research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of bis­­(caffeinium) hexa­chlorido­platinum(IV) in comparison with some related compounds

crossmark logo

aFrumkin Institute of Physical Chemistry and Electrochemistry Russian, Academy, of Sciences, 31 Leninsky Prospekt bldg 4, 119071 Moscow, Russian Federation, bPeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya, St, 117198, Moscow, Russian Federation, and cKyrgyz-Russian Slavic University, 6 Chuy Avenue, Bishkek, Kyrgyzstan
*Correspondence e-mail: den-taranee.92@mail.ru

Edited by A. S. Batsanov, University of Durham, United Kingdom (Received 14 April 2023; accepted 8 June 2023; online 16 June 2023)

The mol­ecular and crystal structure of the title compound, (C8H11N4O2)2[PtCl6], synthesized from hexa­chloro­platinic acid and caffeine in methanol, was studied by single-crystal X-ray diffraction. The caffeinium cations form a double layer via hydrogen bonds and π-stacking inter­actions. The Hirshfeld surface analysis showed that the largest contribution to the crystal packing is made by H⋯H (31.2%), H⋯Cl/Cl⋯H (22.6%), O⋯H/H⋯O (21.9%) contacts for the cation and H⋯Cl/Cl⋯H (79.3%) contacts for the anion.

1. Chemical context

Caffeine is a biologically active compound involved in a number of biochemical processes (Costa et al., 2010[Costa, J., Lunet, N., Santos, C., Santos, J. & Vaz-Carneiro, A. (2010). J. Alzheimers Dis. 20, S221-S238.]; Santos et al., 2010[Santos, C., Costa, J., Santos, J., Vaz-Carneiro, A. & Lunet, N. (2010). J. Alzheimers Dis. 20, S187-S204.]; Herman & Herman, 2012[Herman, A. & Herman, A. P. (2012). Skin Pharmacol. Physiol. 26, 8-14.]). Some sources consider it the most common medicine in the world, constantly used by the population (Knapik et al., 2022[Knapik, J., Steelman, R., Trone, D., Farina, E. & Lieberman, H. (2022). Nutr. J. 21, 22.]). It is known that caffeine compounds are able to exert a strong influence on the action of various pharmaceutical drugs (Traganos et al., 1991[Traganos, F., Kapuscinski, J. & Darzynkiewicz, Z. (1991). Cancer Res. 51, 3682-3689.]). Currently, an active search is underway for platinum-based pharmaceutical drugs, primarily those with anti­tumor activity (Dilruba & Kalayda, 2016[Dilruba, S. & Kalayda, G. V. (2016). Cancer Chemother. Pharmacol. 77, 1103-1124.]). In this regard, it seemed important to us to study the inter­action of caffeine with the chemical forms of platinum used in the pharmaceutical industry. In addition, platinum is actively used as a catalyst in chemical reactions, including various fields of fine organic synthesis (Blaser & Studer, 2007[Blaser, H.-U. & Studer, M. (2007). Acc. Chem. Res. 40, 1348-1356.]; Zhang et al., 2006[Zhang, L., Sun, J. & Kozmin, S. A. (2006). Adv. Synth. Catal. 348, 2271-2296.]; Seselj et al., 2015[Seselj, N., Engelbrekt, C. & Zhang, J. (2015). Sci. Bull. 60, 864-876.]). Study of inter­action of PtIV with various heterocyclic organic mol­ecules is of great importance in the context of search for new catalytic reactions and synthetic routes. Studies on the inter­action of hexa­chloro­platinates with various biological organic compounds have been performed before, for example by Novikov et al. (2021[Novikov, A. P., Volkov, M. A., Safonov, A. V., Grigoriev, M. S. & Abkhalimov, E. V. (2021). Crystals, 11, 1417.], 2022[Novikov, A. P., Volkov, M. A., Safonov, A. V. & Grigoriev, M. S. (2022). Crystals, 12, 271.]).

In this work, the title compound I containing [PtCl6]2− anions and caffeinium cations was synthesized by the reaction of caffeine with H2[PtCl6] in methanol and structurally characterized, using Hirshfeld surface analysis to estimate relative contribution of non-covalent inter­molecular inter­actions in comparison with similar compounds, bis­(3-carb­oxy­pyrid­in­ium) hexa­chloro­platinum RECJAO (II; Novikov et al., 2022[Novikov, A. P., Volkov, M. A., Safonov, A. V. & Grigoriev, M. S. (2022). Crystals, 12, 271.]) and methyl­caffeinium hexa­fluoro­phospate AXUQIT (III; Kascatan-Nebioglu et al., 2004[Kascatan-Nebioglu, A., Panzner, M. J., Garrison, J. C., Tessier, C. A. & Youngs, W. J. (2004). Organometallics, 23, 1928-1931.]).

[Scheme 1]

2. Structural commentary

Compound I (Fig.1a) crystallizes in the triclinic space group P[\overline{1}]. The unit cell (Fig. 1[link]b) contains two caffeinium cations and one centrosymmetric hexa­chloro­platinate anion with a platinum atom in a special position 1a. In the imidazole ring of the caffeine mol­ecule, the nitro­gen N1 atom is protonated. The cation, including the methyl groups, has a flat geometry (maximum deviation for non-hydrogen atoms 0.030 Å). The [PtCl6]2− anion has a slightly distorted octa­hedral geometry with similar Pt—Cl bond distances (Table 1[link]).

Table 1
Selected geometric parameters (Å, °)

Pt1—Cl1 2.3153 (6) Pt1—Cl3 2.3222 (6)
Pt1—Cl2 2.3161 (6)    
       
Cl1—Pt1—Cl2 89.97 (2) Cl1i—Pt1—Cl3 89.93 (2)
Cl1i—Pt1—Cl2 90.03 (2) Cl2i—Pt1—Cl3i 89.48 (3)
Cl1—Pt1—Cl3 90.07 (2) Cl2—Pt1—Cl3i 90.52 (3)
Symmetry code: (i) [-x, -y, -z].
[Figure 1]
Figure 1
(a) Mol­ecular structure of the title compound and (b) the unit cell with π-stacking inter­actions [symmetry code: (i) −x, −y, −z].

3. Supra­molecular features

Hydrogen bonds and π-stacking play a significant role in the formation of inter­molecular inter­actions in the crystal structure of I. π-stacking is observed between the six-membered pyrimidine rings. Pairs of parallel cations related by an inversion centre, are stacked with inter­planar separation of 3.404 (3) Å (Fig. 1[link]b).

Similarly, π–halogen inter­actions (Lucas et al., 2016[Lucas, X., Bauzá, A., Frontera, A. & Quiñonero, D. (2016). Chem. Sci. 7, 1038-1050.]; Savastano et al., 2018[Savastano, M., García, C., López de la Torre, M. D., Pichierri, F., Bazzicalupi, C., Bianchi, A. & Melguizo, M. (2018). Inorg. Chim. Acta, 470, 133-138.]; Frontera et al., 2011[Frontera, A., Gamez, P., Mascal, M., Mooibroek, T. J. & Reedijk, J. (2011). Angew. Chem. Int. Ed. 50, 9564-9583.]; Novikov et al., 2022[Novikov, A. P., Volkov, M. A., Safonov, A. V. & Grigoriev, M. S. (2022). Crystals, 12, 271.]) are found between the aromatic ring C6/N4/C8/N3/C2/C1 (centroid Cz) and chlorine atoms Cl1 and Cl2, with Cz ⋯ Cl distances of 3.8643 (11) and 3.7170 (11) Å, respectively, and α angles between the ring plane and the Cz⋯Cl vector of 61.82 (7) and 62.28 (7)°, respectively. It is uncertain whether such an inter­action exists with Cl3 [Cz⋯Cl = 4.1102 (12) Å, α = 58.68 (8)°].

The crystal packing in I can be represented as cationic and anionic layers parallel to the (001) plane (Fig. 2[link]). The caffeinium cations are linked by π-stacking inter­actions and weak C—H⋯O hydrogen bonds into double layers, which are connected to the anionic layers by hydrogen bonds of the N—H⋯Cl and C—H⋯C types (Table 2[link]), the N1—H1⋯Cl3ii [symmetry code: (ii) −x + 1, −y + 1, −z] inter­action being the strongest.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl3ii 0.85 (2) 2.45 (2) 3.296 (2) 174 (3)
C3—H3⋯Cl2ii 0.89 (3) 2.81 (3) 3.455 (3) 131 (3)
C5—H5C⋯Cl2 0.96 2.91 3.563 (3) 127
C7—H7B⋯O1iii 0.96 2.44 3.346 (4) 157
Symmetry codes: (ii) [-x+1, -y+1, -z]; (iii) [-x+1, -y, -z+1].
[Figure 2]
Figure 2
Crystal packing of I, showing the pseudo-layered character.

4. Hirshfeld surface analysis

Crystal Explorer 21 was used to calculate the Hirshfeld surfaces (HS) and two-dimensional fingerprint plots (Figs. 3[link] and 4[link]). The donor and acceptor groups are visualized using a standard (high) surface resolution and dnorm surfaces are mapped over a fixed colour scale of −0.401 (red) to 1.063 (blue) for cation and −0.402 to 0.934 a.u. for anion, as illus­trated in Fig. 3[link]. Additionally, characteristic red and blue triangles indicative of π-stacking inter­actions are observed on the shape-index surface (Fig. 3[link]b).

[Figure 3]
Figure 3
Hirshfeld surface of the caffeinium cation mapped over (a) dnorm and (b) shape-index.
[Figure 4]
Figure 4
Two-dimensional fingerprint plots for the cations and anions in I.

Analysis of inter­molecular contacts shows that for the caffeinum cation, the largest contributions are made by H⋯H, Cl⋯H/H⋯Cl and O⋯H/H⋯O contacts (Fig. 5[link]), and for the anion, by Cl⋯H/H⋯Cl and Cl⋯C/C⋯Cl contacts (Fig. 6[link]). Whereas H⋯H contacts correspond to van der Waals inter­actions, O⋯H and Cl⋯H contacts can be described as weak hydrogen bonds. Typically, hydrogen bonds are revealed by characteristic discrete `spikes' in the fingerprint plots – indeed, such features can be observed in Fig. 4[link]c,d,i. The structures of II and III show distributions of contacts (Figs. 5[link] and 6[link]) broadly similar to that of I, if corrected for the different cation–anion ratios (1:1 for I and III, 2:1 for II).

[Figure 5]
Figure 5
Percentage contributions of inter­molecular inter­actions for the cations in I and similar compounds.
[Figure 6]
Figure 6
Percentage contributions of inter­molecular inter­actions for the anions in I and similar compounds.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, update of November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 13 unique structures with caffeinium cations, but none of them contained anions of MHal6 type. The closest analogues of I found were II and III (see above), the former containing N-protonated 3-carb­oxy­pyridine (nicotinic acid) as the cation and [PtCl6]2− as the anion, the latter containing a caffeinium cation with a methyl­ated (rather than protonated) N1 atom and a PF6 anion.

6. Synthesis and crystallization

A saturated solution of dried caffeine in 5 mL of methanol was prepared, to which a few drops of a concentrated solution of hexa­chloro­platinic acid in hydro­chloric acid were added. After one week, the yellow crystals of I that formed were extracted from the solution.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Reflections with resolution > 5 Å, obscured by the beamstop (beam diameter 0.6 mm), were excluded from the refinement. The methyl groups C5H3 and C7H3 were refined as rigid bodies rotating around N—C bonds [Uiso(H) refined], C4H3 as rotationally disordered between two orientations with occupancies of 0.62 (4) and 0.38 (4) [Uiso(H) = 1.2Ueq(C)], with C—H 0.96 Å in each case. The H atoms at N1 and C3 were refined isotropically.

Table 3
Experimental details

Crystal data
Chemical formula (C8H11N4O2)2[PtCl6]
Mr 798.20
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.8800 (2), 8.1542 (2), 10.5374 (3)
α, β, γ (°) 95.784 (2), 91.525 (2), 112.472 (1)
V3) 620.92 (3)
Z 1
Radiation type Mo Kα
μ (mm−1) 6.34
Crystal size (mm) 0.18 × 0.08 × 0.02
 
Data collection
Diffractometer Bruker Kappa APEXII area-detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.734, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9764, 3616, 3573
Rint 0.035
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.041, 1.04
No. of reflections 3616
No. of parameters 173
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.89
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT v7.68A (Bruker, 2013); data reduction: SAINT v7.68A (Bruker, 2013); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

Bis(1,3,7-trimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-9-ium) hexachloridoplatinum(IV) top
Crystal data top
(C8H11N4O2)2[PtCl6]Z = 1
Mr = 798.20F(000) = 386
Triclinic, P1Dx = 2.135 Mg m3
a = 7.8800 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1542 (2) ÅCell parameters from 4212 reflections
c = 10.5374 (3) Åθ = 3.1–29.8°
α = 95.784 (2)°µ = 6.34 mm1
β = 91.525 (2)°T = 296 K
γ = 112.472 (1)°Plate, orange
V = 620.92 (3) Å30.18 × 0.08 × 0.02 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3573 reflections with I > 2σ(I)
φ and ω scansRint = 0.035
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 30.0°, θmin = 3.5°
Tmin = 0.734, Tmax = 1.000h = 1111
9764 measured reflectionsk = 1111
3616 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.041 w = 1/[σ2(Fo2) + (0.0171P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3616 reflectionsΔρmax = 0.45 e Å3
173 parametersΔρmin = 0.89 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.0000000.0000000.0000000.02050 (4)
Cl10.04784 (10)0.01026 (9)0.21599 (5)0.03560 (15)
Cl20.30304 (9)0.03978 (10)0.04685 (6)0.03557 (14)
Cl30.08989 (10)0.30803 (8)0.01376 (6)0.03532 (14)
O10.5394 (3)0.1187 (3)0.3683 (2)0.0474 (5)
O20.1510 (3)0.4010 (3)0.4685 (2)0.0517 (6)
N10.5642 (3)0.6187 (3)0.1713 (2)0.0340 (5)
H10.656 (3)0.646 (4)0.126 (3)0.053 (10)*
N20.3378 (3)0.6487 (3)0.2696 (2)0.0317 (5)
N30.5758 (3)0.3628 (3)0.2700 (2)0.0296 (5)
N40.3502 (3)0.2641 (3)0.42037 (19)0.0289 (5)
C10.3648 (4)0.5055 (3)0.3126 (2)0.0271 (5)
C20.5073 (4)0.4880 (3)0.2510 (2)0.0269 (5)
C30.4589 (4)0.7135 (4)0.1859 (3)0.0378 (7)
H30.475 (4)0.812 (4)0.150 (3)0.046 (9)*
C40.1984 (5)0.7171 (4)0.3115 (3)0.0485 (8)
H4A0.1272410.6459100.3732530.058*0.38 (4)
H4B0.2582370.8389890.3495130.058*0.38 (4)
H4C0.1187350.7112200.2391910.058*0.38 (4)
H4D0.2089010.8181690.2680520.058*0.62 (4)
H4E0.0779050.6250900.2917920.058*0.62 (4)
H4F0.2174070.7528590.4021130.058*0.62 (4)
C50.7299 (4)0.3460 (4)0.2023 (3)0.0461 (8)
H5A0.8170410.3342930.2624540.097 (9)*
H5B0.7888250.4504880.1603880.097 (9)*
H5C0.6844550.2421500.1398500.097 (9)*
C60.2746 (4)0.3915 (3)0.4059 (2)0.0306 (5)
C70.2650 (4)0.1360 (4)0.5105 (3)0.0387 (7)
H7A0.2268950.1943890.5812270.051 (5)*
H7B0.3523950.0908140.5412660.051 (5)*
H7C0.1597530.0388180.4681510.051 (5)*
C80.4901 (4)0.2398 (4)0.3536 (2)0.0312 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02068 (7)0.02260 (7)0.01919 (6)0.00823 (5)0.00384 (4)0.00678 (4)
Cl10.0415 (4)0.0448 (4)0.0214 (3)0.0164 (3)0.0078 (2)0.0081 (2)
Cl20.0232 (3)0.0458 (4)0.0396 (3)0.0136 (3)0.0015 (2)0.0125 (3)
Cl30.0420 (4)0.0236 (3)0.0410 (3)0.0114 (3)0.0123 (3)0.0088 (2)
O10.0488 (13)0.0419 (12)0.0622 (14)0.0242 (11)0.0122 (10)0.0258 (10)
O20.0584 (15)0.0519 (14)0.0569 (13)0.0294 (12)0.0344 (11)0.0201 (11)
N10.0342 (13)0.0317 (12)0.0351 (12)0.0088 (10)0.0109 (10)0.0131 (9)
N20.0337 (12)0.0253 (11)0.0357 (11)0.0106 (10)0.0019 (9)0.0054 (9)
N30.0285 (12)0.0289 (11)0.0327 (11)0.0110 (9)0.0066 (9)0.0085 (8)
N40.0331 (12)0.0278 (11)0.0258 (10)0.0103 (9)0.0052 (8)0.0090 (8)
C10.0280 (13)0.0218 (12)0.0303 (12)0.0079 (10)0.0015 (10)0.0040 (9)
C20.0288 (13)0.0236 (12)0.0251 (11)0.0062 (10)0.0009 (9)0.0049 (9)
C30.0453 (18)0.0281 (14)0.0393 (15)0.0110 (13)0.0048 (12)0.0129 (11)
C40.0430 (18)0.0396 (18)0.071 (2)0.0243 (15)0.0078 (16)0.0092 (15)
C50.0368 (17)0.0457 (18)0.062 (2)0.0201 (14)0.0206 (14)0.0134 (15)
C60.0328 (14)0.0288 (13)0.0283 (12)0.0097 (11)0.0043 (10)0.0033 (10)
C70.0433 (17)0.0378 (16)0.0320 (13)0.0087 (13)0.0098 (12)0.0172 (11)
C80.0290 (14)0.0296 (14)0.0329 (13)0.0081 (11)0.0001 (10)0.0082 (10)
Geometric parameters (Å, º) top
Pt1—Cl1i2.3153 (6)N4—C71.464 (3)
Pt1—Cl12.3153 (6)N4—C81.389 (3)
Pt1—Cl2i2.3161 (6)C1—C21.358 (4)
Pt1—Cl22.3161 (6)C1—C61.433 (3)
Pt1—Cl32.3222 (6)C3—H30.89 (3)
Pt1—Cl3i2.3222 (6)C4—H4A0.9600
O1—C81.213 (3)C4—H4B0.9600
O2—C61.213 (3)C4—H4C0.9600
N1—H10.846 (18)C4—H4D0.9600
N1—C21.370 (3)C4—H4E0.9600
N1—C31.335 (4)C4—H4F0.9600
N2—C11.380 (3)C5—H5A0.9600
N2—C31.312 (4)C5—H5B0.9600
N2—C41.469 (4)C5—H5C0.9600
N3—C21.354 (3)C7—H7A0.9600
N3—C51.468 (3)C7—H7B0.9600
N3—C81.389 (3)C7—H7C0.9600
N4—C61.399 (3)
Cl1i—Pt1—Cl1180.0C1—C2—N1107.3 (2)
Cl1—Pt1—Cl289.97 (2)N1—C3—H3125 (2)
Cl1—Pt1—Cl2i90.03 (2)N2—C3—N1109.9 (2)
Cl1i—Pt1—Cl290.03 (2)N2—C3—H3125 (2)
Cl1i—Pt1—Cl2i89.97 (2)N2—C4—H4A109.5
Cl1—Pt1—Cl3i89.93 (2)N2—C4—H4B109.5
Cl1—Pt1—Cl390.07 (2)N2—C4—H4C109.5
Cl1i—Pt1—Cl389.93 (2)H4A—C4—H4B109.5
Cl1i—Pt1—Cl3i90.07 (2)H4A—C4—H4C109.5
Cl2—Pt1—Cl2i180.0H4B—C4—H4C109.5
Cl2i—Pt1—Cl390.52 (3)H4D—C4—H4E109.5
Cl2—Pt1—Cl389.48 (3)H4D—C4—H4F109.5
Cl2i—Pt1—Cl3i89.48 (3)H4E—C4—H4F109.5
Cl2—Pt1—Cl3i90.52 (3)N3—C5—H5A109.5
Cl3i—Pt1—Cl3180.0N3—C5—H5B109.5
C2—N1—H1128 (2)N3—C5—H5C109.5
C3—N1—H1124 (2)H5A—C5—H5B109.5
C3—N1—C2107.7 (2)H5A—C5—H5C109.5
C1—N2—C4125.7 (2)H5B—C5—H5C109.5
C3—N2—C1108.2 (2)O2—C6—N4122.2 (2)
C3—N2—C4126.1 (2)O2—C6—C1126.5 (3)
C2—N3—C5123.2 (2)N4—C6—C1111.2 (2)
C2—N3—C8117.9 (2)N4—C7—H7A109.5
C8—N3—C5118.8 (2)N4—C7—H7B109.5
C6—N4—C7116.2 (2)N4—C7—H7C109.5
C8—N4—C6127.2 (2)H7A—C7—H7B109.5
C8—N4—C7116.5 (2)H7A—C7—H7C109.5
N2—C1—C6131.1 (2)H7B—C7—H7C109.5
C2—C1—N2106.9 (2)O1—C8—N3120.5 (3)
C2—C1—C6122.0 (2)O1—C8—N4122.1 (2)
N3—C2—N1128.6 (2)N4—C8—N3117.3 (2)
N3—C2—C1124.1 (2)
N2—C1—C2—N10.4 (3)C5—N3—C2—N10.8 (4)
N2—C1—C2—N3179.0 (2)C5—N3—C2—C1179.9 (3)
N2—C1—C6—O20.4 (5)C5—N3—C8—O11.5 (4)
N2—C1—C6—N4179.0 (2)C5—N3—C8—N4177.2 (2)
C1—N2—C3—N10.3 (3)C6—N4—C8—O1175.8 (3)
C2—N1—C3—N20.6 (3)C6—N4—C8—N35.4 (4)
C2—N3—C8—O1175.7 (2)C6—C1—C2—N1178.6 (2)
C2—N3—C8—N45.5 (3)C6—C1—C2—N30.7 (4)
C2—C1—C6—O2177.4 (3)C7—N4—C6—O23.3 (4)
C2—C1—C6—N41.2 (3)C7—N4—C6—C1178.1 (2)
C3—N1—C2—N3178.7 (3)C7—N4—C8—O10.3 (4)
C3—N1—C2—C10.6 (3)C7—N4—C8—N3178.4 (2)
C3—N2—C1—C20.0 (3)C8—N3—C2—N1178.0 (3)
C3—N2—C1—C6178.1 (3)C8—N3—C2—C12.8 (4)
C4—N2—C1—C2179.4 (3)C8—N4—C6—O2179.4 (3)
C4—N2—C1—C61.4 (4)C8—N4—C6—C12.0 (4)
C4—N2—C3—N1179.8 (3)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl3ii0.85 (2)2.45 (2)3.296 (2)174 (3)
C3—H3···Cl2ii0.89 (3)2.81 (3)3.455 (3)131 (3)
C5—H5C···Cl20.962.913.563 (3)127
C7—H7B···O1iii0.962.443.346 (4)157
Symmetry codes: (ii) x+1, y+1, z; (iii) x+1, y, z+1.
 

Acknowledgements

The X-ray diffraction experiment was carried out at the Centre of Shared Use of Physical Methods of Investigation of IPCE RAS.

Funding information

Funding for this research was provided by: Ministry of Science and Higher Education of the Russian Federation (award No. 122011300061-3). This work was supported by the RUDN University Strategic Academic Leadership Program.

References

First citationBlaser, H.-U. & Studer, M. (2007). Acc. Chem. Res. 40, 1348–1356.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosta, J., Lunet, N., Santos, C., Santos, J. & Vaz-Carneiro, A. (2010). J. Alzheimers Dis. 20, S221–S238.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDilruba, S. & Kalayda, G. V. (2016). Cancer Chemother. Pharmacol. 77, 1103–1124.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrontera, A., Gamez, P., Mascal, M., Mooibroek, T. J. & Reedijk, J. (2011). Angew. Chem. Int. Ed. 50, 9564–9583.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHerman, A. & Herman, A. P. (2012). Skin Pharmacol. Physiol. 26, 8–14.  Web of Science CrossRef PubMed Google Scholar
First citationKascatan-Nebioglu, A., Panzner, M. J., Garrison, J. C., Tessier, C. A. & Youngs, W. J. (2004). Organometallics, 23, 1928–1931.  CAS Google Scholar
First citationKnapik, J., Steelman, R., Trone, D., Farina, E. & Lieberman, H. (2022). Nutr. J. 21, 22.  Web of Science CrossRef PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLucas, X., Bauzá, A., Frontera, A. & Quiñonero, D. (2016). Chem. Sci. 7, 1038–1050.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNovikov, A. P., Volkov, M. A., Safonov, A. V. & Grigoriev, M. S. (2022). Crystals, 12, 271.  Web of Science CSD CrossRef Google Scholar
First citationNovikov, A. P., Volkov, M. A., Safonov, A. V., Grigoriev, M. S. & Abkhalimov, E. V. (2021). Crystals, 11, 1417.  Web of Science CSD CrossRef Google Scholar
First citationSantos, C., Costa, J., Santos, J., Vaz-Carneiro, A. & Lunet, N. (2010). J. Alzheimers Dis. 20, S187–S204.  Web of Science CrossRef PubMed Google Scholar
First citationSavastano, M., García, C., López de la Torre, M. D., Pichierri, F., Bazzicalupi, C., Bianchi, A. & Melguizo, M. (2018). Inorg. Chim. Acta, 470, 133–138.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeselj, N., Engelbrekt, C. & Zhang, J. (2015). Sci. Bull. 60, 864–876.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTraganos, F., Kapuscinski, J. & Darzynkiewicz, Z. (1991). Cancer Res. 51, 3682–3689.  CAS PubMed Web of Science Google Scholar
First citationZhang, L., Sun, J. & Kozmin, S. A. (2006). Adv. Synth. Catal. 348, 2271–2296.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds