research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Metal halide coordination compounds with quinazolin-4(3H)-one

crossmark logo

aS.Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str., 77, Tashkent 100170, Uzbekistan, bTurin Polytechnic University in Tashkent, Kichik Khalka yuli str. 17, 100095 Tashkent, Uzbekistan, and cInstitute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany
*Correspondence e-mail: kambarali@mail.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 3 April 2023; accepted 2 June 2023; online 6 June 2023)

Three coordination compounds of quinazolin-4(3H)-one (quinoz; C8H6N2O) with divalent group 12 halides are reported. In all complexes, coordination occurs via the nitro­gen atom ortho to the quinazolinone carbonyl group. In the two chain polymers with composition [MX2(quinoz)], viz. (M = Cd, X = Br), catena-poly[[[quinazolin-4(3H)-one-κN3]cadmium(II)]-di-μ-bromido], [CdBr2(C8H6N2O)]n (I), and M = Hg, X = Cl, catena-poly[[[quinazolin-4(3H)-one-κN3]mercury(II)]-di-μ-chlorido], [HgCl2(C8H6N2O)]n (II), the divalent cations are five-coordinate, with four bridging halide and one terminal quinoz ligand. The CdII atom in (I) has an almost trigonal–bipyramidal coordination environment, whereas the HgII atom in (II) has a more distorted coordination environment. Likewise, the halide bridges in (II) are significantly more asymmetric than in (I). In both (I) and (II), quinoz ligands at adjacent cations along each strand are oriented in opposite directions, and the organic ligands of neighboring strands inter­digitate with resulting ππ inter­actions. In contrast to the halide-bridged chain polymers (I) and (II), the adduct of quinoz with CdI2 is the tetra­hedral complex [CdI2(quinoz)2], di­iodido­bis­[quinazolin-4(3H)-one-κN3]cadmium(II), [CdI2(C16H12N4O2)], (III). The CdII atom in this discrete complex is located on a twofold rotation axis. Disorder in (III) is reflected in an alternative minority orientation of the mol­ecules for which the iodine sites closely match the position of the majority orientation. In view of the low site occupancy of only 0.0318 (8) Å, only the CdII position for this alternative orientation was taken into account during refinement. In all three compounds, classical N—H⋯O hydrogen bonds with donor–acceptor distances of ca 2.9 Å occur; they link the polymer chains in (I) and (II) into di-periodic networks and connect adjacent discrete complexes in (III) to mono-periodic strands.

1. Chemical context

4(3H)-Quinazolinone (quinoz) can act as ligand for metal ions in different coordination modes. Both coordination through the nitro­gen atom para (mode 1) and, after tautomerization, via the nitro­gen atom ortho to the quinazolinone carbonyl group (mode 2) have been observed (Fig. 1[link]). An AgI coord­in­ation compound (Li et al., 2015[Li, S. X., Liao, B. L., Luo, P. & Jiang, Y. M. (2015). Chin. J. Inorg. Chem. 31, 291-296.]) provides an example for the co-existence of both binding modes in the same crystal structure. Earlier studies on the reaction products of cadmium chloride or bromide with quinazolin-4(3H)-one have shown that the quinoz ligand may inter­act with CdII cations via the para nitro­gen atom, i.e. according to mode 1. Four bridging halides in the equatorial plane and two quinoz ligands in a trans-axial arrangement give rise to a pseudo-octa­hedral coordination environment around the metal cation (Turgunov & Englert, 2010[Turgunov, K. & Englert, U. (2010). Acta Cryst. E66, m1457.]; Turgunov et al., 2010[Turgunov, K., Shomurotova, S., Mukhamedov, N. & Tashkhodjaev, B. (2010). Acta Cryst. E66, m1680.]; Shomurotova et al., 2012[Shomurotova, S., Turgunov, K. K., Mukhamedov, N. & Tashkhodjaev, B. (2012). Acta Cryst. E68, m724.]; Đaković et al., 2018[Đaković, M., Soldin, Ž., Kukovec, B.-M., Kodrin, I., Aakeröy, C. B., Baus, N. & Rinkovec, T. (2018). IUCrJ, 5, 13-21.]).

[Scheme 1]
[Figure 1]
Figure 1
The two possible types of coordination modes for the quinazolin-4-one ligand in metal complexes.

We here report three other examples for coordination according to mode 2, namely the adducts of quinoz with CdBr2 (I), HgCl2 (II) and CdI2 (III). The influence of different halide ligands on the coordination environment of divalent cations with N-donor co-ligands has been discussed in detail (Hu & Englert, 2001[Hu, C. & Englert, U. (2001). CrystEngComm, 3, 91-95.], 2002[Hu, C. & Englert, U. (2002). CrystEngComm, 4, 20-25.]; Hu et al., 2003[Hu, C., Li, Q. & Englert, U. (2003). CrystEngComm, 5, 519-529.]).

2. Structural commentary

The asymmetric unit of (I) consists of a CdII cation, two Br ligands and one quinoz ligand attached in mode 2 (Fig. 2[link]). The cation adopts a coordination number of 5 and is characterized by a τ5 descriptor (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) of 0.80. In an alternative description (Holmes, 1984[Holmes, R. R. (1984). Prog. Inorg. Chem. 32, 119-235.]), its shape corresponds to only 5% distorsion along a hypothetical pathway from D3h to C4v. Both qualifiers consistently assign this shape as trigonal bipyramidal, with the quinoz ligand in an equatorial position. The equatorial plane defined by Cd1, Br1, Br2i [symmetry code: (i) −x, 1 − y, 1 − z] and N3 and the least-squares plane through the quinoz ligand subtend a dihedral angle of 38.32 (13)°. The bromido ligands act as rather symmetric bridges between neighboring cations, thus giving rise to a chain polymer extending along [010]. Additional details concerning the crystal structure of (I) are best discussed together with the related derivative (II) (Fig. 3[link]). Both compounds share the same composition [MX2(quinoz)], with bridging halide ligands between neighboring divalent group 12 cations at a distance slightly less than 4 Å. The mercury compound (II) shows a considerably more distorted coordination environment than its cadmium congener (I): On the one hand, the coordination environment about the cation is less regular; both the τ5 (0.56) and the Holmes descriptor (23%) assign a shape in-between trigonal bipyramidal and square pyramidal. On the other hand, the chlorido bridges in (II) are significantly more asymmetric than the bromido linkers in (I). Even more asymmetric halide bridges have been observed in the bis adduct of 1,2,3,9-tetra­hydro-pyrrolo­[2,1-b]quinazolin-9-one to HgCl2 (Turgunov et al., 2011[Turgunov, K. K., Wang, Y., Englert, U. & Shakhidoyatov, K. M. (2011). Acta Cryst. E67, m953-m954.]). Both chain polymers (I) and (II) fit well into the wider context of halide-bridged chain polymers. The adducts of donor ligands to CdBr2 or HgCl2 mostly display coordination numbers of 5 or 6 and have bridging halide ligands. For such bromido-bridged CdII strands, similar Cd–Cd separations as in (I) [Cd1⋯Cd1i = 3.8667 (10) and Cd1⋯Cd1ii = 3.9051 (10) Å; symmetry codes: (i) −x, 2 − y, 1 − z; (ii) −x, 1 − y, 1 − z] have been reported (Hu & Englert, 2002[Hu, C. & Englert, U. (2002). CrystEngComm, 4, 20-25.]; Merkens et al., 2014[Merkens, C., Truong, K.-N. & Englert, U. (2014). Acta Cryst. B70, 705-713.]; Hu et al., 2003[Hu, C., Li, Q. & Englert, U. (2003). CrystEngComm, 5, 519-529.]). The Hg–Hg separations [Hg1⋯Hg1i = 3.7881 (6) and Hg1⋯Hg1ii = 3.8827 (6) Å, symmetry codes: (i) 2 − x, 1 − y, −z; (ii) 2 − x, −y, −z] in (II) are comparable to those encountered in related chlorido-bridged polymers (Hu et al., 2007[Hu, C., Kalf, I. & Englert, U. (2007). CrystEngComm, 9, 603-610.]; Truong et al., 2017[Truong, K.-N., Merkens, C. & Englert, U. (2017). Acta Cryst. B73, 981-991.]; van Terwingen et al., 2021[Terwingen, S. van, Nachtigall, N., Ebel, B. & Englert, U. (2021). Cryst. Growth Des. 21, 2962-2969.]; Merkens et al., 2010[Merkens, C., Kalf, I. & Englert, U. (2010). Z. Anorg. Allg. Chem. 636, 681-684.]). A different situation arises for (III) (Fig. 4[link]): for the bis­(ligand) adduct of CdI2, a discrete complex may be expected and is indeed encountered. The CSD database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains only a few structures for six-coordinated Cd with four iodido and two additional arbitrary ligands, for example a di-periodic structure with bipyridyl ligands in one and iodido bridges in a second direction (Hu et al., 2003[Hu, C., Li, Q. & Englert, U. (2003). CrystEngComm, 5, 519-529.]). In contrast, more than 600 hits for tetra­hedrally coordinated CdII with two iodido and two additional ligands have been documented, and (III) falls into this category. The crystal structure of (III) has been previously reported by Đaković et al. (2018[Đaković, M., Soldin, Ž., Kukovec, B.-M., Kodrin, I., Aakeröy, C. B., Baus, N. & Rinkovec, T. (2018). IUCrJ, 5, 13-21.]). Our present report takes a minor disorder into account, which explains an otherwise unaccounted high residual electron density; details are provided in the Refinement section. In (III), the cation resides on a twofold rotation axis of space group C2/c, Wyckoff position 4e. Its coordination environment is characterized by a τ4 descriptor (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]) of 0.93, corresponding to an almost undistorted tetra­hedron.

[Figure 2]
Figure 2
Section of polymer (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level, H atoms are shown as spheres of arbitrary radius. [Symmetry codes: (i) −x, 1 − y, 1 − z; ii) −x, 2 − y, 1 − z; iii) x, 1 + y, z].
[Figure 3]
Figure 3
Section of polymer (II) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level, H atoms are shown as spheres of arbitrary radius. [Symmetry code: (i) 2 − x, 1 − y, −z].
[Figure 4]
Figure 4
Mol­ecular structure of (III) with the atom-numbering scheme; the minor disorder of the Cd site is shown in Fig. 9[link] and has been omitted here. Displacement ellipsoids are drawn at the 50% probability level, H atoms are shown as spheres of arbitrary radius. [Symmetry code: (i) −x, y, [{1\over 2}] − z]

3. Supra­molecular features

Classical N—H⋯O hydrogen bonds exist in structures (I)–(III). They link the NH group to the carbonyl oxygen atom of a neighboring quinoz ligand [parallel to [001] for (I) and (II), and parallel to [010] for (III)], and involve donor–acceptor distances around 2.9 Å. Numerical details of the hydrogen-bonding inter­actions are compiled in Tables 1[link]–3[link][link]. In the coordination polymers (I) and (II), quinoz ligands of adjacent strands inter­digitate. The distances between neighboring coplanar organic ligands amount to one half of the lattice parameter b, i.e. 3.5–3.6 Å and suggest ππ stacking. As an example, a space-filling model for (I) (Fig. 5[link]) shows the close approach between organic quinoz ligands on neighboring strands. An analysis with PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) gives numerical values of ππ stacking inter­actions observed between two parallel quinoz ligands for crystals of (I)–(III): Cg(pyrimidine ring)⋯Cg(benzene ring) distances are 3.6923 (3) Å (slippage 0.843 Å) and 3.718 (3) Å (0.906 Å) in (I), 3.7042 (4) Å (1.003 Å) in (II) and 3.5578 (14) Å (1.185 Å) in (III) (Figs. 6[link]–8[link][link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (3) 2.10 (3) 2.917 (6) 155 (6)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.89 (4) 2.11 (4) 2.935 (8) 155 (7)
Symmetry code: (i) [x-1, y, z].

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.93 (3) 1.97 (3) 2.893 (3) 168 (4)
Symmetry code: (i) [x, y-1, z].
[Figure 5]
Figure 5
Space-filling model for (I) (PLUTO; Spek 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) as viewed along [100]; Br atoms have been omitted. Color code: Cd green, C black, O red, N blue, H white.
[Figure 6]
Figure 6
The relevant ππ inter­actions in the crystal structure of (I).
[Figure 7]
Figure 7
The relevant ππ inter­actions in the crystal structure of (II).
[Figure 8]
Figure 8
The relevant ππ inter­actions in the crystal structure of (III).

4. Synthesis and crystallization

Compound (I). 70 mg (0.2 mmol) of cadmium bromide tetra­hydrate were dissolved in a mixture of 4 ml of ethanol and 1 ml of water. 60 mg (0.4 mmol) of quinazolin-4(3H)-one dissolved in 5 ml of ethanol were added to the cadmium bromide solution. Crystals started to precipitate after a few minutes, and colorless prismatic crystals suitable for single-crystal X-ray diffraction analysis formed within 2–3 h.

Compound (II). 54.3 mg (0.2 mmol) of HgCl2 were dissolved in ∼3 ml acetone. 30 mg (0.2 mmol) of quinazolin-4(3H)-one were dissolved in 3 ml of acetone under mild heating, and the resulting solution was added to the HgCl2 solution. Colorless prismatic crystals suitable for X-ray diffraction analysis formed within seconds.

Compound (III): 73 mg (0.2 mmol) of CdI2 were dissolved in 1 ml of ethanol. 60 mg (0.4 mmol) of the ligand were dissolved in 4 ml of ethanol under mild heating, and the resulting solution was added to the CdI2 solution. After slow evaporation of the solvent at ambient temperature for several days, colorless single crystals suitable for X-ray diffraction analysis were obtained.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Positional parameters for H atoms attached to N atoms were refined, H atoms bonded to carbon were introduced in calculated positions and treated as riding on their parent atoms.

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula [CdBr2(C8H6N2O)] [HgCl2(C8H6N2O)] [CdI2(C16H12N4O2)]
Mr 418.37 417.64 658.50
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}] Monoclinic, C2/c
Temperature (K) 100 100 100
a, b, c (Å) 10.7930 (11), 7.2019 (7), 13.7605 (14) 6.8191 (8), 7.0735 (8), 10.4659 (12) 22.242 (3), 6.8450 (9), 13.3702 (17)
α, β, γ (°) 90, 100.4705 (18), 90 85.718 (2), 80.7887 (19), 89.152 (2) 90, 118.8220 (16), 90
V3) 1051.79 (18) 496.92 (10) 1783.4 (4)
Z 4 2 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 9.64 15.99 4.70
Crystal size (mm) 0.25 × 0.10 × 0.05 0.04 × 0.03 × 0.03 0.12 × 0.10 × 0.04
 
Data collection
Diffractometer Bruker D8 gonimeter with APEX CCD detector Bruker D8 gonimeter with APEX CCD detector Bruker D8 gonimeter with APEX CCD detector
Absorption correction Multi-scan (TWINABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (TWINABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.446, 0.746 0.302, 0.433 0.544, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 65521, 5868, 4717 14434, 5037, 4693 13210, 2687, 2519
Rint 0.089 0.050 0.024
(sin θ/λ)max−1) 0.718 0.709 0.717
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.076, 1.04 0.036, 0.076, 1.08 0.026, 0.063, 1.12
No. of reflections 5868 5037 2687
No. of parameters 132 132 119
No. of restraints 1 1 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.13, −0.96 1.54, −1.49 3.17, −0.50
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Several crystals of (I) were tested and proved to be twinned; two domains of roughly equal volume are related by a 180° rotation about the c axis. The specimen selected for intensity data collection showed ca 12000 overlapped out of a total of 65000 reflections. Final refined component fractions amounted to 0.5569 (8):0.4431 (8). Crystals of (II) were also twinned by non-merohedry. Here, two domains of roughly equal volume are related by a 180° rotation about the b axis. In the selected crystal, two domains contributed to ca 2000 overlapped out of a total of ca 14000 reflections. Final refined component fractions amounted to 0.5178 (9):0.4822 (9). The crystal selected for intensity data collection for (III) was a single crystal. After completion of the structure model, a difference-Fourier map showed a local density maximum of ca 5 electrons/ Å3 not associated with any atom site. This position subtended distances to the iodine atoms similar to Cd1—I1. We suggest that this residual electron density represents an alternative Cd site. In the final refinement, the sum of the site occupancies for the positionally disordered Cd sites was constrained to unity, and both sites were constrained to share the same anisotropic displacement parameters. Fig. 9[link] explains the arrangement of the mol­ecules in both alternative orientations; the minority orientation is depicted in magenta. As the minority Cd site refined to an occupancy of only 0.0318 (8) and the iodine ligands for both orientations closely overlap, no attempt was made to detect and refine the alternative sites for the light atoms associated with the quinoz ligand. Inter­estingly, the authors of the previous crystal-structure determination of (III) (Đaković et al., 2018[Đaković, M., Soldin, Ž., Kukovec, B.-M., Kodrin, I., Aakeröy, C. B., Baus, N. & Rinkovec, T. (2018). IUCrJ, 5, 13-21.]) encountered the same local density maximum (but without modeling the disorder). Hence, the disorder appears to be a feature of the crystal structure and not of the individual crystal chosen for the data collection.

[Figure 9]
Figure 9
Disorder in (III). The alternative Cd site (Cd2) is shown as a magenta-colored sphere. For clarity, the alternative ligand orientations are also shown in magenta. However, they have not been revealed experimentally and were not taken into account during refinement.

Supporting information


Computing details top

For all structures, data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-Poly[[[quinazolin-4(3H)-one-κN3]cadmium(II)]-di-µ-bromido] (I) top
Crystal data top
[CdBr2(C8H6N2O)]F(000) = 776
Mr = 418.37Dx = 2.642 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.7930 (11) ÅCell parameters from 3537 reflections
b = 7.2019 (7) Åθ = 3.0–26.0°
c = 13.7605 (14) ŵ = 9.64 mm1
β = 100.4705 (18)°T = 100 K
V = 1051.79 (18) Å3Rod, colourless
Z = 40.25 × 0.10 × 0.05 mm
Data collection top
Bruker D8 gonimeter with APEX CCD detector
diffractometer
5868 independent reflections
Radiation source: Incoatec microsource4717 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.089
ω scansθmax = 30.7°, θmin = 3.0°
Absorption correction: multi-scan
(TWINABS; Bruker, 2014)
h = 1514
Tmin = 0.446, Tmax = 0.746k = 010
65521 measured reflectionsl = 019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.026P)2 + 1.8P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
5868 reflectionsΔρmax = 1.13 e Å3
132 parametersΔρmin = 0.96 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.06536 (3)0.75144 (5)0.52545 (2)0.01158 (8)
Br10.12368 (4)0.94278 (7)0.57455 (4)0.01378 (11)
Br20.01900 (5)0.45101 (7)0.63243 (4)0.01525 (11)
O10.3587 (3)0.7297 (5)0.5233 (3)0.0182 (8)
N10.3312 (4)0.7386 (6)0.8091 (3)0.0145 (8)
H10.315 (6)0.738 (8)0.869 (2)0.029 (17)*
C20.2323 (4)0.7393 (7)0.7372 (4)0.0138 (9)
H20.1511100.7392290.7546390.017*
N30.2391 (4)0.7401 (6)0.6423 (3)0.0122 (8)
C40.3551 (4)0.7349 (7)0.6125 (4)0.0126 (9)
C4A0.4672 (4)0.7350 (7)0.6901 (4)0.0117 (9)
C50.5890 (5)0.7309 (7)0.6692 (4)0.0175 (10)
H50.6006770.7264300.6024290.021*
C60.6918 (5)0.7333 (8)0.7441 (4)0.0197 (11)
H60.7742110.7315090.7289530.024*
C70.6761 (5)0.7385 (8)0.8425 (4)0.0199 (11)
H70.7479070.7415450.8938850.024*
C80.5571 (5)0.7391 (8)0.8656 (4)0.0187 (11)
H80.5462550.7399040.9326180.022*
C8A0.4523 (4)0.7384 (7)0.7886 (3)0.0122 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01016 (15)0.01311 (15)0.01124 (16)0.00003 (14)0.00135 (12)0.00022 (13)
Br10.0145 (2)0.0135 (2)0.0149 (2)0.00045 (19)0.00676 (19)0.00145 (19)
Br20.0203 (2)0.0149 (2)0.0113 (2)0.0055 (2)0.00477 (19)0.00073 (19)
O10.0152 (17)0.031 (2)0.0085 (17)0.0037 (16)0.0025 (14)0.0009 (15)
N10.0140 (19)0.024 (2)0.0074 (19)0.0003 (18)0.0071 (16)0.0001 (19)
C20.012 (2)0.016 (2)0.014 (2)0.001 (2)0.0053 (18)0.001 (2)
N30.0101 (18)0.0153 (19)0.011 (2)0.0016 (17)0.0014 (15)0.0012 (17)
C40.011 (2)0.013 (2)0.014 (2)0.0006 (19)0.0013 (18)0.002 (2)
C4A0.010 (2)0.013 (2)0.011 (2)0.0027 (18)0.0011 (18)0.003 (2)
C50.013 (2)0.028 (3)0.012 (2)0.001 (2)0.003 (2)0.003 (2)
C60.010 (2)0.028 (3)0.021 (3)0.002 (2)0.0029 (19)0.005 (2)
C70.016 (2)0.030 (3)0.012 (2)0.002 (2)0.0035 (19)0.004 (2)
C80.019 (3)0.027 (3)0.009 (2)0.002 (2)0.0016 (19)0.002 (2)
C8A0.012 (2)0.015 (2)0.010 (2)0.0025 (19)0.0021 (18)0.004 (2)
Geometric parameters (Å, º) top
Cd1—N32.238 (4)C4—C4A1.460 (6)
Cd1—Br2i2.5886 (6)C4A—C8A1.394 (6)
Cd1—Br12.6494 (6)C4A—C51.396 (6)
Cd1—Br1ii2.7302 (6)C5—C61.371 (7)
Cd1—Br22.8574 (6)C5—H50.9500
O1—C41.236 (5)C6—C71.395 (7)
N1—C21.317 (6)C6—H60.9500
N1—C8A1.386 (6)C7—C81.378 (7)
N1—H10.88 (2)C7—H70.9500
C2—N31.321 (6)C8—C8A1.403 (7)
C2—H20.9500C8—H80.9500
N3—C41.388 (6)
N3—Cd1—Br2i126.23 (10)O1—C4—N3119.2 (4)
N3—Cd1—Br1114.78 (10)O1—C4—C4A123.7 (4)
Br2i—Cd1—Br1117.82 (2)N3—C4—C4A117.1 (4)
N3—Cd1—Br1ii98.72 (11)C8A—C4A—C5118.7 (4)
Br2i—Cd1—Br1ii93.35 (2)C8A—C4A—C4119.0 (4)
Br1—Cd1—Br1ii88.152 (19)C5—C4A—C4122.3 (4)
N3—Cd1—Br284.61 (11)C6—C5—C4A120.6 (5)
Br2i—Cd1—Br288.56 (2)C6—C5—H5119.7
Br1—Cd1—Br285.999 (18)C4A—C5—H5119.7
Br1ii—Cd1—Br2174.08 (2)C5—C6—C7120.4 (5)
Cd1—Br1—Cd1ii91.846 (19)C5—C6—H6119.8
Cd1i—Br2—Cd191.44 (2)C7—C6—H6119.8
C2—N1—C8A120.8 (4)C8—C7—C6120.5 (5)
C2—N1—H1116 (4)C8—C7—H7119.8
C8A—N1—H1124 (4)C6—C7—H7119.8
N1—C2—N3124.1 (4)C7—C8—C8A118.9 (5)
N1—C2—H2118.0C7—C8—H8120.6
N3—C2—H2118.0C8A—C8—H8120.6
C2—N3—C4120.4 (4)N1—C8A—C4A118.5 (4)
C2—N3—Cd1121.4 (3)N1—C8A—C8120.4 (4)
C4—N3—Cd1118.2 (3)C4A—C8A—C8121.0 (4)
C8A—N1—C2—N30.1 (8)C4—C4A—C5—C6179.2 (5)
N1—C2—N3—C41.8 (8)C4A—C5—C6—C70.5 (8)
N1—C2—N3—Cd1177.8 (4)C5—C6—C7—C80.7 (9)
C2—N3—C4—O1177.7 (5)C6—C7—C8—C8A1.3 (8)
Cd1—N3—C4—O12.7 (6)C2—N1—C8A—C4A1.3 (7)
C2—N3—C4—C4A2.0 (7)C2—N1—C8A—C8179.5 (5)
Cd1—N3—C4—C4A177.7 (3)C5—C4A—C8A—N1178.7 (5)
O1—C4—C4A—C8A179.1 (5)C4—C4A—C8A—N11.1 (7)
N3—C4—C4A—C8A0.6 (7)C5—C4A—C8A—C80.4 (8)
O1—C4—C4A—C50.7 (8)C4—C4A—C8A—C8179.8 (5)
N3—C4—C4A—C5179.7 (5)C7—C8—C8A—N1179.9 (5)
C8A—C4A—C5—C61.0 (8)C7—C8—C8A—C4A0.8 (8)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1iii0.87 (3)2.10 (3)2.917 (6)155 (6)
Symmetry code: (iii) x, y+3/2, z+1/2.
catena-Poly[[[quinazolin-4(3H)-one-κN3]mercury(II)]-di-µ-chlorido] (II) top
Crystal data top
[HgCl2(C8H6N2O)]Z = 2
Mr = 417.64F(000) = 380
Triclinic, P1Dx = 2.791 Mg m3
a = 6.8191 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.0735 (8) ÅCell parameters from 3121 reflections
c = 10.4659 (12) Åθ = 3.0–29.9°
α = 85.718 (2)°µ = 15.99 mm1
β = 80.7887 (19)°T = 100 K
γ = 89.152 (2)°Prism, colourless
V = 496.92 (10) Å30.04 × 0.03 × 0.03 mm
Data collection top
Bruker D8 gonimeter with APEX CCD detector
diffractometer
5037 independent reflections
Radiation source: Incoatec microsource4693 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.050
ω scansθmax = 30.3°, θmin = 2.9°
Absorption correction: multi-scan
(TWINABS; Bruker, 2014)
h = 99
Tmin = 0.302, Tmax = 0.433k = 910
14434 measured reflectionsl = 014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.020P)2 + 2.5P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
5037 reflectionsΔρmax = 1.54 e Å3
132 parametersΔρmin = 1.49 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.96071 (4)0.24641 (4)0.07042 (3)0.01548 (9)
Cl21.2589 (3)0.0702 (3)0.01773 (19)0.0173 (4)
Cl10.8430 (3)0.4314 (2)0.1209 (2)0.0188 (4)
O10.9528 (7)0.2176 (8)0.3605 (5)0.0212 (11)
N10.3826 (9)0.2857 (9)0.3209 (6)0.0138 (12)
H10.255 (5)0.293 (12)0.313 (8)0.03 (2)*
C20.5279 (11)0.2835 (10)0.2211 (7)0.0161 (15)
H20.4940180.2988940.1363140.019*
N30.7156 (9)0.2615 (8)0.2317 (6)0.0129 (12)
C40.7779 (10)0.2372 (10)0.3539 (7)0.0113 (13)
C4A0.6195 (11)0.2370 (10)0.4663 (7)0.0134 (14)
C50.6608 (11)0.2103 (11)0.5938 (7)0.0161 (15)
H50.7936120.1892280.6084500.019*
C60.5093 (12)0.2146 (11)0.6969 (8)0.0203 (16)
H60.5379950.1974190.7829250.024*
C70.3144 (12)0.2440 (11)0.6770 (8)0.0202 (16)
H70.2111850.2465170.7495090.024*
C80.2688 (11)0.2694 (11)0.5539 (7)0.0193 (16)
H80.1353190.2902620.5408410.023*
C8A0.4223 (10)0.2640 (10)0.4475 (7)0.0130 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.01190 (13)0.02113 (15)0.01333 (14)0.00139 (11)0.00131 (9)0.00250 (11)
Cl20.0123 (9)0.0204 (9)0.0201 (10)0.0022 (7)0.0039 (7)0.0058 (7)
Cl10.0219 (10)0.0179 (8)0.0194 (10)0.0013 (7)0.0120 (8)0.0003 (7)
O10.013 (3)0.034 (3)0.015 (3)0.002 (2)0.003 (2)0.002 (3)
N10.007 (3)0.022 (3)0.013 (3)0.001 (2)0.005 (2)0.001 (2)
C20.014 (4)0.019 (4)0.015 (4)0.001 (3)0.002 (3)0.003 (3)
N30.014 (3)0.015 (3)0.011 (3)0.003 (2)0.003 (2)0.003 (2)
C40.013 (3)0.013 (3)0.008 (3)0.001 (3)0.003 (3)0.001 (3)
C4A0.014 (3)0.014 (3)0.012 (3)0.002 (3)0.001 (3)0.001 (3)
C50.013 (3)0.023 (4)0.013 (4)0.004 (3)0.004 (3)0.001 (3)
C60.023 (4)0.025 (4)0.012 (4)0.004 (3)0.002 (3)0.001 (3)
C70.018 (4)0.025 (4)0.016 (4)0.000 (3)0.002 (3)0.003 (3)
C80.014 (4)0.028 (4)0.016 (4)0.000 (3)0.003 (3)0.000 (3)
C8A0.010 (3)0.015 (3)0.014 (3)0.000 (3)0.002 (3)0.000 (3)
Geometric parameters (Å, º) top
Hg1—N32.185 (6)C4—C4A1.464 (10)
Hg1—Cl22.3791 (18)C4A—C8A1.398 (10)
Hg1—Cl12.5416 (19)C4A—C51.406 (10)
Hg1—Cl1i2.7861 (18)C5—C61.372 (10)
O1—C41.211 (8)C5—H50.9500
N1—C21.320 (9)C6—C71.389 (11)
N1—C8A1.392 (9)C6—H60.9500
N1—H10.89 (3)C7—C81.371 (10)
C2—N31.309 (9)C7—H70.9500
C2—H20.9500C8—C8A1.403 (10)
N3—C41.409 (9)C8—H80.9500
N3—Hg1—Cl2138.49 (16)C8A—C4A—C5118.8 (7)
N3—Hg1—Cl1105.30 (16)C8A—C4A—C4119.7 (7)
Cl2—Hg1—Cl1114.98 (7)C5—C4A—C4121.4 (7)
N3—Hg1—Cl1i96.08 (16)C6—C5—C4A119.9 (7)
Cl2—Hg1—Cl1i93.94 (6)C6—C5—H5120.0
Cl1—Hg1—Cl1i89.50 (6)C4A—C5—H5120.0
Hg1—Cl1—Hg1i90.50 (6)C5—C6—C7120.7 (7)
C2—N1—C8A120.8 (6)C5—C6—H6119.7
C2—N1—H1123 (6)C7—C6—H6119.7
C8A—N1—H1116 (6)C8—C7—C6120.9 (7)
N3—C2—N1124.0 (7)C8—C7—H7119.6
N3—C2—H2118.0C6—C7—H7119.6
N1—C2—H2118.0C7—C8—C8A119.0 (7)
C2—N3—C4121.5 (6)C7—C8—H8120.5
C2—N3—Hg1125.6 (5)C8A—C8—H8120.5
C4—N3—Hg1112.9 (4)N1—C8A—C4A118.3 (6)
O1—C4—N3119.9 (6)N1—C8A—C8121.0 (7)
O1—C4—C4A124.5 (6)C4A—C8A—C8120.6 (7)
N3—C4—C4A115.6 (6)
C8A—N1—C2—N30.0 (11)C4—C4A—C5—C6178.7 (7)
N1—C2—N3—C40.2 (11)C4A—C5—C6—C70.4 (12)
N1—C2—N3—Hg1177.6 (5)C5—C6—C7—C80.0 (12)
C2—N3—C4—O1179.8 (7)C6—C7—C8—C8A0.4 (12)
Hg1—N3—C4—O12.4 (8)C2—N1—C8A—C4A1.0 (10)
C2—N3—C4—C4A0.5 (10)C2—N1—C8A—C8178.9 (7)
Hg1—N3—C4—C4A177.3 (5)C5—C4A—C8A—N1178.5 (6)
O1—C4—C4A—C8A178.9 (7)C4—C4A—C8A—N11.6 (10)
N3—C4—C4A—C8A1.4 (9)C5—C4A—C8A—C81.6 (10)
O1—C4—C4A—C51.0 (11)C4—C4A—C8A—C8178.3 (7)
N3—C4—C4A—C5178.7 (6)C7—C8—C8A—N1178.8 (7)
C8A—C4A—C5—C61.2 (11)C7—C8—C8A—C4A1.2 (11)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.89 (4)2.11 (4)2.935 (8)155 (7)
Symmetry code: (ii) x1, y, z.
Diiodidobis[quinazolin-4(3H)-one-κN3]cadmium(II) (III) top
Crystal data top
[CdI2(C16H12N4O2)]F(000) = 1224
Mr = 658.50Dx = 2.453 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.242 (3) ÅCell parameters from 7294 reflections
b = 6.8450 (9) Åθ = 3.1–30.6°
c = 13.3702 (17) ŵ = 4.70 mm1
β = 118.8220 (16)°T = 100 K
V = 1783.4 (4) Å3Plate, colourless
Z = 40.12 × 0.10 × 0.04 mm
Data collection top
Bruker D8 gonimeter with APEX CCD detector
diffractometer
2687 independent reflections
Radiation source: Incoatec microsource2519 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.024
ω scansθmax = 30.7°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 3131
Tmin = 0.544, Tmax = 0.746k = 99
13210 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0331P)2 + 1.7P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
2687 reflectionsΔρmax = 3.17 e Å3
119 parametersΔρmin = 0.49 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.02284 (2)0.27011 (3)0.06205 (2)0.01738 (7)
Cd10.0000000.06009 (4)0.2500000.01209 (8)0.9682 (8)
Cd20.0000000.5534 (10)0.2500000.01209 (8)0.0318 (8)
O10.15047 (11)0.1341 (3)0.16751 (18)0.0192 (4)
N10.14386 (12)0.4477 (3)0.2024 (2)0.0156 (5)
H1A0.1400 (18)0.583 (5)0.200 (3)0.019*
C20.08880 (14)0.3397 (4)0.2268 (2)0.0163 (5)
H2A0.0460450.4053070.2548560.020*
N30.08910 (11)0.1482 (3)0.21497 (19)0.0135 (4)
C40.15069 (13)0.0452 (4)0.1747 (2)0.0117 (5)
C4A0.21284 (13)0.1587 (4)0.1429 (2)0.0120 (5)
C50.27777 (14)0.0702 (4)0.0976 (2)0.0161 (5)
H5A0.2821580.0666310.0839810.019*
C60.33542 (15)0.1813 (5)0.0726 (2)0.0188 (6)
H6A0.3790700.1202380.0426010.023*
C70.32946 (15)0.3836 (5)0.0915 (2)0.0191 (6)
H7A0.3690400.4587170.0752890.023*
C80.26645 (15)0.4744 (4)0.1334 (2)0.0172 (5)
H8A0.2626330.6118620.1446890.021*
C8A0.20823 (13)0.3616 (4)0.1592 (2)0.0131 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01805 (11)0.01668 (11)0.01536 (10)0.00240 (6)0.00642 (8)0.00158 (6)
Cd10.01073 (13)0.00997 (13)0.01466 (14)0.0000.00539 (11)0.000
Cd20.01073 (13)0.00997 (13)0.01466 (14)0.0000.00539 (11)0.000
O10.0209 (10)0.0124 (10)0.0246 (11)0.0019 (8)0.0112 (9)0.0008 (8)
N10.0173 (11)0.0099 (11)0.0214 (12)0.0013 (8)0.0108 (10)0.0023 (9)
C20.0129 (12)0.0168 (13)0.0194 (13)0.0036 (10)0.0080 (11)0.0029 (11)
N30.0115 (10)0.0147 (11)0.0142 (10)0.0005 (8)0.0060 (9)0.0006 (9)
C40.0151 (12)0.0102 (12)0.0105 (11)0.0007 (9)0.0067 (10)0.0012 (9)
C4A0.0134 (12)0.0124 (12)0.0105 (11)0.0001 (9)0.0059 (10)0.0011 (9)
C50.0166 (12)0.0156 (13)0.0154 (13)0.0020 (10)0.0072 (11)0.0001 (10)
C60.0124 (12)0.0289 (16)0.0140 (13)0.0016 (11)0.0055 (10)0.0019 (11)
C70.0165 (13)0.0259 (15)0.0159 (13)0.0066 (11)0.0087 (11)0.0028 (11)
C80.0212 (14)0.0156 (13)0.0167 (13)0.0050 (11)0.0108 (11)0.0026 (10)
C8A0.0146 (12)0.0136 (13)0.0111 (11)0.0009 (10)0.0061 (10)0.0005 (9)
Geometric parameters (Å, º) top
I1—Cd2i2.608 (3)N3—C41.397 (3)
I1—Cd12.7219 (4)C4—C4A1.459 (4)
Cd1—N3ii2.299 (2)C4A—C8A1.402 (4)
Cd1—N32.299 (2)C4A—C51.406 (4)
Cd2—C2ii2.355 (5)C5—C61.386 (4)
Cd2—C22.355 (5)C5—H5A0.9500
O1—C41.232 (3)C6—C71.403 (5)
N1—C21.329 (4)C6—H6A0.9500
N1—C8A1.391 (4)C7—C81.381 (4)
N1—H1A0.93 (4)C7—H7A0.9500
C2—N31.320 (4)C8—C8A1.401 (4)
C2—H2A0.9500C8—H8A0.9500
N3ii—Cd1—N3103.32 (12)C2—N3—Cd1129.61 (17)
N3ii—Cd1—I1105.94 (6)C4—N3—Cd1110.74 (17)
N3—Cd1—I1112.37 (6)O1—C4—N3119.5 (2)
N3ii—Cd1—I1ii112.37 (6)O1—C4—C4A123.2 (2)
N3—Cd1—I1ii105.94 (6)N3—C4—C4A117.3 (2)
I1—Cd1—I1ii116.237 (16)C8A—C4A—C5118.5 (2)
C2ii—Cd2—C2103.2 (3)C8A—C4A—C4119.6 (2)
C2ii—Cd2—I1iii100.14 (7)C5—C4A—C4121.9 (2)
C2—Cd2—I1iii113.53 (8)C6—C5—C4A120.4 (3)
C2ii—Cd2—I1iv113.53 (8)C6—C5—H5A119.8
C2—Cd2—I1iv100.14 (7)C4A—C5—H5A119.8
I1iii—Cd2—I1iv124.8 (3)C5—C6—C7120.1 (3)
C2—Cd2—H2Aii97.1 (4)C5—C6—H6A119.9
I1iii—Cd2—H2Aii95.37 (11)C7—C6—H6A119.9
I1iv—Cd2—H2Aii123.21 (12)C8—C7—C6120.5 (3)
C2—N1—C8A120.6 (2)C8—C7—H7A119.8
C2—N1—H1A118 (2)C6—C7—H7A119.8
C8A—N1—H1A120 (2)C7—C8—C8A119.2 (3)
N3—C2—N1124.9 (2)C7—C8—H8A120.4
N3—C2—Cd2126.0 (2)C8A—C8—H8A120.4
N1—C2—Cd2107.6 (2)N1—C8A—C8120.9 (3)
N3—C2—H2A117.6N1—C8A—C4A117.9 (2)
N1—C2—H2A117.6C8—C8A—C4A121.2 (2)
C2—N3—C4119.6 (2)
C8A—N1—C2—N31.1 (4)C8A—C4A—C5—C61.7 (4)
C8A—N1—C2—Cd2165.5 (2)C4—C4A—C5—C6177.4 (3)
N1—C2—N3—C40.4 (4)C4A—C5—C6—C70.6 (4)
Cd2—C2—N3—C4164.55 (19)C5—C6—C7—C81.0 (4)
N1—C2—N3—Cd1179.0 (2)C6—C7—C8—C8A1.3 (4)
C2—N3—C4—O1177.5 (2)C2—N1—C8A—C8179.9 (3)
Cd1—N3—C4—O13.0 (3)C2—N1—C8A—C4A0.2 (4)
C2—N3—C4—C4A2.6 (4)C7—C8—C8A—N1179.5 (3)
Cd1—N3—C4—C4A176.94 (17)C7—C8—C8A—C4A0.1 (4)
O1—C4—C4A—C8A176.8 (2)C5—C4A—C8A—N1179.0 (2)
N3—C4—C4A—C8A3.3 (3)C4—C4A—C8A—N11.9 (4)
O1—C4—C4A—C52.3 (4)C5—C4A—C8A—C81.4 (4)
N3—C4—C4A—C5177.6 (2)C4—C4A—C8A—C8177.7 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1/2; (iii) x, y1, z; (iv) x, y1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1iii0.93 (3)1.97 (3)2.893 (3)168 (4)
Symmetry code: (iii) x, y1, z.
 

Acknowledgements

We gratefully acknowledge the scholarship of the German Academic Exchange Service (DAAD). The help of all members of the Institute of Inorganic Chemistry, RWTH Aachen University is greatly appreciated.

Funding information

Funding for this research was provided by: Deutscher Akademischer Austauschdienst.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2014). APEX2, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationĐaković, M., Soldin, Ž., Kukovec, B.-M., Kodrin, I., Aakeröy, C. B., Baus, N. & Rinkovec, T. (2018). IUCrJ, 5, 13–21.  Web of Science CSD CrossRef PubMed IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHolmes, R. R. (1984). Prog. Inorg. Chem. 32, 119–235.  CrossRef CAS Web of Science Google Scholar
First citationHu, C. & Englert, U. (2001). CrystEngComm, 3, 91–95.  Web of Science CSD CrossRef Google Scholar
First citationHu, C. & Englert, U. (2002). CrystEngComm, 4, 20–25.  Web of Science CSD CrossRef Google Scholar
First citationHu, C., Kalf, I. & Englert, U. (2007). CrystEngComm, 9, 603–610.  Web of Science CSD CrossRef CAS Google Scholar
First citationHu, C., Li, Q. & Englert, U. (2003). CrystEngComm, 5, 519–529.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, S. X., Liao, B. L., Luo, P. & Jiang, Y. M. (2015). Chin. J. Inorg. Chem. 31, 291–296.  CAS Google Scholar
First citationMerkens, C., Kalf, I. & Englert, U. (2010). Z. Anorg. Allg. Chem. 636, 681–684.  Web of Science CSD CrossRef CAS Google Scholar
First citationMerkens, C., Truong, K.-N. & Englert, U. (2014). Acta Cryst. B70, 705–713.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShomurotova, S., Turgunov, K. K., Mukhamedov, N. & Tashkhodjaev, B. (2012). Acta Cryst. E68, m724.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTerwingen, S. van, Nachtigall, N., Ebel, B. & Englert, U. (2021). Cryst. Growth Des. 21, 2962–2969.  Google Scholar
First citationTruong, K.-N., Merkens, C. & Englert, U. (2017). Acta Cryst. B73, 981–991.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTurgunov, K. & Englert, U. (2010). Acta Cryst. E66, m1457.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTurgunov, K., Shomurotova, S., Mukhamedov, N. & Tashkhodjaev, B. (2010). Acta Cryst. E66, m1680.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTurgunov, K. K., Wang, Y., Englert, U. & Shakhidoyatov, K. M. (2011). Acta Cryst. E67, m953–m954.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds