research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of tert-butyl 4-[4-(di­fluoro­meth­­oxy)phen­yl]-2,7,7-tri­methyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate

crossmark logo

aDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Türkiye, bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Karadeniz Technical University, 61000 Trabzon, Türkiye, cDepartment of Physics, Faculty of Science, Eskisehir Technical University, Yunus Emre Campus 26470 Eskisehir, Türkiye, dDepartment of Physics, Faculty of Science, Erciyes University, 38039 Kayseri, Türkiye, eDepartment of Chemistry, Howard University, Washington DC 20059, USA, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 22 May 2023; accepted 21 June 2023; online 30 June 2023)

The 1,4-di­hydro­pyridine ring of the title compound, C24H29F2NO4, adopts a distorted boat conformation, while the cyclo­hexene ring is in an almost twist-boat conformation. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds as well as C—H⋯π inter­actions connect mol­ecules, forming layers parallel to the (100) plane. These layers are linked by van der Waals forces and C—H⋯F inter­actions, which consolidate the crystal structure. Hirshfeld surface analysis shows the major contributions to the crystal packing are from H⋯H (54.1%), F⋯H/H⋯F (16.9%), O⋯H/H⋯O (15.4%) and C⋯H/H⋯C (12.6%) contacts.

1. Chemical context

Inflammation is the natural and basic response of an organism to signals from tissue damage or pathogenic infections. In this way, the integrity of the organism is preserved. Chronic diseases that cause death and economic losses in the world are constantly increasing. It has been found that chronic diseases occur through inflammation-mediated mechanisms. In recent years, it has been proven that cardiovascular diseases, cancer, diabetes mellitus, chronic kidney disease, non-alcoholic fatty liver disease, autoimmune and neurodegenerative diseases are caused by inflammation. In this context, managing inflammatory mediators and inflammatory processes can be a treatment method for many chronic diseases (Furman et al., 2019[Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., Ferrucci, L., Gilroy, D. W., Fasano, A., Miller, G. W., Miller, A. H., Mantovani, A., Weyand, C. M., Barzilai, N., Goronzy, J. J., Rando, T. A., Effros, R. B., Lucia, A., Kleinstreuer, N. & Slavich, G. M. (2019). Nat. Med. 25, 1822-1832.]; Tu et al., 2022[Tu, Z., Zhong, Y., Hu, H., Shao, D., Haag, R., Schirner, M., Lee, J., Sullenger, B. & Leong, K. W. (2022). Nat. Rev. Mater. 557-574.]).

Chronic or local inflammation first occurs with the activation of immune system cells such as cytokines, proteases, chemokines, oxygen-independent radicals, which generate signals from damaged cells or pathogens that are dangerous to the tissue. The immune system cells released in the circulatory system increase the pro-inflammatory response and reach the infected tissue area, but if this response is insufficient or excessive, the balance of the immune system is disturbed. This imbalance causes an excessive amount of distress signals and local or systemic tissue damage. This defect in the immune response causes the inflammation to change from acute to chronic, and the disease progresses and results in death. A better understanding of inflammation and its processes enables the discovery of new and effective therapeutic ways to target and regulate inflammation. Drug therapy is widely used for the treatment of inflammation. Therefore, there is a need for new mol­ecules that are more active and have minimal side effects (Tu et al., 2022[Tu, Z., Zhong, Y., Hu, H., Shao, D., Haag, R., Schirner, M., Lee, J., Sullenger, B. & Leong, K. W. (2022). Nat. Rev. Mater. 557-574.]). The 1,4-DHP ring, which is a partially saturated derivative of the pyridine ring, is involved in the structure of many bioactive compounds. Nifedipine, which has a 1,4-DHP structure, was introduced as an anti­hypertensive treatment about 50 years ago (Fig. 1[link]). The therapeutic success of nifedipine has led to the preparation of analogue derivatives. In this ongoing process, various compounds such as amlodipine and benidipine, which have a 1,4-DHP structure, are used as antihypertensives. Studies have shown that the 1,4-DHP ring has various activities such as neuroprotective, anti­platelet, anti-ischemic, anti-Alzheimer's, anti­tuberculer, anti­ulcer and anti­cancer (Khot et al., 2021[Khot, S., Auti, P. B. & Khedkar, S. A. (2021). Mini Rev. Med. Chem. 21, 135-149.]; Abdelwahab et al., 2022[Elwahy, A. H. M., Eid, E. M., Abdel-Latif, S. A., Hassaneen, H. M. E. & Abdelhamid, I. A. (2022). Polycyclic Aromat. Compd. pp. 1-30.]).

[Figure 1]
Figure 1
Structure of nifedipine.

The hexa­hydro­quinoline ring system is obtained by condensing 1,4-DHP with cyclo­hexane. This ring system also has a variety of pharmacological activities such as calcium channel antagonist, anti­cancer, anti­microbial, anti-Alzheim­er's. In current studies, 1,4-DHP derivatives and condensed analogues were found to be effective inflammation mediators of chronic inflammation in addition to their various biological activities.

[Scheme 1]

In this study, the title compound, tert-butyl 4-[4-(di­fluoro­meth­oxy)phen­yl]-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate was obtained by using modified Hantzsch one-pot synthesis (Ghosh et al., 2013[Ghosh, S., Saikh, F., Das, J. & Pramanik, A. K. (2013). Tetrahedron Lett. 54, 58-62.]). The reaction of 4-di­fluoro­meth­oxy­benzaldehyde with 5,5-di­methyl­cyclo­hexane-1,3-dione and tert-butyl aceto­acetate gives the target compound in methanol in the presence of ammonium acetate as nitro­gen source (Çetin et al., 2022[Çetin, G., Çetin, B., Çolak, B., Aşan, M., Birlik Demirel, G., Cansaran-Duman, D., Akçelik, N. & Şimşek, R. (2022). J. Res. Pharm. 26, 219-230.]). The structure of the compound was elucidated by IR, 1H-NMR, 13C-NMR and HRMS analysis. X-ray analysis was undertaken to determine the crystal structure. Biological activity tests will be conducted in independent studies to determine the inhibition potential of inflammation mediators.

2. Structural commentary

As seen in Fig. 2[link], the 1,4-di­hydro­pyridine ring (N1/C1/C6–C9) of the title compound adopts a distorted boat conformation [puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) are QT = 0.2940 (18) Å, θ = 72.1 (4)° and φ = 182.9 (4)°], while the cyclo­hexene ring (C1–C6) has an almost twist-boat conformation [puckering parameters are QT = 0.4617 (19) Å, θ = 124.5 (2)° and φ = 313.8 (3)°]. The 4-[4-(di­fluoro­meth­oxy]phenyl ring (C18–C23) makes a dihedral angle of 89.88 (7)° with the mean plane of the quinoline ring system [N1/C1–C9; maximum deviation = 0.358 (2) Å for C4]. The geometrical parameters of the title compound are in agreement with those reported for similar compounds in the Database survey section.

[Figure 2]
Figure 2
View of the title mol­ecule. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

The mol­ecules in the crystal are connected by N—H⋯O and C—H⋯O hydrogen bonds, as well as C—H⋯π inter­actions, resulting in the formation of layers parallel to the (100) plane (see Table 1[link]; Figs. 3[link] and 4[link]). These layers are linked by van der Waals forces and C—H⋯F inter­actions, which consolidate the crystal structure (Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.91 (2) 1.96 (2) 2.866 (2) 176.6 (18)
C12—H12A⋯O2 0.98 2.25 2.800 (2) 114
C16—H16A⋯O2 0.98 2.36 2.938 (2) 117
C17—H17C⋯O2 0.98 2.37 2.958 (3) 118
C20—H20A⋯F1 0.95 2.46 2.989 (2) 115
C24—H24A⋯O1ii 1.00 2.35 3.230 (2) 147
C2—H2ACg3iii 0.99 2.74 3.6959 (19) 162
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, y-1, z]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}].
[Figure 3]
Figure 3
A view of the mol­ecular packing of the title compound along the a axis by the N—H⋯O, C—H⋯O hydrogen bonds and C—H⋯π inter­actions (dashed lines).
[Figure 4]
Figure 4
View of the mol­ecular packing along [010]. Hydrogen bonds are shown as dashed lines.
[Figure 5]
Figure 5
View of the mol­ecular packing along [001]. Hydrogen bonds are shown as dashed lines.

The Hirshfeld surfaces and their corresponding two-dimensional fingerprint plots were calculated using the Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) software package. The dnorm surfaces are mapped over a fixed colour scale from −0.5814 (red) to +1.6362 (blue) a.u. Red spots on the surface correspond to N⋯H/H⋯N and O⋯H/H⋯O inter­actions (Tables 1[link] and 2[link]; Fig. 6[link]a,b).

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

H11C⋯H10A 2.49 2 − x, −[{1\over 2}] + y, [{1\over 2}] − z
F2⋯H19A 2.51 x, [{1\over 2}] − y, [{1\over 2}] + z
O1⋯H24A 2.35 x, 1 + y, z
O1⋯H1N 1.96 x, [{1\over 2}] − y, −[{1\over 2}] + z
H12A⋯O2 2.61 1 − x, 1 − y, −z
H15A⋯H12A 2.40 1 − x, [{1\over 2}] + y, [{1\over 2}] − z
H22A⋯H16B 2.38 1 − x, 1 − y, 1 − z
[Figure 6]
Figure 6
(a) Front and (b) back views of the three-dimensional Hirshfeld surface for the title compound.

Fingerprint plots of the most important non-covalent inter­actions for the title compound are shown in Fig. 7[link]. The major contributions to the crystal packing are from H⋯H (54.1%), F⋯H/H⋯F (16.9%), O⋯H/H⋯O (15.4%) and C⋯H/H⋯C (12.6) contacts. N⋯H/H⋯N (0.5%), F⋯N/N⋯F (0.3%) and F⋯F (0.2%) contacts, which contribute less than 1%, are not shown in Fig. 7[link].

[Figure 7]
Figure 7
The two-dimensional fingerprint plots for the title compound showing (a) all inter­actions, and delineated into (b) H⋯H, (c) F⋯H/H⋯F, (d) O⋯H/H⋯O and (e) C⋯H/H⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar structures with the 1,4,5,6,7,8-hexa­hydro­quinoline group showed that the nine most closely related to the title compound are WEZJUK (Yıldırım et al., 2023[Yıldırım, S. Ö., Akkurt, M., Çetin, G., Şimşek, R., Butcher, R. J. & Bhattarai, A. (2023). Acta Cryst. E79, 187-191.]), ECUCUE (Yıldırım et al., 2022[Yıldırım, S. Ö., Akkurt, M., Çetin, G., Şimşek, R., Butcher, R. J. & Bhattarai, A. (2022). Acta Cryst. E78, 798-803.]), LOQCAX (Steiger et al., 2014[Steiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L. & Natale, N. R. (2014). Acta Cryst. C70, 790-795.]), NEQMON (Öztürk Yıldırım et al., 2013[Öztürk Yildirim, S., Butcher, R. J., Gündüz, M. G., El-Khouly, A., Şimşek, R. & Şafak, C. (2013). Acta Cryst. E69, o40-o41.]), PECPUK (Gündüz et al., 2012[Gündüz, M. G., Butcher, R. J., Öztürk Yildirim, S., El-Khouly, A., Şafak, C. & Şimşek, R. (2012). Acta Cryst. E68, o3404-o3405.]), IMEJOA (Linden et al., 2011[Linden, A., Şafak, C., Şimşek, R. & Gündüz, M. G. (2011). Acta Cryst. C67, o80-o84.]), PUGCIE (Mookiah et al., 2009[Mookiah, P., Rajesh, K., Narasimhamurthy, T., Vijayakumar, V. & Srinivasan, N. (2009). Acta Cryst. E65, o2664.]), UCOLOO (Linden et al., 2006[Linden, A., Gündüz, M. G., Şimşek, R. & Şafak, C. (2006). Acta Cryst. C62, o227-o230.]) and DAYJET (Linden et al., 2005[Linden, A., Şimşek, R., Gündüz, M. & Şafak, C. (2005). Acta Cryst. C61, o731-o734.]). In all these compounds, mol­ecules are linked by N—H⋯O hydrogen bonds. Furthermore, C—H⋯O hydrogen bonds in WEZJUK, ECUCUE, NEQMON, IMEJOA and PUGCIE and C—H⋯π inter­actions in WEZJUK and ECUCUE were also observed.

5. Synthesis and crystallization

The target compound was synthesized by refluxing 5,5-di­methyl­cyclo­hexane-1,3-dione (1 mmol), 4-di­fluoro­meth­oxy­benzaldehyde (1 mmol), tert-butyl­aceto­acetate (1 mmol) and ammonium acetate (5 mmol) for 8 h in absolute methanol (10 ml). The reaction mixture was monitored by TLC, and after completion of the reaction was cooled to room temperature. The obtained precipitate was filtered and recrystallized from methanol for further purification. The synthetic route is shown in Fig. 8[link].

[Figure 8]
Figure 8
Synthetic scheme.

Yellow solid, m.p. 487–488 K; yield: 65.32%. IR (ν, cm−1) 3211 (N—H, stretching), 3080 (C—H stretching, aromatic), 2968 (C—H stretching, aliphatic) 1697 (C=O stretching, ester), 1641 (C=O stretching, ketone). 1H NMR (DMSO-d6) δ: 0.84 (3H; s; 7-CH3), 1.00 (3H; s; 7-CH3), 1.31 [9H, s, C(CH3)3], 1.95–1.99 (2H; d; J = 16 Hz; quinoline H8), 2.13–2.16 (H; d; J = 16.1; quinoline H8), 2.25 (3H; s; 2-CH3), 2.26–2.30 (H; d; J = 16.95 quinoline H6), 2.37–2.41 (H; d; J =1 6.95 quinoline H6), 4.78 (1H; s; quinoline H4), 6.99–7.01 (2H, d, J = 8.5 Hz Ar—H3), 7.14 (1H; t; J = 74.4 Hz; OCHF2), 7.17–7.18 (2H, d, J = 10 Ar—H2), 8.99 (1H,s; NH). 13C NMR (DMSO-d6) δ: 18.7 (2-CH3), 27.0 (7-CH3), 28.3 [COOC(CH3)3], 29.4 (C-7), 32.0 (C-8), 36.2 (C-4), 50.6 (C-6), 79.2 [COOC(CH3)3], 105.4 (C-3), 110.0 (C-4a), 114.8 (C3'), 116.9, 118.4, 118.9 (OCHF2), 129.4 (C2'), 144.5 (C1'), 145.3 (C-2), 149.3 (C-8a), 150.0 (C4'), 166.7 [COOC(CH3)3], 194.6 (C-5). HRMS (ESI/Q-TOF) m/z: [M + H]+ Calculated for C24H29F2NO4 433.2065; found 434.2328 (M + H).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The N-bound H atom was located in a difference Fourier map and refined freely [N1—H1N = 0.91 (2) Å]. All C-bound H atoms were positioned geometrically [C—H = 0.95–1.00 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C24H29F2NO4
Mr 433.48
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 17.6062 (11), 9.7588 (7), 13.1509 (9)
β (°) 95.905 (2)
V3) 2247.5 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.26 × 0.20 × 0.14
 
Data collection
Diffractometer Bruker D8 Quest with Photon 2 detector
Absorption correction Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.657, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 31708, 4599, 3208
Rint 0.111
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.110, 1.02
No. of reflections 4599
No. of parameters 290
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.26
Computer programs: APEX2 and SAINT (Bruker, 2018[Bruker (2018). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

tert-Butyl 4-[4-(difluoromethoxy)phenyl]-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate top
Crystal data top
C24H29F2NO4F(000) = 920
Mr = 433.48Dx = 1.281 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.6062 (11) ÅCell parameters from 4059 reflections
b = 9.7588 (7) Åθ = 2.3–30.3°
c = 13.1509 (9) ŵ = 0.10 mm1
β = 95.905 (2)°T = 100 K
V = 2247.5 (3) Å3Prism, colorless
Z = 40.26 × 0.20 × 0.14 mm
Data collection top
Bruker D8 Quest with Photon 2 detector
diffractometer
3208 reflections with I > 2σ(I)
φ and ω scansRint = 0.111
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
θmax = 26.4°, θmin = 2.4°
Tmin = 0.657, Tmax = 0.746h = 2222
31708 measured reflectionsk = 1212
4599 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: mixed
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.5785P]
where P = (Fo2 + 2Fc2)/3
4599 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.92250 (6)0.20646 (12)0.49817 (9)0.0351 (3)
F20.86051 (6)0.08089 (11)0.59614 (9)0.0311 (3)
O10.78594 (7)0.91033 (13)0.37607 (9)0.0202 (3)
O20.51155 (7)0.57880 (16)0.12973 (10)0.0338 (4)
O30.54282 (7)0.65743 (13)0.28906 (9)0.0189 (3)
O40.80976 (7)0.27398 (13)0.54548 (9)0.0242 (3)
N10.74130 (8)0.64973 (15)0.07479 (12)0.0155 (3)
H1N0.7556 (11)0.634 (2)0.0116 (16)0.027 (6)*
C10.78375 (9)0.73899 (17)0.13677 (13)0.0141 (4)
C20.85366 (9)0.79398 (18)0.09469 (13)0.0160 (4)
H2A0.8380420.8647110.0427400.019*
H2B0.8786000.7187550.0600780.019*
C30.91163 (10)0.85665 (18)0.17650 (13)0.0164 (4)
C40.86773 (10)0.94844 (18)0.24516 (14)0.0184 (4)
H4A0.9039150.9840650.3015930.022*
H4B0.8468521.0278900.2046310.022*
C50.80277 (10)0.87635 (17)0.29047 (13)0.0155 (4)
C60.76121 (9)0.77274 (17)0.22958 (13)0.0140 (4)
C70.69507 (9)0.69774 (18)0.27054 (13)0.0146 (4)
H7A0.6667910.7641540.3106370.018*
C80.64044 (10)0.64486 (17)0.18117 (13)0.0148 (4)
C90.66713 (9)0.61265 (18)0.09115 (13)0.0153 (4)
C100.96912 (11)0.9421 (2)0.12400 (15)0.0245 (4)
H10A1.0083390.9777190.1755090.037*
H10B0.9426441.0187190.0875350.037*
H10C0.9931910.8845690.0753230.037*
C110.95397 (11)0.7439 (2)0.24056 (15)0.0257 (5)
H11A0.9904650.7857210.2927950.039*
H11B0.9814030.6852590.1961260.039*
H11C0.9171300.6886290.2737390.039*
C120.62714 (10)0.5386 (2)0.00161 (14)0.0209 (4)
H12A0.5881980.4777600.0250350.031*
H12B0.6642490.4841800.0317880.031*
H12C0.6027620.6051420.0471020.031*
C130.55921 (10)0.62201 (18)0.19487 (14)0.0174 (4)
C140.46412 (10)0.64012 (19)0.31875 (15)0.0212 (4)
C150.47276 (12)0.6890 (2)0.42836 (16)0.0338 (5)
H15A0.4871560.7860900.4305220.051*
H15B0.5125070.6353040.4679060.051*
H15C0.4242140.6774870.4577410.051*
C160.44228 (11)0.4893 (2)0.31253 (16)0.0272 (5)
H16A0.4382760.4592950.2410630.041*
H16B0.3930320.4763300.3398000.041*
H16C0.4814710.4350700.3527320.041*
C170.40767 (11)0.7291 (2)0.25328 (19)0.0358 (6)
H17A0.4247200.8247230.2575220.054*
H17B0.3571770.7218170.2780040.054*
H17C0.4046790.6982130.1820770.054*
C180.72353 (10)0.57950 (18)0.34146 (13)0.0151 (4)
C190.77883 (10)0.48904 (19)0.31318 (14)0.0207 (4)
H19A0.7969430.4992180.2480000.025*
C200.80838 (11)0.38451 (19)0.37706 (14)0.0218 (4)
H20A0.8468350.3252290.3566640.026*
C210.78073 (10)0.36846 (18)0.47084 (14)0.0185 (4)
C220.72373 (10)0.45291 (19)0.49978 (14)0.0192 (4)
H22A0.7039480.4394050.5635640.023*
C230.69559 (10)0.55749 (19)0.43512 (13)0.0179 (4)
H23A0.6563940.6152900.4553070.021*
C240.85104 (11)0.16566 (19)0.51508 (15)0.0223 (4)
H24A0.8243290.1189970.4537970.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0253 (6)0.0380 (7)0.0430 (8)0.0014 (5)0.0079 (5)0.0154 (6)
F20.0389 (7)0.0244 (6)0.0305 (7)0.0009 (5)0.0062 (5)0.0127 (5)
O10.0250 (7)0.0224 (7)0.0140 (7)0.0035 (6)0.0055 (5)0.0038 (5)
O20.0210 (7)0.0590 (10)0.0214 (8)0.0140 (7)0.0026 (6)0.0078 (7)
O30.0145 (6)0.0228 (7)0.0204 (7)0.0024 (5)0.0062 (5)0.0030 (6)
O40.0342 (8)0.0217 (7)0.0169 (7)0.0053 (6)0.0039 (6)0.0042 (6)
N10.0168 (8)0.0190 (8)0.0113 (8)0.0013 (6)0.0045 (6)0.0025 (6)
C10.0139 (9)0.0133 (9)0.0149 (9)0.0020 (7)0.0001 (7)0.0013 (7)
C20.0175 (9)0.0158 (9)0.0156 (9)0.0005 (7)0.0051 (7)0.0010 (7)
C30.0165 (9)0.0166 (9)0.0166 (9)0.0011 (7)0.0035 (7)0.0002 (8)
C40.0200 (10)0.0175 (9)0.0179 (10)0.0043 (8)0.0036 (8)0.0018 (8)
C50.0173 (9)0.0146 (9)0.0147 (9)0.0031 (7)0.0014 (7)0.0022 (7)
C60.0129 (9)0.0156 (9)0.0136 (9)0.0011 (7)0.0017 (7)0.0017 (7)
C70.0150 (9)0.0158 (9)0.0135 (9)0.0009 (7)0.0040 (7)0.0001 (7)
C80.0164 (9)0.0138 (9)0.0141 (9)0.0002 (7)0.0008 (7)0.0015 (7)
C90.0150 (9)0.0150 (9)0.0158 (9)0.0006 (7)0.0010 (7)0.0025 (7)
C100.0211 (10)0.0255 (11)0.0287 (11)0.0057 (8)0.0107 (8)0.0022 (9)
C110.0203 (10)0.0299 (11)0.0265 (11)0.0033 (9)0.0001 (8)0.0027 (9)
C120.0220 (10)0.0240 (10)0.0167 (10)0.0049 (8)0.0018 (8)0.0031 (8)
C130.0185 (10)0.0183 (10)0.0156 (9)0.0012 (7)0.0024 (8)0.0009 (8)
C140.0141 (9)0.0236 (10)0.0280 (11)0.0036 (8)0.0119 (8)0.0044 (8)
C150.0263 (11)0.0417 (13)0.0362 (13)0.0094 (10)0.0172 (10)0.0157 (11)
C160.0265 (11)0.0233 (11)0.0347 (12)0.0060 (9)0.0169 (9)0.0047 (9)
C170.0184 (10)0.0345 (12)0.0560 (16)0.0035 (9)0.0117 (10)0.0062 (11)
C180.0152 (9)0.0173 (9)0.0128 (9)0.0051 (7)0.0016 (7)0.0010 (7)
C190.0262 (10)0.0224 (10)0.0146 (10)0.0007 (8)0.0072 (8)0.0007 (8)
C200.0259 (10)0.0212 (10)0.0191 (10)0.0033 (8)0.0062 (8)0.0008 (8)
C210.0223 (10)0.0163 (10)0.0165 (9)0.0032 (8)0.0003 (8)0.0010 (8)
C220.0204 (10)0.0252 (10)0.0126 (9)0.0049 (8)0.0051 (7)0.0015 (8)
C230.0149 (9)0.0230 (10)0.0161 (9)0.0027 (7)0.0035 (7)0.0019 (8)
C240.0257 (11)0.0186 (10)0.0228 (10)0.0026 (8)0.0032 (8)0.0046 (8)
Geometric parameters (Å, º) top
F1—C241.360 (2)C10—H10B0.9800
F2—C241.346 (2)C10—H10C0.9800
O1—C51.238 (2)C11—H11A0.9800
O2—C131.212 (2)C11—H11B0.9800
O3—C131.346 (2)C11—H11C0.9800
O3—C141.487 (2)C12—H12A0.9800
O4—C241.366 (2)C12—H12B0.9800
O4—C211.404 (2)C12—H12C0.9800
N1—C11.363 (2)C14—C151.511 (3)
N1—C91.393 (2)C14—C171.519 (3)
N1—H1N0.91 (2)C14—C161.521 (3)
C1—C61.362 (2)C15—H15A0.9800
C1—C21.500 (2)C15—H15B0.9800
C2—C31.532 (2)C15—H15C0.9800
C2—H2A0.9900C16—H16A0.9800
C2—H2B0.9900C16—H16B0.9800
C3—C101.530 (2)C16—H16C0.9800
C3—C111.532 (2)C17—H17A0.9800
C3—C41.536 (2)C17—H17B0.9800
C4—C51.516 (2)C17—H17C0.9800
C4—H4A0.9900C18—C231.389 (2)
C4—H4B0.9900C18—C191.393 (2)
C5—C61.442 (2)C19—C201.388 (3)
C6—C71.520 (2)C19—H19A0.9500
C7—C81.530 (2)C20—C211.381 (3)
C7—C181.535 (2)C20—H20A0.9500
C7—H7A1.0000C21—C221.382 (3)
C8—C91.355 (2)C22—C231.387 (3)
C8—C131.477 (2)C22—H22A0.9500
C9—C121.495 (2)C23—H23A0.9500
C10—H10A0.9800C24—H24A1.0000
C13—O3—C14120.42 (13)C9—C12—H12B109.5
C24—O4—C21118.04 (14)H12A—C12—H12B109.5
C1—N1—C9122.61 (15)C9—C12—H12C109.5
C1—N1—H1N117.9 (13)H12A—C12—H12C109.5
C9—N1—H1N116.9 (12)H12B—C12—H12C109.5
C6—C1—N1119.88 (16)O2—C13—O3122.80 (16)
C6—C1—C2124.75 (16)O2—C13—C8125.12 (17)
N1—C1—C2115.38 (15)O3—C13—C8112.06 (15)
C1—C2—C3113.36 (14)O3—C14—C15102.09 (14)
C1—C2—H2A108.9O3—C14—C17111.05 (15)
C3—C2—H2A108.9C15—C14—C17110.84 (17)
C1—C2—H2B108.9O3—C14—C16109.44 (14)
C3—C2—H2B108.9C15—C14—C16110.92 (17)
H2A—C2—H2B107.7C17—C14—C16112.07 (16)
C10—C3—C11109.42 (15)C14—C15—H15A109.5
C10—C3—C2108.94 (14)C14—C15—H15B109.5
C11—C3—C2110.54 (15)H15A—C15—H15B109.5
C10—C3—C4110.11 (15)C14—C15—H15C109.5
C11—C3—C4109.96 (15)H15A—C15—H15C109.5
C2—C3—C4107.85 (14)H15B—C15—H15C109.5
C5—C4—C3113.96 (14)C14—C16—H16A109.5
C5—C4—H4A108.8C14—C16—H16B109.5
C3—C4—H4A108.8H16A—C16—H16B109.5
C5—C4—H4B108.8C14—C16—H16C109.5
C3—C4—H4B108.8H16A—C16—H16C109.5
H4A—C4—H4B107.7H16B—C16—H16C109.5
O1—C5—C6122.52 (16)C14—C17—H17A109.5
O1—C5—C4119.59 (15)C14—C17—H17B109.5
C6—C5—C4117.87 (15)H17A—C17—H17B109.5
C1—C6—C5119.29 (15)C14—C17—H17C109.5
C1—C6—C7120.37 (15)H17A—C17—H17C109.5
C5—C6—C7120.29 (15)H17B—C17—H17C109.5
C6—C7—C8109.52 (14)C23—C18—C19117.37 (16)
C6—C7—C18111.30 (13)C23—C18—C7122.12 (16)
C8—C7—C18110.69 (14)C19—C18—C7120.51 (16)
C6—C7—H7A108.4C20—C19—C18122.20 (17)
C8—C7—H7A108.4C20—C19—H19A118.9
C18—C7—H7A108.4C18—C19—H19A118.9
C9—C8—C13119.93 (16)C21—C20—C19118.65 (17)
C9—C8—C7120.16 (15)C21—C20—H20A120.7
C13—C8—C7119.83 (15)C19—C20—H20A120.7
C8—C9—N1119.31 (16)C20—C21—C22120.74 (17)
C8—C9—C12128.53 (16)C20—C21—O4124.23 (16)
N1—C9—C12112.15 (15)C22—C21—O4114.93 (16)
C3—C10—H10A109.5C21—C22—C23119.59 (17)
C3—C10—H10B109.5C21—C22—H22A120.2
H10A—C10—H10B109.5C23—C22—H22A120.2
C3—C10—H10C109.5C22—C23—C18121.37 (17)
H10A—C10—H10C109.5C22—C23—H23A119.3
H10B—C10—H10C109.5C18—C23—H23A119.3
C3—C11—H11A109.5F2—C24—F1105.56 (14)
C3—C11—H11B109.5F2—C24—O4105.67 (15)
H11A—C11—H11B109.5F1—C24—O4110.52 (15)
C3—C11—H11C109.5F2—C24—H24A111.6
H11A—C11—H11C109.5F1—C24—H24A111.6
H11B—C11—H11C109.5O4—C24—H24A111.6
C9—C12—H12A109.5
C9—N1—C1—C614.1 (2)C7—C8—C9—C12168.75 (17)
C9—N1—C1—C2165.54 (15)C1—N1—C9—C812.6 (3)
C6—C1—C2—C318.1 (2)C1—N1—C9—C12167.69 (16)
N1—C1—C2—C3162.30 (14)C14—O3—C13—O22.1 (3)
C1—C2—C3—C10165.09 (15)C14—O3—C13—C8179.04 (14)
C1—C2—C3—C1174.64 (19)C9—C8—C13—O22.2 (3)
C1—C2—C3—C445.59 (19)C7—C8—C13—O2178.97 (18)
C10—C3—C4—C5172.96 (15)C9—C8—C13—O3179.00 (16)
C11—C3—C4—C566.40 (19)C7—C8—C13—O32.2 (2)
C2—C3—C4—C554.20 (19)C13—O3—C14—C15178.94 (16)
C3—C4—C5—O1147.75 (16)C13—O3—C14—C1762.9 (2)
C3—C4—C5—C634.2 (2)C13—O3—C14—C1661.4 (2)
N1—C1—C6—C5174.53 (15)C6—C7—C18—C23134.13 (17)
C2—C1—C6—C55.1 (3)C8—C7—C18—C23103.82 (18)
N1—C1—C6—C78.1 (2)C6—C7—C18—C1946.2 (2)
C2—C1—C6—C7172.29 (15)C8—C7—C18—C1975.88 (19)
O1—C5—C6—C1178.91 (16)C23—C18—C19—C203.1 (3)
C4—C5—C6—C13.1 (2)C7—C18—C19—C20177.17 (16)
O1—C5—C6—C71.5 (3)C18—C19—C20—C211.3 (3)
C4—C5—C6—C7179.50 (15)C19—C20—C21—C221.3 (3)
C1—C6—C7—C827.6 (2)C19—C20—C21—O4174.90 (16)
C5—C6—C7—C8155.05 (15)C24—O4—C21—C2020.1 (3)
C1—C6—C7—C1895.14 (19)C24—O4—C21—C22163.51 (16)
C5—C6—C7—C1882.24 (19)C20—C21—C22—C231.9 (3)
C6—C7—C8—C929.0 (2)O4—C21—C22—C23174.61 (15)
C18—C7—C8—C994.12 (19)C21—C22—C23—C180.0 (3)
C6—C7—C8—C13154.26 (15)C19—C18—C23—C222.5 (3)
C18—C7—C8—C1382.65 (19)C7—C18—C23—C22177.84 (15)
C13—C8—C9—N1172.33 (15)C21—O4—C24—F2169.91 (14)
C7—C8—C9—N110.9 (2)C21—O4—C24—F176.36 (19)
C13—C8—C9—C128.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.91 (2)1.96 (2)2.866 (2)176.6 (18)
C12—H12A···O20.982.252.800 (2)114
C16—H16A···O20.982.362.938 (2)117
C17—H17C···O20.982.372.958 (3)118
C20—H20A···F10.952.462.989 (2)115
C24—H24A···O1ii1.002.353.230 (2)147
C2—H2A···Cg3iii0.992.743.6959 (19)162
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y1, z; (iii) x, y+1/2, z3/2.
Summary of short interatomic contacts (Å) in the title compound top
H11C···H10A2.492 - x, -1/2 + y, 1/2 - z
F2···H19A2.51x, 1/2 - y, 1/2 + z
O1···H24A2.35x, 1 + y, z
O1···H1N1.96x, 1/2 - y, -1/2 + z
H12A···O22.611 - x, 1 - y, -z
H15A···H12A2.401 - x, 1/2 + y, 1/2 - z
H22A···H16B2.381 - x, 1 - y, 1 - z
 

Acknowledgements

Authors' contributions are as follows. Conceptualization, RS and SÖY; methodology, RS and EP; investigation, RS and SÖY; writing (original draft), EP and MA; writing (review and editing of the manuscript), RS and SÖY; crystal data production and validation, RJB and SÖY; visualization, MA; funding acquisition, RJB; resources, AB, RJB and RS.

References

First citationBruker (2018). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇetin, G., Çetin, B., Çolak, B., Aşan, M., Birlik Demirel, G., Cansaran-Duman, D., Akçelik, N. & Şimşek, R. (2022). J. Res. Pharm. 26, 219–230.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationElwahy, A. H. M., Eid, E. M., Abdel-Latif, S. A., Hassaneen, H. M. E. & Abdelhamid, I. A. (2022). Polycyclic Aromat. Compd. pp. 1–30.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFurman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., Ferrucci, L., Gilroy, D. W., Fasano, A., Miller, G. W., Miller, A. H., Mantovani, A., Weyand, C. M., Barzilai, N., Goronzy, J. J., Rando, T. A., Effros, R. B., Lucia, A., Kleinstreuer, N. & Slavich, G. M. (2019). Nat. Med. 25, 1822–1832.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGhosh, S., Saikh, F., Das, J. & Pramanik, A. K. (2013). Tetrahedron Lett. 54, 58–62.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGündüz, M. G., Butcher, R. J., Öztürk Yildirim, S., El-Khouly, A., Şafak, C. & Şimşek, R. (2012). Acta Cryst. E68, o3404–o3405.  CSD CrossRef IUCr Journals Google Scholar
First citationKhot, S., Auti, P. B. & Khedkar, S. A. (2021). Mini Rev. Med. Chem. 21, 135–149.  CrossRef CAS PubMed Google Scholar
First citationLinden, A., Gündüz, M. G., Şimşek, R. & Şafak, C. (2006). Acta Cryst. C62, o227–o230.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLinden, A., Şafak, C., Şimşek, R. & Gündüz, M. G. (2011). Acta Cryst. C67, o80–o84.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLinden, A., Şimşek, R., Gündüz, M. & Şafak, C. (2005). Acta Cryst. C61, o731–o734.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMookiah, P., Rajesh, K., Narasimhamurthy, T., Vijayakumar, V. & Srinivasan, N. (2009). Acta Cryst. E65, o2664.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖztürk Yildirim, S., Butcher, R. J., Gündüz, M. G., El-Khouly, A., Şimşek, R. & Şafak, C. (2013). Acta Cryst. E69, o40–o41.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L. & Natale, N. R. (2014). Acta Cryst. C70, 790–795.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTu, Z., Zhong, Y., Hu, H., Shao, D., Haag, R., Schirner, M., Lee, J., Sullenger, B. & Leong, K. W. (2022). Nat. Rev. Mater. 557–574.  Google Scholar
First citationYıldırım, S. Ö., Akkurt, M., Çetin, G., Şimşek, R., Butcher, R. J. & Bhattarai, A. (2022). Acta Cryst. E78, 798–803.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYıldırım, S. Ö., Akkurt, M., Çetin, G., Şimşek, R., Butcher, R. J. & Bhattarai, A. (2023). Acta Cryst. E79, 187–191.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds