research communications
β-D-glucopyranosylthio)-N-(4-methylphenyl)-1,3,4-thiadiazol-2-amine
of 5-(aGreen Chemistry Department, National Research Centre, Dokki, Giza, Egypt, bChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-braunschweig.de
This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.
In the structure of the title compound, C15H19N3O5S2, the bond lengths at the linking sulfur atom are significantly different [1.7473 (17) and 1.811 (2) Å], and the angle at the exocyclic nitrogen atom is wide at 128.45 (18)°. The interplanar angle between the tolyl and thiadiazole rings is 9.2 (1)°. The complex hydrogen-bonding pattern, involving five donors and five acceptors, can be broken down into a one-dimensional ribbon parallel to the b axis, involving hydrogen bonds of the sugar residues only, and a two-dimensional layer structure parallel to the ab plane, based on the N—H⋯O and O—H⋯N hydrogen bonds.
Keywords: glucose; thiadiazole; crystal structure; hydrogen bonds.
CCDC reference: 2269285
1. Chemical context
There has been considerable recent interest in the chemistry of compounds involving both heterocyclic and carbohydrate moieties (Lopes et al., 2021). Heterocyclic thioglycosides are promising candidates in synthetic carbohydrate research, and some of these compounds have displayed various antagonistic activities (Abu-Zaied et al., 2011, 2019; Khedr et al., 2022). 1,3,4-Thiadiazoles are an important class of heterocycles that have found diverse applications in organic synthesis, biological applications, and pharmaceuticals (Sun et al., 2011), thus motivating researchers to prepare many derivatives of these compounds (Matysiak, 2015). Our interest in synthesizing novel active heterocycles (Khedr et al., 2022; Hebishy et al., 2022; Abdallah et al., 2022) and their glycosylic derivatives (Azzam et al., 2022a,b) led us to expect that 1,3,4-thiazole compounds and their sugar-linked products could be valuable systems for designing novel cytotoxic agents (Yang et al., 2012). In our previous work, many antiviral heterocyclic thioglycosides, such as azole and azine thioglycosides, were synthesized and found to display effective cytotoxicities (Elgemeie et al., 2016, 2017a,b, 2018; Elgemeie & Mohamed-Ezzat, 2022a,b). We have also reported that dihydropyridine thioglycosides can be used as inhibitors of the glycosylation of proteins (Scala et al., 1997).
In the current study, we have designed a facile synthesis of 1,3,4-thiadiazole thioglucosides by coupling of potassium 1,3,4-thiadiazolates and protected α-D-glucopyranosyl bromide. Our target derivative was synthesized by the reaction of the thiosemicarbazide derivative 1 with carbon disulfide in boiling KOH/EtOH to afford the corresponding potassium 1,3,4-thiadiazole thiolate 2 in good yield (Fig. 1). Compound 2 was then coupled with acetylated α-D-glucopyranose bromide 3 in DMF at room temperature to give a product that could in principle be either the 1,3,4-thiadiazole S-glucoside 4 or the isomeric N-glucoside 5, corresponding to two different modes of glycosylation. Deprotection then provided a final product that should be either the 1,3,4-thiadiazole S-glucoside 6 or the isomeric N-glucoside 7. Spectroscopic data cannot distinguish these two structures with absolute certainty, although it had already been proposed that a simple SN2 reaction between 2 and 3 would give the β-glucoside product 4 (Masoud et al., 2017; Hammad et al., 2018), which would imply the final formation of 6.
This is consistent with the spectroscopic data; thus the 1H NMR spectrum of 6 showed the signal of the anomeric proton as a doublet at δ 4.72 (J1`,2` = 10.8 Hz), strongly implying a β-D-configuration. The 13C NMR spectrum exhibited a signal at δ 86.89 corresponding to C-1′, whereas the signals at δ 61.34, 70.00, 73.07 and 78.32, 81.42 were allocated to C-6′, C-4`, C-2′, C-3′ and C-5′. The X-ray presented here, unambiguously shows the isolated product to be the 1,3,4-thiadiazole-5-thioglucoside 6 (Fig. 1).
2. Structural commentary
The molecular structure of compound 6 is shown in Fig. 2. Note that the standard sugar numbering has been slightly modified (to C11–16) for the crystallographic numbering. Molecular dimensions (Table 1) may be regarded as normal; e.g. the bond lengths at S2 are significantly different, consistent with the different of the carbon atoms [C2—S2 = 1.7473 (17), C11—S2 = 1.811 (2) Å], and the angle C5—N1—C21 is wide at 128.45 (18)°. The interplanar angle between the tolyl and thiadiazole rings is 9.2 (1)°. The β (equatorial) position of the substituent at the glucose ring is confirmed by the torsion angle C15—O1—C11—S2 of 177.11 (10)°. The was confirmed by the with chiralities S,R,S,S,R at C11–15 respectively consistent with the presence of D-glucose.
|
3. Supramolecular features
With five classical hydrogen bonds (Table 2), the molecular packing of 6 might be expected to be three-dimensional and complex, and this is indeed the case. However, the packing may be analysed in terms of more easily assimilable substructures. One, formally one-dimensional, involving the sugar residues can readily be identified (Fig. 3), the hydrogen bonds O2—H02⋯O3 and O3—H03⋯O4(−x + 3, y + , −z + 1 for both) combine via the 21 screw axis to form ribbons of molecules parallel to the b axis. The ribbons lie in layers roughly parallel to (105). The OH group at C16 is directed away from its layer to form contacts to the neighbouring layer.
A second, two-dimensional, ) is based on the remaining three hydrogen bonds (of the types O—H⋯N and N—H⋯O), and connects the molecules first by translation (both O—H⋯N hydrogen bonds; x + 1, y − 1, z) to form chains parallel to (10) (horizontal in the Figure), and secondly by a-axis translation (the N—H⋯O hydrogen bond; x − 1, y, z). The overall effect is to create layers parallel to the ab plane.
(Fig. 4The contact O5—H05⋯N3(x + 1, y − 1, z) may be regarded as the second, weaker, branch of a three-centre interaction, but this contact is omitted from the packing diagrams for clarity. Similarly, the two C—H⋯S interactions are probably interpretable as `weak' hydrogen bonds, but we do not discuss their structural role in detail.
4. Database survey
The search employed the routine ConQuest (Bruno et al., 2002), part of Version 2022.3.0 of the Cambridge Structural Database (Groom et al., 2016). We searched for pyranose sugars attached by a sulfur atom to heterocycles containing more than one heteroatom (a larger subset of hits was edited by hand). The six structures thus found were derivatives of 1,2,4-triazole (refcode HEKPUL; El Ashry et al., 2018), 1,3,4-oxadiazole (IZAJEY; Qiu & Xu, 2004), benzoxazole (JIPYUD and JIPZAK; Kamat et al., 2007), 1,3,5-oxathiazole, involving a spiro junction at the sugar C1 atom (PIWVIA; Praly et al., 1994) and 1,3,4-thiadiazole (SASXIU; Qiu et al., 2005). In all except PIWVIA, the sugar OH groups were substituted with ester functions. The structure SASXIU, despite having the same heterocycle as 6, (but with a 2-phenyl substituent), has a markedly different relative orientation of the glucose and heterocyclic rings, with a torsion angle Cgluc—Sgluc—Chetero—Shetero of 78.10 (10)° compared to the value of 18.65 (13)° for 6.
5. Synthesis and crystallization
Preparation of intermediate 4: A solution of 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide (3) (10 mmol) in dry DMF (15 mL) was added dropwise over 30 min to a solution of the potassium thiolate 2 (10 mmol) in 20 mL of DMF. The reaction mixture was stirred at room temperature until completion (monitored by TLC), then the mixture was poured into ice–water, and the resulting precipitate was collected by filtration, dried, and crystallized from ethanol to give the acetylated glucoside 4.
N·B.: The NMR data, as given here and in Section 1, refer to sugar numbering C1′–C6′, which is different from the crystallographic numbering of the glucose moiety in 6 (C11–C16).
White powder (EtOH); yield 93%; m.p. 479–481 K; IR (cm−1): υ 3360 (NH), 2949 (CH3), 1741 (C=O); 1H NMR (400 MHz, DMSO-d6): δ 1.91–2.05 (4s, 12H, 4 × OAc), 2.27 (s, 3H, CH3), 4.07–4.19 (m, 3H, H-6′, H-6′′, H-5′), 4.90–4.98 (m, 2H, H-4′, H-2′), 5.39 (t-like, 1H, J = 10.8 Hz, H-3′), 5.40 (d, 1H, J1′–2′ = 7.1 Hz, H-1′), 7.16 (d, 2H, J = 8.0 Hz, Ar-H), 7.46 (d, 2H, J = 7.2 Hz, Ar-H), 10.45 (s, D2O exchangeable, 1H, NH); 13C NMR (100 MHz, DMSO-d6): δ 20.70, 20.81, 20.90 (5 × CH3), 62.20 (C-6′), 68.23 (C-4′), 70.04 (C-2′), 73.14 (C-3′), 75.17 (C-5′), 82.99 (C-1′), 118.35 (2C, Ar-C), 130.05 (2C, Ar-C), 131.99 (Ar-C), 138.30 (Ar-C), 145.21 (C-2), 167.88 (C-5), 169.50, 169.74, 169.98, 170.48 (4C=O). Analysis calculated for C23H27N3O9S2 (553.61): C 49.90, H 4.92, N 7.59, S 11.58. Found: C 49.82, H 4.81, N 7.52, S 11.46%.
Preparation of title compound 6: In a 50 mL flask, the tetraacetylated glucoside derivative 4 (0.01 mol) was dissolved in 20 mL of dry methanol, and then ammonia gas was passed through the solution at 273 K for 10 min. The mixture was then stirred until the reaction was complete (monitored by TLC using chloroform/methanol 9:1). The solution was concentrated under reduced pressure to afford a solid residue, which was washed several times with boiling chloroform. The residue was dried, purified and recrystallized from ethanol to give the corresponding free glucoside 6.
Colourless crystals (EtOH); yield 62%; m.p. 472–474 K; IR (cm−1): ν 3271 (OH), 2921 (CH); 1H NMR (400 MHz, DMSO-d6): δ 2.25 (s, 3H, CH3), 3.11–3.22 (m, 2H, H-6′, H-6′′), 3.23–3.29 (m, 2H, H-5′, H-4′), 3.49–3.56 (m, 1H, H-3′), 3.71–3.76 (m, 1H, H-2′), 4.59 (t, 1H, JOH–H-6′′ = 3.6 Hz, D2O-exchangeable, 6′′-OH), 4.72 (d, 1H, J1′-2′ = 10.8 Hz, H-1′), 5.05 (d, 1H, J = 6.4 Hz, D2O-exchangeable, OH), 5.17 (d, 1H, J = 6.4 Hz, D2O-exchangeable, OH), 5.53 (d, 1H, J = 8.0 Hz, D2O-exchangeable, OH), 7.14 (d, 2H, J = 11.2 Hz, Ar-H), 7.47 (d, 2H, J = 12.4 Hz, Ar-H), 10.32 (s, D2O exch., 1H, NH); 13C NMR (100 MHz, DMSO-d6): δ 20.82 (CH3), 61.34 (C-6′), 70.00 (C-4′), 73.07 (C-2′), 78.32 (C-3′), 81.42 (C-5′), 86.89 (C-1′), 117.98 (2C, Ar-C), 129.96 (2C, Ar-C), 131.33 (Ar-C), 138.50 (Ar-C), 150.03 (C-2), 166.90 (C-5). Analysis calculated for C15H19N3O5S2 (385.08): C 46.75, H 4.94, N 10.91, S 16.62. Found: C 46.6, H 4.8, N 10.9, S 16.5%.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms of the NH and OH groups were refined freely, the latter however with O—H distances restrained to be approximately equal (command SADI). The methyl group was included as an idealized rigid group allowed to rotate but not tip (C—H = 0.98 Å, H—C—H = 109.5°). Other hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic 0.95 Å, C—Hmethine 1.00 Å, C—Hmethylene 0.99 Å). The U(H) values were fixed at 1.5 × Ueq of the parent carbon atoms for the methyl group and 1.2 × Ueq for other hydrogens. An extinction correction was performed; the extinction parameter as defined by Sheldrick (2015a) refined to 0.0009 (3). The (corresponding to D-glucose) was confirmed by the of −0.006 (5).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2269285
https://doi.org/10.1107/S2056989023005248/yz2035sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023005248/yz2035Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989023005248/yz2035Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2021); cell
CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015a); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015a).C15H19N3O5S2 | F(000) = 404 |
Mr = 385.45 | Dx = 1.507 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54184 Å |
a = 6.23840 (6) Å | Cell parameters from 61296 reflections |
b = 7.4355 (1) Å | θ = 2.4–77.5° |
c = 18.32032 (17) Å | µ = 3.14 mm−1 |
β = 91.4183 (8)° | T = 100 K |
V = 849.54 (2) Å3 | Plate, colourless |
Z = 2 | 0.10 × 0.08 × 0.02 mm |
XtaLAB Synergy diffractometer | 3520 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 3502 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.030 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 77.3°, θmin = 2.4° |
ω scans | h = −7→7 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | k = −9→8 |
Tmin = 0.851, Tmax = 1.000 | l = −23→23 |
70354 measured reflections |
Refinement on F2 | H atoms treated by a mixture of independent and constrained refinement |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0289P)2 + 0.2573P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.019 | (Δ/σ)max < 0.001 |
wR(F2) = 0.050 | Δρmax = 0.30 e Å−3 |
S = 1.03 | Δρmin = −0.21 e Å−3 |
3520 reflections | Extinction correction: SHELXL-2018/3 (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
248 parameters | Extinction coefficient: 0.0009 (3) |
7 restraints | Absolute structure: Flack x determined using 1554 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: dual | Absolute structure parameter: −0.006 (5) |
Hydrogen site location: mixed |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 3.7080 (0.0039) x + 2.0545 (0.0042) y + 13.5622 (0.0105) z = 13.7691 (0.0045) * 0.0205 (0.0007) S1 * -0.0130 (0.0010) C2 * -0.0030 (0.0011) N3 * 0.0244 (0.0010) N4 * -0.0289 (0.0010) C5 -0.1014 (0.0026) N1 0.0173 (0.0026) S2 Rms deviation of fitted atoms = 0.0201 3.4518 (0.0038) x + 1.0131 (0.0062) y + 14.7993 (0.0080) z = 13.9365 (0.0076) Angle to previous plane (with approximate esd) = 9.200 ( 0.107 ) * 0.0048 (0.0012) C21 * -0.0074 (0.0013) C22 * 0.0034 (0.0013) C23 * 0.0035 (0.0014) C24 * -0.0062 (0.0014) C25 * 0.0020 (0.0013) C26 0.0546 (0.0026) N1 0.0234 (0.0033) C27 Rms deviation of fitted atoms = 0.0049 3.6049 (0.0167) x + 0.8656 (0.1231) y + 14.5324 (0.0137) z = 13.6402 (0.0694) Angle to previous plane (with approximate esd) = 1.978 ( 0.397 ) * 0.0000 (0.0000) H01 * 0.0000 (0.0000) C5 * 0.0000 (0.0000) C21 0.0965 (0.0103) N1 Rms deviation of fitted atoms = 0.0000 |
x | y | z | Uiso*/Ueq | ||
S1 | 0.68679 (6) | 0.56520 (6) | 0.74337 (2) | 0.01368 (10) | |
C2 | 0.7401 (3) | 0.7619 (2) | 0.69652 (9) | 0.0141 (4) | |
N3 | 0.6138 (2) | 0.8948 (2) | 0.71166 (8) | 0.0164 (3) | |
N4 | 0.4594 (2) | 0.8505 (2) | 0.76262 (8) | 0.0164 (3) | |
C5 | 0.4713 (3) | 0.6807 (3) | 0.78116 (9) | 0.0141 (3) | |
C11 | 1.0267 (2) | 0.5674 (3) | 0.61331 (9) | 0.0129 (3) | |
H11 | 0.908249 | 0.505970 | 0.585259 | 0.015* | |
C12 | 1.2263 (3) | 0.5825 (3) | 0.56692 (9) | 0.0125 (3) | |
H12 | 1.336334 | 0.656908 | 0.593626 | 0.015* | |
C13 | 1.3196 (3) | 0.3958 (3) | 0.55237 (9) | 0.0132 (3) | |
H13 | 1.225617 | 0.331025 | 0.516019 | 0.016* | |
C14 | 1.3421 (3) | 0.2844 (3) | 0.62159 (9) | 0.0129 (3) | |
H14 | 1.457744 | 0.336867 | 0.653816 | 0.015* | |
C15 | 1.1297 (3) | 0.2862 (3) | 0.66200 (9) | 0.0135 (3) | |
H15 | 1.014260 | 0.235018 | 0.629328 | 0.016* | |
C16 | 1.1351 (3) | 0.1833 (3) | 0.73351 (10) | 0.0159 (3) | |
H16A | 1.005890 | 0.214160 | 0.761185 | 0.019* | |
H16B | 1.129897 | 0.052814 | 0.722861 | 0.019* | |
O1 | 1.07795 (19) | 0.47115 (17) | 0.67845 (7) | 0.0135 (3) | |
O2 | 1.1689 (2) | 0.66863 (19) | 0.50027 (7) | 0.0153 (3) | |
H02 | 1.264 (4) | 0.740 (4) | 0.4908 (15) | 0.038 (8)* | |
O3 | 1.52906 (19) | 0.41758 (19) | 0.52349 (7) | 0.0168 (3) | |
H03 | 1.522 (4) | 0.482 (4) | 0.4857 (13) | 0.029 (7)* | |
O4 | 1.3989 (2) | 0.10451 (18) | 0.60228 (7) | 0.0162 (3) | |
H04 | 1.471 (4) | 0.067 (4) | 0.6365 (12) | 0.030 (7)* | |
O5 | 1.3225 (2) | 0.22073 (19) | 0.77822 (7) | 0.0178 (3) | |
H05 | 1.382 (4) | 0.122 (3) | 0.7831 (14) | 0.032 (8)* | |
N1 | 0.3417 (2) | 0.5861 (2) | 0.82558 (8) | 0.0156 (3) | |
H01 | 0.353 (4) | 0.473 (4) | 0.8230 (13) | 0.020 (6)* | |
C21 | 0.1567 (3) | 0.6454 (3) | 0.86130 (9) | 0.0154 (3) | |
C22 | 0.0393 (3) | 0.5129 (3) | 0.89691 (10) | 0.0191 (4) | |
H22 | 0.082328 | 0.390608 | 0.894194 | 0.023* | |
C23 | −0.1396 (3) | 0.5595 (3) | 0.93618 (10) | 0.0221 (4) | |
H23 | −0.216466 | 0.468512 | 0.960842 | 0.027* | |
C24 | −0.2085 (3) | 0.7375 (3) | 0.94008 (11) | 0.0220 (4) | |
C25 | −0.0925 (3) | 0.8667 (3) | 0.90351 (11) | 0.0230 (4) | |
H25 | −0.138366 | 0.988413 | 0.905038 | 0.028* | |
C26 | 0.0901 (3) | 0.8234 (3) | 0.86446 (10) | 0.0195 (4) | |
H26 | 0.167780 | 0.914713 | 0.840330 | 0.023* | |
S2 | 0.94984 (6) | 0.79473 (6) | 0.63645 (2) | 0.01473 (10) | |
C27 | −0.4029 (3) | 0.7886 (4) | 0.98327 (13) | 0.0322 (5) | |
H27A | −0.533285 | 0.765916 | 0.953762 | 0.048* | |
H27B | −0.395250 | 0.916469 | 0.996023 | 0.048* | |
H27C | −0.406140 | 0.716487 | 1.028010 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01271 (18) | 0.0111 (2) | 0.01736 (19) | 0.00212 (16) | 0.00360 (13) | 0.00076 (16) |
C2 | 0.0134 (8) | 0.0129 (10) | 0.0161 (8) | 0.0005 (6) | 0.0007 (6) | −0.0002 (7) |
N3 | 0.0159 (7) | 0.0146 (8) | 0.0188 (7) | 0.0029 (6) | 0.0043 (6) | 0.0020 (6) |
N4 | 0.0147 (7) | 0.0164 (8) | 0.0183 (7) | 0.0024 (6) | 0.0050 (6) | 0.0016 (6) |
C5 | 0.0127 (8) | 0.0155 (9) | 0.0140 (8) | 0.0021 (7) | 0.0004 (6) | −0.0013 (7) |
C11 | 0.0123 (7) | 0.0115 (8) | 0.0149 (7) | 0.0006 (7) | 0.0020 (6) | 0.0008 (7) |
C12 | 0.0122 (7) | 0.0120 (8) | 0.0133 (7) | 0.0005 (7) | 0.0016 (5) | 0.0015 (7) |
C13 | 0.0114 (8) | 0.0139 (9) | 0.0145 (8) | 0.0002 (6) | 0.0031 (6) | −0.0006 (7) |
C14 | 0.0141 (7) | 0.0103 (8) | 0.0145 (7) | 0.0010 (7) | 0.0031 (6) | 0.0000 (7) |
C15 | 0.0140 (7) | 0.0103 (8) | 0.0163 (7) | 0.0011 (7) | 0.0034 (6) | −0.0013 (7) |
C16 | 0.0154 (8) | 0.0153 (9) | 0.0174 (8) | 0.0007 (7) | 0.0033 (6) | 0.0017 (7) |
O1 | 0.0160 (6) | 0.0102 (6) | 0.0144 (6) | 0.0027 (5) | 0.0040 (4) | 0.0010 (5) |
O2 | 0.0146 (6) | 0.0151 (7) | 0.0162 (6) | −0.0009 (5) | 0.0017 (4) | 0.0053 (5) |
O3 | 0.0147 (6) | 0.0166 (7) | 0.0194 (6) | 0.0030 (5) | 0.0074 (5) | 0.0049 (5) |
O4 | 0.0202 (6) | 0.0122 (7) | 0.0163 (6) | 0.0046 (5) | 0.0039 (5) | 0.0000 (5) |
O5 | 0.0211 (7) | 0.0135 (7) | 0.0188 (6) | 0.0027 (5) | −0.0010 (5) | 0.0006 (5) |
N1 | 0.0149 (7) | 0.0127 (9) | 0.0193 (7) | 0.0012 (6) | 0.0035 (5) | 0.0009 (6) |
C21 | 0.0120 (8) | 0.0208 (10) | 0.0136 (7) | 0.0020 (7) | 0.0007 (6) | −0.0009 (7) |
C22 | 0.0177 (8) | 0.0202 (10) | 0.0195 (8) | 0.0008 (7) | 0.0013 (7) | 0.0005 (7) |
C23 | 0.0157 (8) | 0.0301 (11) | 0.0207 (8) | −0.0037 (9) | 0.0038 (6) | 0.0027 (9) |
C24 | 0.0141 (8) | 0.0309 (12) | 0.0211 (9) | 0.0000 (7) | 0.0035 (7) | −0.0081 (8) |
C25 | 0.0197 (9) | 0.0225 (11) | 0.0271 (10) | 0.0042 (8) | 0.0049 (8) | −0.0046 (8) |
C26 | 0.0177 (8) | 0.0194 (11) | 0.0217 (8) | 0.0012 (7) | 0.0046 (7) | 0.0001 (8) |
S2 | 0.01492 (19) | 0.0101 (2) | 0.01939 (19) | 0.00117 (15) | 0.00557 (14) | 0.00078 (16) |
C27 | 0.0195 (9) | 0.0386 (13) | 0.0389 (11) | −0.0030 (10) | 0.0112 (8) | −0.0133 (11) |
S1—C2 | 1.7322 (19) | C16—O5 | 1.438 (2) |
S1—C5 | 1.7525 (18) | C16—H16A | 0.9900 |
C2—N3 | 1.298 (2) | C16—H16B | 0.9900 |
C2—S2 | 1.7473 (17) | O2—H02 | 0.82 (2) |
N3—N4 | 1.397 (2) | O3—H03 | 0.84 (2) |
N4—C5 | 1.309 (3) | O4—H04 | 0.81 (2) |
C5—N1 | 1.358 (2) | O5—H05 | 0.83 (2) |
C11—O1 | 1.421 (2) | N1—C21 | 1.411 (2) |
C11—C12 | 1.529 (2) | N1—H01 | 0.84 (3) |
C11—S2 | 1.811 (2) | C21—C26 | 1.389 (3) |
C11—H11 | 1.0000 | C21—C22 | 1.398 (3) |
C12—O2 | 1.417 (2) | C22—C23 | 1.387 (3) |
C12—C13 | 1.531 (3) | C22—H22 | 0.9500 |
C12—H12 | 1.0000 | C23—C24 | 1.394 (3) |
C13—O3 | 1.4311 (19) | C23—H23 | 0.9500 |
C13—C14 | 1.518 (2) | C24—C25 | 1.386 (3) |
C13—H13 | 1.0000 | C24—C27 | 1.513 (2) |
C14—O4 | 1.431 (2) | C25—C26 | 1.397 (2) |
C14—C15 | 1.534 (2) | C25—H25 | 0.9500 |
C14—H14 | 1.0000 | C26—H26 | 0.9500 |
C15—O1 | 1.446 (2) | C27—H27A | 0.9800 |
C15—C16 | 1.517 (2) | C27—H27B | 0.9800 |
C15—H15 | 1.0000 | C27—H27C | 0.9800 |
C2—S1—C5 | 86.59 (9) | O5—C16—C15 | 113.27 (15) |
N3—C2—S1 | 114.31 (13) | O5—C16—H16A | 108.9 |
N3—C2—S2 | 119.74 (14) | C15—C16—H16A | 108.9 |
S1—C2—S2 | 125.88 (10) | O5—C16—H16B | 108.9 |
C2—N3—N4 | 113.29 (16) | C15—C16—H16B | 108.9 |
C5—N4—N3 | 111.44 (15) | H16A—C16—H16B | 107.7 |
N4—C5—N1 | 128.67 (17) | C11—O1—C15 | 110.51 (13) |
N4—C5—S1 | 114.15 (14) | C12—O2—H02 | 108 (2) |
N1—C5—S1 | 117.17 (15) | C13—O3—H03 | 109.9 (19) |
O1—C11—C12 | 109.56 (13) | C14—O4—H04 | 106 (2) |
O1—C11—S2 | 109.19 (11) | C16—O5—H05 | 104 (2) |
C12—C11—S2 | 106.59 (13) | C5—N1—C21 | 128.45 (18) |
O1—C11—H11 | 110.5 | C5—N1—H01 | 115.6 (16) |
C12—C11—H11 | 110.5 | C21—N1—H01 | 113.9 (17) |
S2—C11—H11 | 110.5 | C26—C21—C22 | 119.40 (17) |
O2—C12—C11 | 108.70 (13) | C26—C21—N1 | 124.47 (17) |
O2—C12—C13 | 110.40 (13) | C22—C21—N1 | 116.11 (17) |
C11—C12—C13 | 110.38 (15) | C23—C22—C21 | 120.26 (19) |
O2—C12—H12 | 109.1 | C23—C22—H22 | 119.9 |
C11—C12—H12 | 109.1 | C21—C22—H22 | 119.9 |
C13—C12—H12 | 109.1 | C22—C23—C24 | 121.12 (19) |
O3—C13—C14 | 107.70 (13) | C22—C23—H23 | 119.4 |
O3—C13—C12 | 108.45 (14) | C24—C23—H23 | 119.4 |
C14—C13—C12 | 112.14 (14) | C25—C24—C23 | 117.89 (17) |
O3—C13—H13 | 109.5 | C25—C24—C27 | 120.9 (2) |
C14—C13—H13 | 109.5 | C23—C24—C27 | 121.2 (2) |
C12—C13—H13 | 109.5 | C24—C25—C26 | 122.0 (2) |
O4—C14—C13 | 108.79 (13) | C24—C25—H25 | 119.0 |
O4—C14—C15 | 110.46 (15) | C26—C25—H25 | 119.0 |
C13—C14—C15 | 109.59 (13) | C21—C26—C25 | 119.31 (18) |
O4—C14—H14 | 109.3 | C21—C26—H26 | 120.3 |
C13—C14—H14 | 109.3 | C25—C26—H26 | 120.3 |
C15—C14—H14 | 109.3 | C2—S2—C11 | 102.94 (8) |
O1—C15—C16 | 107.46 (13) | C24—C27—H27A | 109.5 |
O1—C15—C14 | 107.97 (14) | C24—C27—H27B | 109.5 |
C16—C15—C14 | 114.29 (14) | H27A—C27—H27B | 109.5 |
O1—C15—H15 | 109.0 | C24—C27—H27C | 109.5 |
C16—C15—H15 | 109.0 | H27A—C27—H27C | 109.5 |
C14—C15—H15 | 109.0 | H27B—C27—H27C | 109.5 |
C5—S1—C2—N3 | 2.54 (14) | O1—C15—C16—O5 | −74.18 (17) |
C5—S1—C2—S2 | 179.52 (13) | C14—C15—C16—O5 | 45.6 (2) |
S1—C2—N3—N4 | −0.4 (2) | C12—C11—O1—C15 | −66.50 (18) |
S2—C2—N3—N4 | −177.57 (12) | S2—C11—O1—C15 | 177.11 (10) |
C2—N3—N4—C5 | −3.0 (2) | C16—C15—O1—C11 | −168.02 (13) |
N3—N4—C5—N1 | −175.82 (17) | C14—C15—O1—C11 | 68.24 (16) |
N3—N4—C5—S1 | 4.95 (19) | N4—C5—N1—C21 | 2.2 (3) |
C2—S1—C5—N4 | −4.30 (14) | S1—C5—N1—C21 | −178.54 (14) |
C2—S1—C5—N1 | 176.37 (14) | C5—N1—C21—C26 | −9.0 (3) |
O1—C11—C12—O2 | 176.33 (14) | C5—N1—C21—C22 | 172.65 (16) |
S2—C11—C12—O2 | −65.64 (15) | C26—C21—C22—C23 | −1.2 (3) |
O1—C11—C12—C13 | 55.11 (18) | N1—C21—C22—C23 | 177.18 (16) |
S2—C11—C12—C13 | 173.14 (11) | C21—C22—C23—C24 | 1.1 (3) |
O2—C12—C13—O3 | 72.56 (16) | C22—C23—C24—C25 | −0.1 (3) |
C11—C12—C13—O3 | −167.24 (13) | C22—C23—C24—C27 | −179.64 (18) |
O2—C12—C13—C14 | −168.64 (13) | C23—C24—C25—C26 | −0.9 (3) |
C11—C12—C13—C14 | −48.44 (18) | C27—C24—C25—C26 | 178.71 (19) |
O3—C13—C14—O4 | −69.37 (17) | C22—C21—C26—C25 | 0.3 (3) |
C12—C13—C14—O4 | 171.39 (13) | N1—C21—C26—C25 | −177.94 (17) |
O3—C13—C14—C15 | 169.77 (14) | C24—C25—C26—C21 | 0.7 (3) |
C12—C13—C14—C15 | 50.53 (19) | N3—C2—S2—C11 | −164.51 (14) |
O4—C14—C15—O1 | −178.61 (13) | S1—C2—S2—C11 | 18.65 (13) |
C13—C14—C15—O1 | −58.76 (17) | O1—C11—S2—C2 | −55.86 (12) |
O4—C14—C15—C16 | 61.89 (19) | C12—C11—S2—C2 | −174.12 (11) |
C13—C14—C15—C16 | −178.26 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H02···O3i | 0.82 (2) | 1.87 (2) | 2.6846 (19) | 174 (3) |
O3—H03···O4i | 0.84 (2) | 1.93 (2) | 2.7375 (18) | 161 (3) |
O4—H04···N3ii | 0.81 (2) | 2.06 (2) | 2.848 (2) | 162 (3) |
O5—H05···N4ii | 0.83 (2) | 2.11 (2) | 2.899 (2) | 159 (3) |
O5—H05···N3ii | 0.83 (2) | 2.60 (2) | 3.282 (2) | 141 (2) |
N1—H01···O5iii | 0.84 (3) | 2.05 (3) | 2.853 (2) | 158 (2) |
C14—H14···S1iv | 1.00 | 2.74 | 3.7044 (18) | 163 |
C15—H15···O2v | 1.00 | 2.66 | 3.577 (2) | 153 |
C11—H11···O3iii | 1.00 | 2.68 | 3.652 (2) | 164 |
C16—H16B···S2vi | 0.99 | 2.71 | 3.570 (2) | 145 |
Symmetry codes: (i) −x+3, y+1/2, −z+1; (ii) x+1, y−1, z; (iii) x−1, y, z; (iv) x+1, y, z; (v) −x+2, y−1/2, −z+1; (vi) x, y−1, z. |
Acknowledgements
The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.
References
Abdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2022). IUCrData, 7, x220332. Google Scholar
Abu-Zaied, M. A., Elgemeie, G. H. & Jones, P. G. (2019). Acta Cryst. E75, 1820–1823. Web of Science CSD CrossRef IUCr Journals Google Scholar
Abu-Zaied, M. A., El-Telbani, E. M., Elgemeie, G. H. & Nawwar, G. A. (2011). Eur. J. Med. Chem. 46, 229–235. Web of Science CAS PubMed Google Scholar
Azzam, R. A., Elgemeie, G. H., Elsayed, R. E., Gad, N. M. & Jones, P. G. (2022b). Acta Cryst. E78, 369–372. Web of Science CSD CrossRef IUCr Journals Google Scholar
Azzam, R. A., Elgemeie, G. H., Gad, N. M. & Jones, P. G. (2022a). IUCrData, 7, x220412. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
El Ashry, E. S. H., Awad, L. F., Al Moaty, M. N. A., Ghabbour, H. A. & Barakat, A. (2018). J. Mol. Struct. 1152, 87–95. Web of Science CSD CrossRef CAS Google Scholar
Elgemeie, G. H., Abu-Zaied, M. A. & Loutfy, S. A. (2017a). Tetrahedron, 73, 5853–5861. Web of Science CrossRef CAS Google Scholar
Elgemeie, G. H., Abu-Zaied, M. A. & Nawwar, G. A. (2018). Nucleosides Nucleotides Nucleic Acids, 37, 112–123. Web of Science CrossRef CAS PubMed Google Scholar
Elgemeie, G. H., Abu-Zaied, M. & Azzam, R. (2016). Nucleosides Nucleotides Nucleic Acids, 35, 211–222. Web of Science CrossRef CAS PubMed Google Scholar
Elgemeie, G. H. & Mohamed-Ezzat, R. A. (2022a). New Strategies Targeting Cancer Metabolism, edited by G. H. Elgemeie & R. A. Mohamed-Ezzat, pp. 221–301. Amsterdam: Elesevier. https://doi.org/10.1016/B978-0-12-821783-2.00002-9. Google Scholar
Elgemeie, G. H. & Mohamed-Ezzat, R. A. (2022b). New Strategies Targeting Cancer Metabolism, edited by G. H. Elgemeie & R. A. Mohamed-Ezzat, pp. 303–392. Amsterdam: Elesevier. https://doi.org/10.1016/B978-0-12-821783-2.00010-8. Google Scholar
Elgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017b). Nucleosides Nucleotides Nucleic Acids, 36, 139–150. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hammad, S. F., Masoud, D. M., Elgemeie, G. H. & Jones, P. G. (2018). Acta Cryst. E74, 853–856. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hebishy, A. M. S., Elgemeie, G. H., Ali, R. A. E. & Jones, P. G. (2022). Acta Cryst. E78, 638–641. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kamat, M. N., Rath, N. P. & Demchenko, A. V. (2007). J. Org. Chem. 72, 6938–6946. Web of Science CSD CrossRef PubMed CAS Google Scholar
Khedr, M. A., Zaghary, W. A., Elsherif, G. E., Azzam, R. A. & Elgemeie, G. H. (2022). Nucleosides Nucleotides Nucleic Acids, 41, 643–670. Web of Science CrossRef CAS PubMed Google Scholar
Khedr, M. A., Zaghary, W. A., Elsherif, G. E., Azzam, R. A. & Elgemeie, G. H. (2022). Nucleosides Nucleotides Nucleic Acids, 41, 643–670. Web of Science CrossRef CAS PubMed Google Scholar
Lopes, J. P. B., Silva, L. & Ludtke, D. S. (2021). Med. Chem. 12, 2001–2015. CAS Google Scholar
Masoud, D. M., Hammad, S. F., Elgemeie, G. H. & Jones, P. G. (2017). Acta Cryst. E73, 1751–1754. Web of Science CSD CrossRef IUCr Journals Google Scholar
Matysiak, J. (2015). Mini Rev. Med. Chem. 15, 762–775. Web of Science CrossRef CAS PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Praly, J.-P., Faure, R., Joseph, B., Kiss, L. & Rollin, P. (1994). Tetrahedron, 50, 6559–6568. CSD CrossRef Web of Science Google Scholar
Qiu, Z.-Z., Hui, X.-P. & Xu, P.-F. (2005). Acta Cryst. C61, o475–o476. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Qiu, Z.-Z. & Xu, P.-F. (2004). Acta Cryst. E60, o1365–o1366. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Scala, S., Akhmed, K., Rao, U. S., Paull, K., Lan, L., Dickstein, B., Lee, J., Elgemeie, G. H., Stein, W. D. & Bates, S. E. (1997). Mol. Pharmacol. 51, 1024–1033. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA. Google Scholar
Sun, J., Yang, Y., Li, W., Zhang, Y., Wang, X., Tang, J. & Zhu, H. (2011). Bioorg. Med. Chem. Lett. 21, 6116–6121. Web of Science CrossRef CAS PubMed Google Scholar
Yang, X., Wen, Q., Zhao, T., Sun, J., Li, X., Xing, M., Lu, X. & Zhu, H. (2012). Bioorg. Med. Chem. 20, 1181–1187. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.