–m3. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chuasaard, T., Panyarat, K., Rodlamul, P., Chainok, K., Yimklan, S. & Rujiwatra, A. (2017). Cryst. Growth Des. 17, 1045–1054. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Elahi, S. M. & Rajasekharan, M. V. (2016). Chem. Sel. 1, 6515–6522. Google Scholar
Eliseeva, S. V. & Bünzli, J. G. (2010). Chem. Soc. Rev. 39, 189–227. Web of Science CrossRef CAS PubMed Google Scholar
Ghosh, S. K. & Bharadwaj, P. K. (2003). Inorg. Chem. 42, 8250–8254. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hojnik, N., Kristl, M., Golobič, A., Jagličić, Z. & Drofenik, M. (2015). J. Mol. Struct. 1079, 54–60. Web of Science CSD CrossRef CAS Google Scholar
Hou, K.-L., Bai, F.-Y., Xing, Y.-H., Cao, Y.-Z., Wei, D.-M. & Niu, S.-Y. (2011). J. Inorg. Organomet. Polym. 21, 213–222. Web of Science CSD CrossRef CAS Google Scholar
Hu, S., Dong, Z., Zhang, H. & Liu, Q. (1989). J. Xiamen Univ. 28, 514–518. CAS Google Scholar
Judd, B. R. (1962). Phys. Rev. 127, 750–761. CrossRef CAS Web of Science Google Scholar
Kang, S.-K. (2011). Bull. Korean Chem. Soc. 32, 1745–1747. Web of Science CSD CrossRef CAS Google Scholar
Kim, J.-G., Yoon, S.-K., Sohn, Y. & Kang, J.-G. (1998). J. Alloys Compd. 274, 1–9. Web of Science CrossRef CAS Google Scholar
Kofod, N., Nawrocki, P., Juelsholt, M., Christiansen, T. L., Jensen, K. M. & Sørensen, T. J. (2020). Inorg. Chem. 59, 10409–10421. Web of Science CrossRef CAS PubMed Google Scholar
Kong, Y.-J., Hou, G.-Z., Gong, Z.-N., Zhao, F.-T. & Han, L.-J. (2022). RSC Adv. 12, 8435–8442. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kumar, D., Tewari, S., Adnan, M., Ahmad, S., Vijaya Prakash, G. & Ramanan, A. (2019). Inorg. Chim. Acta, 487, 81–91. Web of Science CSD CrossRef CAS Google Scholar
Li, Q.-F., Ge, G.-W., Sun, Y., Yu, M. & Wang, Z. (2019). Spectrochim. Acta A Mol. Biomol. Spectrosc. 214, 333–338. Web of Science CSD CrossRef CAS PubMed Google Scholar
Liu, H. X., Liu, Q., Xu, Y., Huang, T. T., Wang, L. T., Ye, K. Q. & Zeng, G. (2014). Adv. Mater. Res. 834–836, 490–493. CSD CrossRef CAS Google Scholar
Liu, S.-H., Li, Y.-Z. & Meng, Q.-J. (2005). Acta Cryst. E61, m1111–m1113. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lupei, A., Tiseanu, C., Gheorghe, C. & Voicu, F. (2012). Appl. Phys. B, 108, 909–918. Web of Science CrossRef CAS Google Scholar
Moghzi, F., Soleimannejad, J., Emadi, H. & Janczak, J. (2020). Acta Cryst. B76, 779–788. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mondry, A. & Starynowicz, P. (1995). J. Alloys Compd. 225, 367–371. CSD CrossRef CAS Web of Science Google Scholar
Mortensen, S. S., Marciniak Nielsen, M. A., Nawrocki, P. R. & Sørensen, T. J. (2022). J. Phys. Chem. A, 126, 8596–8605. Web of Science CrossRef CAS PubMed Google Scholar
Murray, G. M., Sarrio, R. V. & Peterson, J. R. (1990). Inorg. Chim. Acta, 176, 233–240. CrossRef CAS Web of Science Google Scholar
Najafi, A., Mirzaei, M., Bauzá, A., Mague, J. T. & Frontera, A. (2017). Inorg. Chem. Commun. 83, 24–26. Web of Science CSD CrossRef CAS Google Scholar
Ofelt, G. (1962). J. Chem. Phys. 37, 511–520. CrossRef CAS Web of Science Google Scholar
PicoQuant (2018). EasyTau 2. Picoquant, Germany. https://www.picoquant.com Google Scholar
Rafizadeh, M., Amani, V., Iravani, E. & Neumüller, B. (2005). Z. Anorg. Allg. Chem. 631, 952–955. Web of Science CSD CrossRef CAS Google Scholar
Sakirzanovas, S., Katelnikovas, A., Bettentrup, H., Kareiva, A. & Jüstel, T. (2011). J. Lumin. 131, 1525–1529. Web of Science CrossRef CAS Google Scholar
Salaam, J., N'Dala–Louika, I., Balogh, C., Suleimanov, I., Pilet, G., Veyre, L., Camp, C., Thieuleux, C., Riobé, F. & Maury, O. (2022). Eur. J. Inorg. Chem. 2022, 00412. Web of Science CSD CrossRef Google Scholar
Sharif, S., Khan, B., Şahin, O. & Khan, I. (2016). Russ. J. Coord. Chem. 42, 56–65. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Skaudzius, R., Sakirzanovas, S. & Kareiva, A. (2018). J. Elec Materi. 47, 3951–3956. Web of Science CrossRef CAS Google Scholar
Song, Y.-S., Yan, B. & Chen, Z.-X. (2005). J. Mol. Struct. 750, 101–108. Web of Science CSD CrossRef CAS Google Scholar
Storm Thomsen, M., Anker, A. S., Kacenauskaite, L. & Sørensen, T. J. (2022). Dalton Trans. 51, 8960–8963. Web of Science CrossRef ICSD CAS PubMed Google Scholar
Tancrez, N., Feuvrie, C., Ledoux, I., Zyss, J., Toupet, L., Le Bozec, H. & Maury, O. (2005). J. Am. Chem. Soc. 127, 13474–13475. Web of Science CSD CrossRef PubMed CAS Google Scholar
Viveros-Andrade, A. G., Colorado-Peralta, R., Flores-Alamo, M., Castillo-Blum, S. E., Durán-Hernández, J. & Rivera, J. M. (2017). J. Mol. Struct. 1145, 10–17. CAS Google Scholar
Wang, P., Fan, R.-Q., Liu, X.-R., Yang, Y.-L. & Zhou, G.-P. (2012). J. Inorg. Organomet. Polym. 22, 744–755. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wybourne, B. G. (2004). J. Alloys Compd. 380, 96–100. Web of Science CrossRef CAS Google Scholar
Xu, X., Liu, X., Sun, T., Zhang, X. & Wang, E. (2009). J. Coord. Chem. 62, 2755–2763. Web of Science CSD CrossRef CAS Google Scholar
Zhou, D., Huang, C., Wang, K. & Xu, G. (1994). Polyhedron, 13, 987–991. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.