research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structures of (E)-N′-(4-chloro-3-nitro­benzyl­­idene)acetohydrazide and (E)-2-(4-chloro­benzyl­­idene)-1-(quinolin-8-yl)hydrazine

crossmark logo

aDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, 11795 Helwan, Cairo, Egypt, bPharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, MTI, Cairo, Egypt, and cSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
*Correspondence e-mail: tamerhefni@yahoo.com

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 26 April 2023; accepted 24 July 2023; online 28 July 2023)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The syntheses of two benzyl­idenehydrazine derivatives, namely, (E)-N′-(4-chloro-3-nitro­benzyl­idene)acetohydrazide, C9H8ClN3O3, and (E)-2-(4-chloro­benzyl­idene)-1-(quinolin-8-yl)hydrazine, C16H12ClN3, are reported. The mol­ecules have been characterized using IR, 1H NMR, 13C NMR and mass spectro­scopic and elemental analysis techniques, and their structures have been determined by single-crystal X-ray diffraction.

1. Chemical context

Quinolines are a major component of many natural products (Grundon, 1984[Grundon, M. F. (1984). Nat. Prod. Rep. 1, 196-200.]) and drugs (Alhaider et al., 1985[Alhaider, A. A., Abdelkader, M. A. & Lien, E. J. (1985). J. Med. Chem. 28, 1394-1398.]; Campbell et al., 1988[Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031-1035.]). Compounds containing the quinoline ring system demonstrate a variety of biological and pharmaceutical activities (Marella et al., 2013[Marella, A., Tanwar, O. P., Saha, R., Ali, M. R., Srivastava, S., Akhter, M., Shaquiquzzaman, M. & Alam, M. M. (2013). Saudi Pharm. J. 21, 1-12.]). In the pharmaceutical industry, medications with a quinoline ring are known to have a wide range of therapeutic uses. Commercially available drugs include anti­asthmatic (Montelukast) (Paggiaro & Bacci, 2011[Paggiaro, P. & Bacci, E. (2011). Ther. Adv. Chron. Dis. 2, 47-58.]), anti­cancer (Irinotecan) (Ahmed et al., 2022[Ahmed, E. Y., Abdel Latif, N. A., Nasr, T., Awad, H. M. & Abdelhafez, O. M. (2022). Chem. Biol. Drug Des. 99, 609-619.]; Ammar et al., 2021[Ammar, Y. A., Elhagali, G. A. M., Abusaif, M. S., Selim, M. R., Zahran, M. A., Naser, T., Mehany, A. B. M. & Fayed, E. A. (2021). Med. Chem. Res. 30, 1649-1668.]; Mandewale et al., 2017[Mandewale, M. C., Patil, U. C., Shedge, S. V., Dappadwad, U. R. & Yamgar, R. S. (2017). Beni-Suef Univ. J. Basic Appl. Sci. 6, 354-361.]), anti­viral (Saquinavir) (Kaur & Kumar, 2021[Kaur, R. & Kumar, K. (2021). Eur. J. Med. Chem. 215, 113220.]), anti­bacterial (Ciprofloxacin) (Ezelarab et al., 2022[Ezelarab, H. A. A., Hassan, H. A., Abuo-Rahma, G. E. D. A. & Abbas, S. H. (2022). J. Iran. Chem. Soc. 20, 638-700.]; Friedel et al., 1989[Friedel, H. A., Campoli-Richards, D. M. & Goa, K. L. (1989). Drugs, 37, 491-522.]), anti­fungal (da Rosa Monte Machado et al., 2020[Rosa Monte Machado, G. da, Diedrich, D., Ruaro, T. C., Zimmer, A. R., Lettieri Teixeira, M., de Oliveira, L. F., Jean, M., Van de Weghe, P., de Andrade, S. F., Baggio Gnoatto, S. C. & Fuentefria, A. M. (2020). Braz. J. Microbiol. 51, 1691-1701.]), anti­protozoal (Clioquinol) (LeVine et al., 2009[LeVine, H., Ding, Q., Walker, J. A., Voss, R. S. & Augelli-Szafran, C. E. (2009). Neurosci. Lett. 465, 99-103.]), anti­malarial (Chloro­quine) (Orive et al., 2003[Orive, G., Gascón, A. R., Hernández, R. M., Igartua, M. & Luis Pedraz, J. (2003). Trends Pharmacol. Sci. 24, 207-210.]) and anti­psychotic (Aripiprazole) (Afzal et al., 2015[Afzal, O., Kumar, S., Haider, M. R., Ali, M. R., Kumar, R., Jaggi, M. & Bawa, S. (2015). Eur. J. Med. Chem. 97, 871-910.]; Kaur et al., 2010[Kaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245-3264.]; Kumar et al., 2009[Kumar, S., Bawa, S. & Gupta, H. (2009). Mini-Rev. Med. Chem. 9, 1648-1654.]; Zajdel et al., 2013[Zajdel, P., Marciniec, K., Maślankiewicz, A., Grychowska, K., Satała, G., Duszyńska, B., Lenda, T., Siwek, A., Nowak, G., Partyka, A., Wróbel, D., Jastrzębska-Więsek, M., Bojarski, A. J., Wesołowska, A. & Pawłowski, M. (2013). Eur. J. Med. Chem. 60, 42-50.]) agents. Halo­quinoline compounds, particularly chloro-substituted ones, are attracting inter­est because the halogen atom is potentially crucial to the bioactivity of the compound and in addition opens up the possibility for further structure elaboration (Majumdar et al., 2011[Majumdar, K. C., Ansary, I., Samanta, S. & Roy, B. (2011). Tetrahedron Lett. 52, 411-414.]; Zhang et al., 2010[Zhang, X., Yao, T., Campo, M. A. & Larock, R. C. (2010). Tetrahedron, 66, 1177-1187.]). Several quinoline-based hybrids linked to other biological moieties via hydrazone have been shown to have high biological activity (Katariya et al., 2020[Katariya, K. D., Shah, S. R. & Reddy, D. (2020). Bioorg. Chem. 94, 103406.]). The class of organic compounds known as hydrazones, which are related to ketones and aldehydes, has the formula R1R2C=NNH2 (Kajal et al., 2014[Kajal, A., Bala, S., Sharma, N., Kamboj, S. & Saini, V. (2014). Int. J. Med. Chem. 2014, 761030.]; Marcucci Ribeiro, 2004[Marcucci Ribeiro, M. C. (2004). Patent Application Publication No. US2004/0126437 A1.]). These substances have a variety of biological and pharmacological properties, including anti­microbial, anti-inflammatory, analgesic, anti­fungal, anti­tubercular, anti­viral, anti­cancer (Nasr et al., 2018[Nasr, T., Bondock, S., Rashed, H. M., Fayad, W., Youns, M. & Sakr, T. M. (2018). Eur. J. Med. Chem. 151, 723-739.]), anti­platelet, anti­malarial, anti­convulsant, cardio-protective, anthelmintic, anti­protozoal (Rollas & Küçükgüzel, 2007[Rollas, S. & Küçükgüzel, Ş. G. (2007). Molecules, 12, 1910-1939.]), anti­trypanosomal (Narang et al., 2012[Narang, R., Narasimhan, B. & Sharma, S. (2012). Curr. Med. Chem. 19, 569-612.]) and anti­schistosomiasis activity. The combination of hydrazones with the quinoline nucleus leads to compounds with unique biological and pharmacological activities. In this context, the present investigation reports the synthesis, crystal structures, and IR, 1H NMR, 13C NMR and mass spectroscopic, and elemental analyses of two diastereoselective derivatives, namely, (E)-N′-(4-chloro-3-nitro­benzyl­idene)aceto­hy­dra­zide (IV) and (E)-2-(4-chloro­benzyl­idene)-1-(quin­o­lin-8-yl)hy­dra­zine (VII).

2. Structural commentary

The crystal structure of IV is monoclinic, P21/c. The asymmetric unit of the crystal structure consists of a single mol­ecule [Fig. 1[link](a)]. Apart from the nitro group and the H atoms of the methyl group, the mol­ecule of IV is planar, with a maximum deviation of 0.11 Å for atom Cl1 from the least-squares plane through all the atoms. The nitro group shows positional disorder in the crystal structure (details are available in the Refinement section). The nitro group deviates from the plane through the rest of the mol­ecule by a twist around the C1—N1 bond of 49.3 (1)° for the major component and 57.1 (5)° for the minor component. The mol­ecular planarity and twist of the nitro group are consistent with the conformation reported for other structures containing the [(4-chloro-3-nitro­phen­yl)methyl­idene]formohydrazide moiety (Gu et al., 2012[Gu, W., Wu, R., Qi, S., Gu, C., Si, F. & Chen, Z. (2012). Molecules, 17, 4634-4650.]; Mokhnache & Bourzami, 2020[Mokhnache, K. & Bourzami, R. (2020). CCDC deposition No. 2011289. CCDC, Cambridge, England.]).

[Figure 1]
Figure 1
(a) The mol­ecular structure of compound IV, showing 50% probability displacement ellipsoids for one component of the disordered nitro group. (b) The crystal packing viewed down the a axis, showing the N—H⋯O hydrogen bonds as blue dotted lines, the C—H⋯O contacts as green dotted lines and the Cl⋯π contacts as red dotted lines. (c) A stack of N—H⋯O hydrogen-bonded mol­ecular pairs.

The crystal structure of VII is monoclinic, Pn, and comprises two independent mol­ecules (mol­ecule 1: atoms C1–C16, N1–N3 and Cl1; mol­ecule 2: C17–C32, N4–N6 and Cl2) of the compound [Fig. 2[link](a)]. The two mol­ecules are planar, with maximum deviations of 0.229 (3) (for N2) and 0.290 (1) Å (for N5) from the least-squares planes through all the atoms of the respective mol­ecules. Intra­molecular N—H⋯N contacts are observed in the structure, with geometry N2—H2A⋯N3 = 104.0° and N2⋯N3 = 2.672 (3) Å for the first mol­ecule, and N5—H5A⋯N6 = 103.5° and N5⋯N6 = 2.679 (4) Å for the second mol­ecule.

[Figure 2]
Figure 2
(a) The mol­ecular structure of compound VII, showing 50% probability displacement ellipsoids. (b) The crystal packing, viewed down the a axis, showing the C—H⋯Cl contacts as green dotted lines. (c) A segment of the crystal structure showing the mol­ecular chains formed through C—H⋯Cl contacts.

3. Supra­molecular features

In the crystal structure of IV, neighbouring pairs of mol­ecules, related by inversion symmetry, are linked by two inter­molecular (N3—H3A⋯O3) hydrogen bonds [Table 1[link] and Fig. 1[link](b)]. The two hydrogen bonds form rings with R22(8) geometry (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) between the mol­ecules. The linked mol­ecular pairs form columns along the a axis of the crystal [Fig. 1[link](c)] guided by C-halogen⋯π inter­actions (Prasanna & Guru Row, 2000[Prasanna, M. D. & Guru Row, T. N. (2000). Cryst. Eng. 3, 135-154.]; Mitra et al., 2020[Mitra, D., Bankoti, N., Michael, D., Sekar, K. & Row, T. N. G. (2020). J. Chem. Sci. 132, 93.]), with Cl⋯ring-centroid distances of 3.51 Å. Within a stack, the planes of the mol­ecules are parallel and close to either the (12[\overline{4}]) or ([\overline{1}]24) plane. C—H⋯O contacts are also observed in the structure, as shown in Table 1[link] and Fig. 1[link](b).

Table 1
Hydrogen-bond geometry (Å, °) for IV[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O3i 0.86 2.04 2.8803 (18) 167
C3—H3⋯O1ii 0.93 2.61 3.442 (3) 149
C9—H9A⋯O1Aiii 0.96 2.30 2.906 (8) 120
Symmetry codes: (i) [-x, -y+2, -z+1]; (ii) [-x+3, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, -y+1, -z+1].

The mol­ecules of compound VII are arranged in a herringbone pattern in the crystal [Fig. 2[link](b)]. Mol­ecules of the same type (i.e. mol­ecule 1 or 2) are linked through C—H⋯Cl contacts (Table 2[link]) to form zigzag chains. The chains are roughly aligned in the direction of [101] and [20[\overline 3]] [Fig. 2[link](c)].

Table 2
Hydrogen-bond geometry (Å, °) for VII[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯Cl1i 0.93 3.04 3.779 (3) 138
C30—H30⋯Cl2ii 0.93 3.05 3.943 (3) 163
Symmetry codes: (i) [x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}].

4. Database survey

De­hydro­abietic acid {systematic name: 2-[(4-chloro-3-nitro­phen­yl)methyl­ene]hydrazide} ethanol solvate [Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode VAZYAY; Gu et al., 2012[Gu, W., Wu, R., Qi, S., Gu, C., Si, F. & Chen, Z. (2012). Molecules, 17, 4634-4650.]] and N′-[(4-chloro-3-nitro­phen­yl)methyl­idene]pyridine-4-carbohydrazide (ZUTTUG; Mokhnache & Bourzami, 2020[Mokhnache, K. & Bourzami, R. (2020). CCDC deposition No. 2011289. CCDC, Cambridge, England.]) contain the [(4-chloro-3-nitro­phen­yl)methyl­idene]formohydrazide moiety. Similar to IV, the group is planar, except for the meta-nitro group, which is twisted from the plane of the rest of the fragment by about 48°.

(E)-1-(4-Chloro­benzyl­idene)-2-phenyl­hydrazine (AYUSOD; Tahir et al., 2011[Tahir, M. N., Tariq, M. I., Tariq, R. H. & Sarfraz, M. (2011). Acta Cryst. E67, o2377.]) contains the (1E)-1-[(4-chloro­phen­yl)methyl­idene]-2-phenyl­hydrazine group. The planarity of the mol­ecule in VII is similar to the geometry observed for the [(4-chloro­phen­yl)methyl­idene]-2-phenyl­hydrazine moiety in GAZYIR (Ojala et al., 2012[Ojala, W. H., Arola, T. M., Brigino, A. M., Leavell, J. D. & Ojala, C. R. (2012). Acta Cryst. C68, o270-o278.]) and AYUSOD.

5. Experimental details

5.1. Compound II: 1-[(2-chloro­quinolin-3-yl)methyl­idene]hydrazine

2-Chloro­quinoline-3-carbaldehyde, I (191.61 mg, 0.001 mmol), was dissolved in ethanol (30 ml) and hydrazine hydrate (0.486 ml, 0.01 mmol) was added dropwise. The reaction mixture was refluxed for 3 h followed by solvent evaporation and cooling. The resultant yellow solid was filtered off and washed with a small amount of ethanol before recrystallization from ethanol to afford a yellow powder (see Scheme 1) (Abd-El-Maksoud et al., 2016[Abd-El-Maksoud, M. A., Tawfik, H. A., Maigali, S. S., Soliman, F. M., Moharam, M. E. & Dondeti, M. F. (2016). Der Pharma Chem. 8, 291-301.]).

[Scheme 1]

5.2. Compound IV: (E)-N′-(4-chloro-3-nitro­benzyl­idene)acetohydrazide

4-Chloro-3-nitro­benzaldehyde (185.56 mg, 0.001 mmol) and glacial acetic acid (1 ml) were added to a solution of com­pound II (205.64 mg, 0.001 mmol) in dioxane (15 ml) while stirring. The reaction mixture was refluxed for 6 h and then cooled and poured into ice water. The solid obtained was crystallized from chloro­form to give yellow crystals of compound IV (65% yield) instead of the desired compound III (Ibrahim et al., 2010[Ibrahim, N. M., Yosef, H. A. A. & Mahran, M. R. H. (2010). Egypt. J. Chem. 53, 673-691.]).

M.p. 245 °C. IR (KBr, ν cm−1): 3188 (NH), 3098 (CH aromatic), 2970 (CH aliphatic), 1670 (C=O), 1608 (C=N), 1529, 1352 (NO2). 1H NMR (DMSO-d6, 400 MHz): δ 11.50 (s, 1H, NH, D2O exchangeable), 8.32 (br, 1H, H-2′), 8.02 (s, 1H, CH=N), 7.97 (d, 1H, J = 8.4 Hz, H-6′), 7.81 (d, 1H, J = 8.4 Hz, H-5′), 2.22 (s, 3H, CH3); MS (EI) m/z (%): 241, 243 (M+, 36.46, 18.06); 59 (C2H5NO, 100), 43 (C2H3O, 99.22); analysis calculated (%) for C9H8ClN3O3: C 44.74, H 3.34, N 17.39; found; C 44.98, H 3.50, N 17.61.

5.3. Compound VI: 1-(quinolin-8-yl)hydrazine

8-Hy­droxy­quinoline, V (145.158 mg, 0.001 mmol), was added to hydrazine hydrate (0.486 ml, 0.01 mmol) and the reaction mixture was refluxed for 48 h. The product crystallized as the reaction mixture was slowly cooled to room temperature. The yellow crystalline product isolated by vacuum filtration, followed by washing with warm water and air drying was 8-hydrazino­quinoline VI (see Scheme 2) (Guo et al., 2020[Guo, H., Cheng, K., Gao, Y., Bai, W., Wu, C., He, W., Li, C. & Li, Z. (2020). Bioorg. Med. Chem. 28, 115437.]; Taylor et al., 2017[Taylor, R. A., Bonanno, N. M., Mirza, D., Lough, A. J. & Lemaire, M. T. (2017). Polyhedron, 131, 34-39.]).

5.4. Compound VII: (E)-2-(4-chloro­benzyl­idene)-1-(quinolin-8-yl)hydrazine

4-Chloro­benzaldehyde (140.57 mg, 0.001 mmol) and glacial acetic acid (1 ml) were first added to a solution of 1-(quinolin-8-yl)hydrazine, VI (159.18 mg, 0.001 mmol), in ethanol (10 ml). The reaction mixture was refluxed for 8 h, then cooled to room temperature. The solid obtained was filtered off, washed with cold ethanol and recrystallized from ethanol to afford brown crystals (70% yield) of the target compound VII.

[Scheme 2]

M.p. 126–128 °C; IR (KBr, ν cm−1): 3301 (NH), 3037 (CH aromatic), 2942 (CH aliphatic), 1576, 1518 (2C=N); 1H NMR (DMSO-d6, 400 MHz): δ 10.83 (s, 1H, NH, D2O exchangeable), 8.83 (d, 1H, J = 2.8 Hz, quinoline-H), 8.39 (s, 1H, CH=N), 8.29 (d, 1H, J = 8 Hz, quinoline-H), 7.72 (d, 2H, J = 8.4 Hz, Ar-Hs), 7.65 (d, 1H, J = 7.2 Hz, quinoline-H), 7.56–7.54 (dd, 1H, J = 8, 4.8 Hz, quinoline-H), 7.52 (t like, 1H, J = 8.4, 7.6 Hz, quinoline-H), 7.46 (d, 2H, J = 8.4 Hz, Ar-Hs), 7.33 (d, 1H, J = 8 Hz, quinoline-H); 13C NMR (DMSO-d6, 100 MHz): δ 14 carbon type, 140.95, 136.60, 136.50, 135.16, 133.05, 129.23, 128.78, 128.11, 127.95, 122.29, 117.20, 108.31, 148.07 (C=N Ar-c), 139.15 (C=N); MS (EI) m/z (%): 281.76 (M+, 50.00), 217 (100, C11H8ClN3); analysis calculated (%) for C16H12ClN3: C 68.21, H 4.29, N 14.91; found: C 68.43, H 4.38; N 15.17.

6. Refinement

Crystal and structure refinement data are shown in Table 3[link]. The nitro group in IV is disordered, with the two components related by a 75.0 (6)° twist about the C—N bond, with occupancies of 0.837 (4) and 0.163 (4). H atoms were inserted in idealized positions and a riding model was used, with Uiso(H) values set at 1.2 or 1.5 times the Ueq value of the atom to which they are bonded.

Table 3
Experimental details

For both structures: Z = 4. Experiments were carried out with Cu Kα radiation using a Rigaku OD SuperNova Dual source diffractometer with an Atlas detector. The absorption corrections were Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]). H-atom parameters were constrained.

  IV VII
Crystal data
Chemical formula C9H8ClN3O3 C16H12ClN3
Mr 241.63 281.74
Crystal system, space group Monoclinic, P21/c Monoclinic, Pn
Temperature (K) 293 296
a, b, c (Å) 4.4717 (1), 11.9367 (2), 20.1382 (3) 7.7968 (3), 12.0926 (4), 14.8738 (5)
β (°) 95.689 (2) 100.601 (3)
V3) 1069.63 (3) 1378.42 (8)
μ (mm−1) 3.17 2.38
Crystal size (mm) 0.34 × 0.21 × 0.06 0.26 × 0.14 × 0.07
 
Data collection
Tmin, Tmax 0.500, 1.000 0.713, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7967, 2107, 1960 11753, 3869, 3609
Rint 0.021 0.024
(sin θ/λ)max−1) 0.619 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.111, 1.08 0.031, 0.085, 1.04
No. of reflections 2107 3869
No. of parameters 174 361
No. of restraints 132 2
Δρmax, Δρmin (e Å−3) 0.30, −0.27 0.12, −0.14
Absolute structure Flack x determined using 995 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.016 (12)
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2020).

(E)-N'-(4-Chloro-3-nitrobenzylidene)acetohydrazide (IV) top
Crystal data top
C9H8ClN3O3F(000) = 496
Mr = 241.63Dx = 1.500 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 4.4717 (1) ÅCell parameters from 5559 reflections
b = 11.9367 (2) Åθ = 4.3–72.9°
c = 20.1382 (3) ŵ = 3.17 mm1
β = 95.689 (2)°T = 293 K
V = 1069.63 (3) Å3Plate, yellow
Z = 40.34 × 0.21 × 0.06 mm
Data collection top
Rigaku OD SuperNova Dual source
diffractometer with an Atlas detector
1960 reflections with I > 2σ(I)
ω scansRint = 0.021
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2022)
θmax = 72.6°, θmin = 4.3°
Tmin = 0.500, Tmax = 1.000h = 54
7967 measured reflectionsk = 1114
2107 independent reflectionsl = 2423
Refinement top
Refinement on F2132 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.2562P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2107 reflectionsΔρmax = 0.30 e Å3
174 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Single-crystal XRD data were collected on an Agilent SuperNova Dual Atlas diffractometer with a mirror monochromator using Cu radiation. Crystal structures were solved and refined using SHELXT (Sheldrick, 2015a) and SHELXL (Sheldrick, 2015b). Non-hydrogen atoms for both IV and VII were refined with anisotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.1687 (3)0.64078 (14)0.65566 (9)0.0471 (4)0.837 (4)
N11.2480 (5)0.52916 (17)0.63231 (17)0.0625 (7)0.837 (4)
O11.2534 (7)0.45143 (16)0.67293 (12)0.0952 (8)0.837 (4)
O21.2958 (7)0.51630 (18)0.57543 (12)0.1103 (10)0.837 (4)
C1A1.1687 (3)0.64078 (14)0.65566 (9)0.0471 (4)0.163 (4)
N1A1.2420 (17)0.5222 (3)0.6464 (8)0.068 (3)0.163 (4)
O1A1.034 (2)0.4543 (3)0.6471 (9)0.116 (4)0.163 (4)
O2A1.4995 (17)0.4946 (6)0.6475 (7)0.090 (3)0.163 (4)
C21.3004 (3)0.68734 (15)0.71455 (8)0.0482 (4)
C31.2216 (4)0.79476 (16)0.73109 (8)0.0512 (4)
H31.3135630.8283950.7694790.061*
C41.0057 (4)0.85255 (15)0.69064 (8)0.0472 (4)
H40.9527150.9246660.7024410.057*
C50.8667 (3)0.80468 (13)0.63268 (7)0.0411 (3)
C60.9539 (3)0.69802 (13)0.61454 (8)0.0450 (4)
H60.8687440.6654620.5751640.054*
C70.6293 (3)0.86655 (13)0.59289 (8)0.0415 (3)
H70.5720800.9368810.6069680.050*
C80.1213 (3)0.85608 (14)0.44985 (8)0.0446 (3)
C90.2010 (5)0.74632 (18)0.42125 (11)0.0691 (5)
H9A0.0621330.7294570.3831090.104*
H9B0.1912100.6887370.4542440.104*
H9C0.4010940.7499910.4079610.104*
N20.5005 (3)0.82510 (11)0.53927 (6)0.0419 (3)
N30.2774 (3)0.88996 (11)0.50721 (7)0.0428 (3)
H3A0.2359710.9536590.5240350.051*
O30.0780 (3)0.91708 (11)0.42345 (6)0.0548 (3)
Cl11.56369 (10)0.61768 (4)0.76803 (3)0.0685 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0399 (7)0.0448 (8)0.0565 (9)0.0002 (6)0.0039 (7)0.0106 (7)
N10.0628 (13)0.0481 (11)0.0749 (17)0.0061 (10)0.0019 (10)0.0087 (10)
O10.137 (2)0.0523 (11)0.0910 (15)0.0084 (12)0.0170 (14)0.0188 (10)
O20.171 (2)0.0700 (13)0.0966 (17)0.0287 (14)0.0491 (17)0.0050 (11)
C1A0.0399 (7)0.0448 (8)0.0565 (9)0.0002 (6)0.0039 (7)0.0106 (7)
N1A0.071 (5)0.055 (5)0.078 (5)0.002 (4)0.007 (4)0.015 (4)
O1A0.122 (8)0.077 (6)0.146 (8)0.015 (6)0.003 (7)0.005 (6)
O2A0.072 (5)0.060 (5)0.138 (7)0.027 (4)0.010 (5)0.007 (5)
C20.0362 (7)0.0569 (9)0.0509 (9)0.0012 (6)0.0014 (6)0.0177 (7)
C30.0457 (8)0.0625 (10)0.0435 (8)0.0052 (7)0.0046 (7)0.0048 (7)
C40.0446 (8)0.0496 (9)0.0464 (8)0.0002 (7)0.0003 (6)0.0018 (7)
C50.0343 (7)0.0465 (8)0.0421 (7)0.0018 (6)0.0021 (6)0.0084 (6)
C60.0418 (7)0.0462 (8)0.0461 (8)0.0028 (6)0.0005 (6)0.0049 (6)
C70.0356 (7)0.0437 (8)0.0447 (8)0.0003 (6)0.0016 (6)0.0053 (6)
C80.0418 (7)0.0490 (8)0.0422 (8)0.0022 (6)0.0003 (6)0.0015 (6)
C90.0786 (13)0.0622 (11)0.0628 (11)0.0109 (10)0.0116 (10)0.0160 (9)
N20.0359 (6)0.0448 (7)0.0444 (7)0.0028 (5)0.0004 (5)0.0067 (5)
N30.0396 (6)0.0429 (7)0.0443 (7)0.0049 (5)0.0044 (5)0.0006 (5)
O30.0522 (6)0.0591 (7)0.0494 (6)0.0066 (5)0.0138 (5)0.0016 (5)
Cl10.0502 (3)0.0778 (4)0.0735 (3)0.0036 (2)0.0134 (2)0.0291 (2)
Geometric parameters (Å, º) top
C1—C61.385 (2)C4—H40.9300
C1—C21.387 (2)C5—C61.391 (2)
C1—N11.468 (3)C5—C71.465 (2)
N1—O21.196 (4)C6—H60.9300
N1—O11.236 (3)C7—N21.273 (2)
C1A—C61.385 (2)C7—H70.9300
C1A—C21.387 (2)C8—O31.230 (2)
C1A—N1A1.469 (3)C8—N31.351 (2)
N1A—O2A1.196 (4)C8—C91.489 (3)
N1A—O1A1.236 (4)C9—H9A0.9600
C2—C31.379 (3)C9—H9B0.9600
C2—Cl11.7281 (15)C9—H9C0.9600
C3—C41.384 (2)N2—N31.3726 (17)
C3—H30.9300N3—H3A0.8600
C4—C51.390 (2)
C6—C1—C2121.62 (15)C4—C5—C6118.90 (14)
C6—C1—N1115.56 (19)C4—C5—C7119.45 (14)
C2—C1—N1122.81 (18)C6—C5—C7121.64 (14)
O2—N1—O1123.0 (2)C1A—C6—C5119.37 (15)
O2—N1—C1119.7 (2)C1—C6—C5119.37 (15)
O1—N1—C1117.3 (3)C1—C6—H6120.3
C6—C1A—C2121.62 (15)C5—C6—H6120.3
C6—C1A—N1A123.4 (6)N2—C7—C5120.71 (14)
C2—C1A—N1A114.4 (6)N2—C7—H7119.6
O2A—N1A—O1A122.9 (3)C5—C7—H7119.6
O2A—N1A—C1A119.4 (3)O3—C8—N3118.88 (15)
O1A—N1A—C1A117.0 (3)O3—C8—C9123.02 (15)
C3—C2—C1118.81 (14)N3—C8—C9118.10 (15)
C3—C2—C1A118.81 (14)C8—C9—H9A109.5
C3—C2—Cl1118.12 (13)C8—C9—H9B109.5
C1—C2—Cl1123.06 (14)H9A—C9—H9B109.5
C1A—C2—Cl1123.06 (14)C8—C9—H9C109.5
C2—C3—C4120.07 (16)H9A—C9—H9C109.5
C2—C3—H3120.0H9B—C9—H9C109.5
C4—C3—H3120.0C7—N2—N3115.24 (13)
C3—C4—C5121.15 (16)C8—N3—N2121.54 (13)
C3—C4—H4119.4C8—N3—H3A119.2
C5—C4—H4119.4N2—N3—H3A119.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O3i0.862.042.8803 (18)167
C3—H3···O1ii0.932.613.442 (3)149
C9—H9A···O1Aiii0.962.302.906 (8)120
Symmetry codes: (i) x, y+2, z+1; (ii) x+3, y+1/2, z+3/2; (iii) x+1, y+1, z+1.
(E)-2-(4-Chlorobenzylidene)-1-(quinolin-8-yl)hydrazine (VII) top
Crystal data top
C16H12ClN3F(000) = 584
Mr = 281.74Dx = 1.358 Mg m3
Monoclinic, PnCu Kα radiation, λ = 1.54184 Å
a = 7.7968 (3) ÅCell parameters from 6539 reflections
b = 12.0926 (4) Åθ = 3.6–72.7°
c = 14.8738 (5) ŵ = 2.38 mm1
β = 100.601 (3)°T = 296 K
V = 1378.42 (8) Å3Plate, brown
Z = 40.26 × 0.14 × 0.07 mm
Data collection top
Rigaku OD SuperNova Dual source
diffractometer with an Atlas detector
3609 reflections with I > 2σ(I)
ω scansRint = 0.024
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2022)
θmax = 72.8°, θmin = 3.7°
Tmin = 0.713, Tmax = 1.000h = 96
11753 measured reflectionsk = 1414
3869 independent reflectionsl = 1818
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.0525P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.12 e Å3
3869 reflectionsΔρmin = 0.14 e Å3
361 parametersAbsolute structure: Flack x determined using 995 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.016 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Single-crystal XRD data were collected on an Agilent SuperNova Dual Atlas diffractometer with a mirror monochromator using Cu radiation. Crystal structures were solved and refined using SHELXT (Sheldrick, 2015a) and SHELXL (Sheldrick, 2015b). Non-hydrogen atoms for both IV and VII were refined with anisotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6750 (3)0.4572 (2)0.58792 (17)0.0527 (5)
C20.5178 (4)0.5151 (2)0.58122 (18)0.0576 (6)
H20.5072420.5851520.5549300.069*
C30.3785 (4)0.4695 (2)0.61317 (19)0.0591 (6)
H30.2743640.5084810.6085680.071*
C40.3949 (4)0.3653 (2)0.65215 (17)0.0559 (6)
C50.5470 (4)0.3067 (2)0.66004 (18)0.0618 (6)
H50.5563560.2369330.6867620.074*
C60.6876 (4)0.3525 (2)0.62774 (19)0.0602 (6)
H60.7911580.3128630.6327620.072*
C70.8253 (4)0.5031 (2)0.55413 (19)0.0581 (6)
H70.9252390.4604030.5562680.070*
C80.9657 (3)0.73712 (19)0.44787 (16)0.0506 (5)
C90.8354 (4)0.8142 (2)0.44385 (18)0.0565 (6)
H90.7401330.8000180.4716230.068*
C100.8462 (4)0.9148 (2)0.39764 (19)0.0620 (6)
H100.7558280.9656940.3940700.074*
C110.9862 (4)0.9395 (2)0.35786 (19)0.0592 (6)
H110.9906421.0065670.3277550.071*
C121.1237 (3)0.8630 (2)0.36266 (16)0.0516 (5)
C131.1132 (3)0.75964 (19)0.40668 (16)0.0502 (5)
C141.2766 (4)0.8827 (2)0.32737 (18)0.0604 (6)
H141.2922380.9502670.3000410.072*
C151.4009 (4)0.8035 (3)0.3332 (2)0.0662 (7)
H151.5009800.8156660.3088770.079*
C161.3775 (4)0.7031 (3)0.3761 (2)0.0671 (7)
H161.4638620.6494480.3791330.080*
C170.1294 (4)0.2803 (2)0.41911 (17)0.0567 (6)
C180.0230 (4)0.2228 (2)0.4243 (2)0.0644 (7)
H180.0158140.1540100.4526800.077*
C190.1848 (4)0.2662 (2)0.3881 (2)0.0681 (7)
H190.2858780.2266600.3911830.082*
C200.1947 (4)0.3694 (2)0.34706 (19)0.0663 (7)
C210.0454 (4)0.4295 (2)0.34266 (19)0.0661 (7)
H210.0534900.4992140.3158950.079*
C220.1157 (4)0.3847 (2)0.37846 (19)0.0626 (6)
H220.2163880.4246490.3754080.075*
C230.3017 (4)0.2337 (2)0.45288 (18)0.0607 (6)
H230.4008300.2753590.4501520.073*
C240.5092 (4)0.0001 (2)0.56549 (17)0.0564 (6)
C250.3786 (4)0.0730 (2)0.57278 (19)0.0637 (7)
H250.2643500.0572830.5450570.076*
C260.4168 (5)0.1719 (2)0.6221 (2)0.0712 (8)
H260.3271950.2216270.6255880.085*
C270.5824 (5)0.1965 (2)0.6649 (2)0.0715 (8)
H270.6044320.2616240.6982980.086*
C280.7202 (4)0.1232 (2)0.65860 (17)0.0605 (6)
C290.6849 (4)0.0234 (2)0.60844 (17)0.0552 (5)
C300.8961 (5)0.1427 (3)0.6997 (2)0.0747 (8)
H300.9267700.2070200.7330230.090*
C311.0200 (5)0.0667 (3)0.6902 (2)0.0787 (9)
H311.1358510.0784290.7173830.094*
C320.9717 (4)0.0294 (3)0.6392 (2)0.0743 (8)
H321.0584740.0802130.6333410.089*
N10.8201 (3)0.60135 (18)0.52172 (15)0.0572 (5)
N20.9658 (3)0.63652 (19)0.49216 (18)0.0624 (5)
H2A1.0582430.5961650.5010100.075*
N31.2389 (3)0.68040 (19)0.41259 (17)0.0605 (5)
N40.3177 (3)0.13565 (18)0.48631 (16)0.0623 (6)
N50.4832 (3)0.0983 (2)0.51623 (18)0.0675 (6)
H5A0.5710130.1351670.5047340.081*
N60.8104 (3)0.05199 (19)0.59898 (17)0.0640 (5)
Cl10.21942 (11)0.30746 (7)0.69220 (7)0.0832 (2)
Cl20.39863 (14)0.42416 (8)0.30136 (9)0.0979 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0560 (13)0.0488 (12)0.0530 (12)0.0026 (10)0.0094 (10)0.0045 (9)
C20.0686 (15)0.0453 (12)0.0600 (14)0.0001 (11)0.0143 (11)0.0092 (9)
C30.0610 (15)0.0567 (14)0.0608 (14)0.0026 (11)0.0143 (11)0.0066 (11)
C40.0639 (15)0.0548 (13)0.0501 (12)0.0117 (11)0.0136 (11)0.0029 (9)
C50.0776 (18)0.0491 (13)0.0581 (14)0.0073 (12)0.0105 (12)0.0136 (10)
C60.0625 (15)0.0524 (13)0.0648 (15)0.0005 (11)0.0090 (12)0.0129 (11)
C70.0596 (15)0.0524 (13)0.0632 (14)0.0019 (11)0.0135 (11)0.0082 (10)
C80.0555 (14)0.0462 (12)0.0503 (12)0.0053 (10)0.0101 (10)0.0006 (9)
C90.0605 (14)0.0515 (13)0.0610 (14)0.0019 (11)0.0202 (11)0.0030 (10)
C100.0706 (17)0.0487 (13)0.0676 (15)0.0084 (11)0.0155 (13)0.0005 (10)
C110.0727 (16)0.0430 (12)0.0621 (14)0.0048 (11)0.0127 (12)0.0028 (10)
C120.0610 (14)0.0474 (12)0.0456 (11)0.0083 (10)0.0078 (9)0.0011 (9)
C130.0546 (13)0.0469 (12)0.0484 (12)0.0051 (9)0.0077 (10)0.0007 (9)
C140.0684 (15)0.0605 (14)0.0527 (13)0.0159 (13)0.0124 (11)0.0020 (10)
C150.0547 (15)0.0821 (19)0.0638 (15)0.0067 (13)0.0158 (12)0.0069 (13)
C160.0567 (15)0.0708 (17)0.0758 (17)0.0045 (13)0.0179 (13)0.0049 (13)
C170.0749 (17)0.0454 (12)0.0481 (12)0.0036 (11)0.0067 (11)0.0006 (9)
C180.0829 (19)0.0427 (13)0.0662 (15)0.0005 (12)0.0102 (13)0.0057 (10)
C190.0748 (18)0.0543 (15)0.0740 (17)0.0041 (13)0.0106 (13)0.0027 (12)
C200.079 (2)0.0544 (15)0.0620 (15)0.0071 (13)0.0031 (13)0.0003 (10)
C210.087 (2)0.0464 (13)0.0612 (15)0.0036 (12)0.0036 (14)0.0082 (10)
C220.0792 (18)0.0482 (13)0.0591 (15)0.0013 (12)0.0093 (13)0.0046 (10)
C230.0736 (18)0.0521 (14)0.0551 (14)0.0056 (12)0.0080 (12)0.0030 (10)
C240.0741 (16)0.0428 (11)0.0517 (13)0.0056 (11)0.0100 (11)0.0026 (9)
C250.0721 (18)0.0552 (14)0.0617 (16)0.0007 (12)0.0068 (12)0.0060 (11)
C260.089 (2)0.0533 (15)0.0721 (17)0.0082 (14)0.0158 (15)0.0006 (12)
C270.101 (2)0.0493 (14)0.0635 (16)0.0068 (14)0.0133 (15)0.0066 (11)
C280.0787 (18)0.0517 (14)0.0512 (13)0.0118 (12)0.0123 (12)0.0007 (9)
C290.0689 (15)0.0465 (12)0.0510 (12)0.0071 (11)0.0135 (11)0.0054 (9)
C300.089 (2)0.0681 (18)0.0650 (17)0.0239 (17)0.0098 (15)0.0024 (13)
C310.0683 (19)0.089 (2)0.0777 (19)0.0205 (16)0.0097 (14)0.0059 (15)
C320.0682 (18)0.0788 (19)0.0770 (18)0.0022 (15)0.0164 (15)0.0103 (14)
N10.0635 (13)0.0498 (11)0.0611 (12)0.0068 (9)0.0185 (10)0.0047 (9)
N20.0595 (13)0.0521 (11)0.0799 (14)0.0001 (10)0.0241 (11)0.0127 (10)
N30.0563 (12)0.0565 (12)0.0700 (13)0.0016 (9)0.0152 (10)0.0064 (9)
N40.0725 (15)0.0489 (11)0.0620 (12)0.0083 (10)0.0031 (10)0.0005 (9)
N50.0710 (15)0.0531 (12)0.0762 (15)0.0058 (11)0.0075 (12)0.0118 (10)
N60.0693 (14)0.0572 (12)0.0667 (13)0.0040 (10)0.0154 (11)0.0046 (10)
Cl10.0837 (5)0.0792 (5)0.0940 (5)0.0197 (4)0.0358 (4)0.0109 (4)
Cl20.0834 (6)0.0768 (5)0.1236 (7)0.0133 (4)0.0063 (5)0.0136 (5)
Geometric parameters (Å, º) top
C1—C61.393 (4)C17—C231.458 (4)
C1—C21.399 (4)C18—C191.381 (5)
C1—C71.467 (4)C18—H180.9300
C2—C31.379 (4)C19—C201.384 (4)
C2—H20.9300C19—H190.9300
C3—C41.384 (4)C20—C211.384 (5)
C3—H30.9300C20—Cl21.741 (3)
C4—C51.368 (4)C21—C221.382 (4)
C4—Cl11.736 (3)C21—H210.9300
C5—C61.390 (4)C22—H220.9300
C5—H50.9300C23—N41.283 (4)
C6—H60.9300C23—H230.9300
C7—N11.281 (3)C24—C251.367 (4)
C7—H70.9300C24—N51.391 (3)
C8—C91.372 (4)C24—C291.429 (4)
C8—N21.383 (3)C25—C261.406 (4)
C8—C131.425 (3)C25—H250.9300
C9—C101.407 (4)C26—C271.363 (5)
C9—H90.9300C26—H260.9300
C10—C111.367 (4)C27—C281.409 (5)
C10—H100.9300C27—H270.9300
C11—C121.408 (4)C28—C301.415 (5)
C11—H110.9300C28—C291.419 (4)
C12—C141.408 (4)C29—N61.363 (4)
C12—C131.421 (3)C30—C311.359 (5)
C13—N31.362 (3)C30—H300.9300
C14—C151.355 (4)C31—C321.402 (5)
C14—H140.9300C31—H310.9300
C15—C161.399 (4)C32—N61.318 (4)
C15—H150.9300C32—H320.9300
C16—N31.325 (4)N1—N21.360 (3)
C16—H160.9300N2—H2A0.8600
C17—C181.391 (4)N4—N51.363 (3)
C17—C221.395 (4)N5—H5A0.8600
C6—C1—C2118.6 (2)C17—C18—H18119.4
C6—C1—C7119.4 (2)C18—C19—C20119.1 (3)
C2—C1—C7122.1 (2)C18—C19—H19120.4
C3—C2—C1120.7 (2)C20—C19—H19120.4
C3—C2—H2119.7C21—C20—C19121.0 (3)
C1—C2—H2119.7C21—C20—Cl2119.8 (2)
C2—C3—C4119.4 (3)C19—C20—Cl2119.2 (3)
C2—C3—H3120.3C22—C21—C20119.3 (2)
C4—C3—H3120.3C22—C21—H21120.4
C5—C4—C3121.3 (2)C20—C21—H21120.4
C5—C4—Cl1119.20 (19)C21—C22—C17120.9 (3)
C3—C4—Cl1119.5 (2)C21—C22—H22119.6
C4—C5—C6119.4 (2)C17—C22—H22119.6
C4—C5—H5120.3N4—C23—C17120.6 (3)
C6—C5—H5120.3N4—C23—H23119.7
C5—C6—C1120.7 (3)C17—C23—H23119.7
C5—C6—H6119.7C25—C24—N5123.7 (3)
C1—C6—H6119.7C25—C24—C29120.2 (2)
N1—C7—C1120.5 (3)N5—C24—C29116.1 (2)
N1—C7—H7119.7C24—C25—C26120.1 (3)
C1—C7—H7119.7C24—C25—H25119.9
C9—C8—N2123.7 (2)C26—C25—H25119.9
C9—C8—C13120.1 (2)C27—C26—C25121.4 (3)
N2—C8—C13116.3 (2)C27—C26—H26119.3
C8—C9—C10119.9 (2)C25—C26—H26119.3
C8—C9—H9120.1C26—C27—C28120.0 (3)
C10—C9—H9120.1C26—C27—H27120.0
C11—C10—C9121.7 (3)C28—C27—H27120.0
C11—C10—H10119.2C27—C28—C30123.9 (3)
C9—C10—H10119.2C27—C28—C29119.6 (3)
C10—C11—C12119.7 (2)C30—C28—C29116.6 (3)
C10—C11—H11120.1N6—C29—C28123.3 (3)
C12—C11—H11120.1N6—C29—C24117.9 (2)
C11—C12—C14124.0 (2)C28—C29—C24118.7 (3)
C11—C12—C13119.6 (2)C31—C30—C28119.6 (3)
C14—C12—C13116.5 (2)C31—C30—H30120.2
N3—C13—C12123.2 (2)C28—C30—H30120.2
N3—C13—C8117.8 (2)C30—C31—C32119.4 (3)
C12—C13—C8119.1 (2)C30—C31—H31120.3
C15—C14—C12120.1 (2)C32—C31—H31120.3
C15—C14—H14120.0N6—C32—C31123.8 (3)
C12—C14—H14120.0N6—C32—H32118.1
C14—C15—C16119.4 (3)C31—C32—H32118.1
C14—C15—H15120.3C7—N1—N2116.2 (2)
C16—C15—H15120.3N1—N2—C8120.1 (2)
N3—C16—C15123.5 (3)N1—N2—H2A120.0
N3—C16—H16118.3C8—N2—H2A120.0
C15—C16—H16118.3C16—N3—C13117.4 (2)
C18—C17—C22118.6 (3)C23—N4—N5116.9 (3)
C18—C17—C23122.0 (2)N4—N5—C24119.5 (2)
C22—C17—C23119.5 (3)N4—N5—H5A120.2
C19—C18—C17121.1 (2)C24—N5—H5A120.2
C19—C18—H18119.4C32—N6—C29117.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···Cl1i0.933.043.779 (3)138
C30—H30···Cl2ii0.933.053.943 (3)163
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+3/2, y, z+1/2.
 

Acknowledgements

We thank Helwan University and Cardiff University for support.

References

First citationAbd-El-Maksoud, M. A., Tawfik, H. A., Maigali, S. S., Soliman, F. M., Moharam, M. E. & Dondeti, M. F. (2016). Der Pharma Chem. 8, 291–301.  CAS Google Scholar
First citationAfzal, O., Kumar, S., Haider, M. R., Ali, M. R., Kumar, R., Jaggi, M. & Bawa, S. (2015). Eur. J. Med. Chem. 97, 871–910.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAhmed, E. Y., Abdel Latif, N. A., Nasr, T., Awad, H. M. & Abdelhafez, O. M. (2022). Chem. Biol. Drug Des. 99, 609–619.  CrossRef CAS PubMed Google Scholar
First citationAlhaider, A. A., Abdelkader, M. A. & Lien, E. J. (1985). J. Med. Chem. 28, 1394–1398.  CrossRef CAS PubMed Google Scholar
First citationAmmar, Y. A., Elhagali, G. A. M., Abusaif, M. S., Selim, M. R., Zahran, M. A., Naser, T., Mehany, A. B. M. & Fayed, E. A. (2021). Med. Chem. Res. 30, 1649–1668.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCampbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031–1035.  CrossRef CAS PubMed Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationEzelarab, H. A. A., Hassan, H. A., Abuo-Rahma, G. E. D. A. & Abbas, S. H. (2022). J. Iran. Chem. Soc. 20, 638–700.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFriedel, H. A., Campoli-Richards, D. M. & Goa, K. L. (1989). Drugs, 37, 491–522.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrundon, M. F. (1984). Nat. Prod. Rep. 1, 196–200.  Google Scholar
First citationGu, W., Wu, R., Qi, S., Gu, C., Si, F. & Chen, Z. (2012). Molecules, 17, 4634–4650.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGuo, H., Cheng, K., Gao, Y., Bai, W., Wu, C., He, W., Li, C. & Li, Z. (2020). Bioorg. Med. Chem. 28, 115437.  CrossRef PubMed Google Scholar
First citationIbrahim, N. M., Yosef, H. A. A. & Mahran, M. R. H. (2010). Egypt. J. Chem. 53, 673–691.  CAS Google Scholar
First citationKajal, A., Bala, S., Sharma, N., Kamboj, S. & Saini, V. (2014). Int. J. Med. Chem. 2014, 761030.  PubMed Google Scholar
First citationKatariya, K. D., Shah, S. R. & Reddy, D. (2020). Bioorg. Chem. 94, 103406.  CrossRef PubMed Google Scholar
First citationKaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245–3264.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKaur, R. & Kumar, K. (2021). Eur. J. Med. Chem. 215, 113220.  CrossRef PubMed Google Scholar
First citationKumar, S., Bawa, S. & Gupta, H. (2009). Mini-Rev. Med. Chem. 9, 1648–1654.  CrossRef CAS Google Scholar
First citationLeVine, H., Ding, Q., Walker, J. A., Voss, R. S. & Augelli-Szafran, C. E. (2009). Neurosci. Lett. 465, 99–103.  CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMajumdar, K. C., Ansary, I., Samanta, S. & Roy, B. (2011). Tetrahedron Lett. 52, 411–414.  CrossRef CAS Google Scholar
First citationMandewale, M. C., Patil, U. C., Shedge, S. V., Dappadwad, U. R. & Yamgar, R. S. (2017). Beni-Suef Univ. J. Basic Appl. Sci. 6, 354–361.  Google Scholar
First citationMarcucci Ribeiro, M. C. (2004). Patent Application Publication No. US2004/0126437 A1.  Google Scholar
First citationMarella, A., Tanwar, O. P., Saha, R., Ali, M. R., Srivastava, S., Akhter, M., Shaquiquzzaman, M. & Alam, M. M. (2013). Saudi Pharm. J. 21, 1–12.  Web of Science CrossRef PubMed Google Scholar
First citationMitra, D., Bankoti, N., Michael, D., Sekar, K. & Row, T. N. G. (2020). J. Chem. Sci. 132, 93.  CrossRef Google Scholar
First citationMokhnache, K. & Bourzami, R. (2020). CCDC deposition No. 2011289. CCDC, Cambridge, England.  Google Scholar
First citationNarang, R., Narasimhan, B. & Sharma, S. (2012). Curr. Med. Chem. 19, 569–612.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNasr, T., Bondock, S., Rashed, H. M., Fayad, W., Youns, M. & Sakr, T. M. (2018). Eur. J. Med. Chem. 151, 723–739.  CrossRef CAS PubMed Google Scholar
First citationOjala, W. H., Arola, T. M., Brigino, A. M., Leavell, J. D. & Ojala, C. R. (2012). Acta Cryst. C68, o270–o278.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOrive, G., Gascón, A. R., Hernández, R. M., Igartua, M. & Luis Pedraz, J. (2003). Trends Pharmacol. Sci. 24, 207–210.  CrossRef PubMed CAS Google Scholar
First citationPaggiaro, P. & Bacci, E. (2011). Ther. Adv. Chron. Dis. 2, 47–58.  CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPrasanna, M. D. & Guru Row, T. N. (2000). Cryst. Eng. 3, 135–154.  CrossRef CAS Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRollas, S. & Küçükgüzel, Ş. G. (2007). Molecules, 12, 1910–1939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRosa Monte Machado, G. da, Diedrich, D., Ruaro, T. C., Zimmer, A. R., Lettieri Teixeira, M., de Oliveira, L. F., Jean, M., Van de Weghe, P., de Andrade, S. F., Baggio Gnoatto, S. C. & Fuentefria, A. M. (2020). Braz. J. Microbiol. 51, 1691–1701.  PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTahir, M. N., Tariq, M. I., Tariq, R. H. & Sarfraz, M. (2011). Acta Cryst. E67, o2377.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTaylor, R. A., Bonanno, N. M., Mirza, D., Lough, A. J. & Lemaire, M. T. (2017). Polyhedron, 131, 34–39.  Web of Science CSD CrossRef CAS Google Scholar
First citationZajdel, P., Marciniec, K., Maślankiewicz, A., Grychowska, K., Satała, G., Duszyńska, B., Lenda, T., Siwek, A., Nowak, G., Partyka, A., Wróbel, D., Jastrzębska-Więsek, M., Bojarski, A. J., Wesołowska, A. & Pawłowski, M. (2013). Eur. J. Med. Chem. 60, 42–50.  CrossRef CAS PubMed Google Scholar
First citationZhang, X., Yao, T., Campo, M. A. & Larock, R. C. (2010). Tetrahedron, 66, 1177–1187.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds