research communications
Synthesis and crystal structures of (E)-N′-(4-chloro-3-nitrobenzylidene)acetohydrazide and (E)-2-(4-chlorobenzylidene)-1-(quinolin-8-yl)hydrazine
aDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, 11795 Helwan, Cairo, Egypt, bPharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, MTI, Cairo, Egypt, and cSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
*Correspondence e-mail: tamerhefni@yahoo.com
This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.
The syntheses of two benzylidenehydrazine derivatives, namely, (E)-N′-(4-chloro-3-nitrobenzylidene)acetohydrazide, C9H8ClN3O3, and (E)-2-(4-chlorobenzylidene)-1-(quinolin-8-yl)hydrazine, C16H12ClN3, are reported. The molecules have been characterized using IR, 1H NMR, 13C NMR and mass spectroscopic and elemental analysis techniques, and their structures have been determined by single-crystal X-ray diffraction.
Keywords: synthesis; crystal structure; benzylidene; hydrazine.
1. Chemical context
Quinolines are a major component of many natural products (Grundon, 1984) and drugs (Alhaider et al., 1985; Campbell et al., 1988). Compounds containing the quinoline ring system demonstrate a variety of biological and pharmaceutical activities (Marella et al., 2013). In the pharmaceutical industry, medications with a quinoline ring are known to have a wide range of therapeutic uses. Commercially available drugs include antiasthmatic (Montelukast) (Paggiaro & Bacci, 2011), anticancer (Irinotecan) (Ahmed et al., 2022; Ammar et al., 2021; Mandewale et al., 2017), antiviral (Saquinavir) (Kaur & Kumar, 2021), antibacterial (Ciprofloxacin) (Ezelarab et al., 2022; Friedel et al., 1989), antifungal (da Rosa Monte Machado et al., 2020), antiprotozoal (Clioquinol) (LeVine et al., 2009), antimalarial (Chloroquine) (Orive et al., 2003) and antipsychotic (Aripiprazole) (Afzal et al., 2015; Kaur et al., 2010; Kumar et al., 2009; Zajdel et al., 2013) agents. Haloquinoline compounds, particularly chloro-substituted ones, are attracting interest because the halogen atom is potentially crucial to the bioactivity of the compound and in addition opens up the possibility for further structure elaboration (Majumdar et al., 2011; Zhang et al., 2010). Several quinoline-based hybrids linked to other biological moieties via hydrazone have been shown to have high biological activity (Katariya et al., 2020). The class of organic compounds known as which are related to and has the formula R1R2C=NNH2 (Kajal et al., 2014; Marcucci Ribeiro, 2004). These substances have a variety of biological and pharmacological properties, including antimicrobial, anti-inflammatory, analgesic, antifungal, antitubercular, antiviral, anticancer (Nasr et al., 2018), antiplatelet, antimalarial, anticonvulsant, cardio-protective, anthelmintic, antiprotozoal (Rollas & Küçükgüzel, 2007), antitrypanosomal (Narang et al., 2012) and antischistosomiasis activity. The combination of with the quinoline nucleus leads to compounds with unique biological and pharmacological activities. In this context, the present investigation reports the synthesis, crystal structures, and IR, 1H NMR, 13C NMR and mass spectroscopic, and elemental analyses of two diastereoselective derivatives, namely, (E)-N′-(4-chloro-3-nitrobenzylidene)acetohydrazide (IV) and (E)-2-(4-chlorobenzylidene)-1-(quinolin-8-yl)hydrazine (VII).
2. Structural commentary
The IV is monoclinic, P21/c. The of the consists of a single molecule [Fig. 1(a)]. Apart from the nitro group and the H atoms of the methyl group, the molecule of IV is planar, with a maximum deviation of 0.11 Å for atom Cl1 from the least-squares plane through all the atoms. The nitro group shows positional disorder in the (details are available in the Refinement section). The nitro group deviates from the plane through the rest of the molecule by a twist around the C1—N1 bond of 49.3 (1)° for the major component and 57.1 (5)° for the minor component. The molecular planarity and twist of the nitro group are consistent with the conformation reported for other structures containing the [(4-chloro-3-nitrophenyl)methylidene]formohydrazide moiety (Gu et al., 2012; Mokhnache & Bourzami, 2020).
ofThe VII is monoclinic, Pn, and comprises two independent molecules (molecule 1: atoms C1–C16, N1–N3 and Cl1; molecule 2: C17–C32, N4–N6 and Cl2) of the compound [Fig. 2(a)]. The two molecules are planar, with maximum deviations of 0.229 (3) (for N2) and 0.290 (1) Å (for N5) from the least-squares planes through all the atoms of the respective molecules. Intramolecular N—H⋯N contacts are observed in the structure, with geometry N2—H2A⋯N3 = 104.0° and N2⋯N3 = 2.672 (3) Å for the first molecule, and N5—H5A⋯N6 = 103.5° and N5⋯N6 = 2.679 (4) Å for the second molecule.
of3. Supramolecular features
In the IV, neighbouring pairs of molecules, related by inversion symmetry, are linked by two intermolecular (N3—H3A⋯O3) hydrogen bonds [Table 1 and Fig. 1(b)]. The two hydrogen bonds form rings with R22(8) geometry (Etter et al., 1990; Bernstein et al., 1995) between the molecules. The linked molecular pairs form columns along the a axis of the crystal [Fig. 1(c)] guided by C-halogen⋯π interactions (Prasanna & Guru Row, 2000; Mitra et al., 2020), with Cl⋯ring-centroid distances of 3.51 Å. Within a stack, the planes of the molecules are parallel and close to either the (12) or (24) plane. C—H⋯O contacts are also observed in the structure, as shown in Table 1 and Fig. 1(b).
of
|
The molecules of compound VII are arranged in a herringbone pattern in the crystal [Fig. 2(b)]. Molecules of the same type (i.e. molecule 1 or 2) are linked through C—H⋯Cl contacts (Table 2) to form zigzag chains. The chains are roughly aligned in the direction of [101] and [20] [Fig. 2(c)].
4. Database survey
Dehydroabietic acid {systematic name: 2-[(4-chloro-3-nitrophenyl)methylene]hydrazide} ethanol solvate [Cambridge Structural Database (CSD; Groom et al., 2016) refcode VAZYAY; Gu et al., 2012] and N′-[(4-chloro-3-nitrophenyl)methylidene]pyridine-4-carbohydrazide (ZUTTUG; Mokhnache & Bourzami, 2020) contain the [(4-chloro-3-nitrophenyl)methylidene]formohydrazide moiety. Similar to IV, the group is planar, except for the meta-nitro group, which is twisted from the plane of the rest of the fragment by about 48°.
(E)-1-(4-Chlorobenzylidene)-2-phenylhydrazine (AYUSOD; Tahir et al., 2011) contains the (1E)-1-[(4-chlorophenyl)methylidene]-2-phenylhydrazine group. The planarity of the molecule in VII is similar to the geometry observed for the [(4-chlorophenyl)methylidene]-2-phenylhydrazine moiety in GAZYIR (Ojala et al., 2012) and AYUSOD.
5. Experimental details
5.1. Compound II: 1-[(2-chloroquinolin-3-yl)methylidene]hydrazine
2-Chloroquinoline-3-carbaldehyde, I (191.61 mg, 0.001 mmol), was dissolved in ethanol (30 ml) and hydrazine hydrate (0.486 ml, 0.01 mmol) was added dropwise. The reaction mixture was refluxed for 3 h followed by solvent evaporation and cooling. The resultant yellow solid was filtered off and washed with a small amount of ethanol before recrystallization from ethanol to afford a yellow powder (see Scheme 1) (Abd-El-Maksoud et al., 2016).
5.2. Compound IV: (E)-N′-(4-chloro-3-nitrobenzylidene)acetohydrazide
4-Chloro-3-nitrobenzaldehyde (185.56 mg, 0.001 mmol) and glacial acetic acid (1 ml) were added to a solution of compound II (205.64 mg, 0.001 mmol) in dioxane (15 ml) while stirring. The reaction mixture was refluxed for 6 h and then cooled and poured into ice water. The solid obtained was crystallized from chloroform to give yellow crystals of compound IV (65% yield) instead of the desired compound III (Ibrahim et al., 2010).
M.p. 245 °C. IR (KBr, ν cm−1): 3188 (NH), 3098 (CH aromatic), 2970 (CH aliphatic), 1670 (C=O), 1608 (C=N), 1529, 1352 (NO2). 1H NMR (DMSO-d6, 400 MHz): δ 11.50 (s, 1H, NH, D2O exchangeable), 8.32 (br, 1H, H-2′), 8.02 (s, 1H, CH=N), 7.97 (d, 1H, J = 8.4 Hz, H-6′), 7.81 (d, 1H, J = 8.4 Hz, H-5′), 2.22 (s, 3H, CH3); MS (EI) m/z (%): 241, 243 (M+, 36.46, 18.06); 59 (C2H5NO, 100), 43 (C2H3O, 99.22); analysis calculated (%) for C9H8ClN3O3: C 44.74, H 3.34, N 17.39; found; C 44.98, H 3.50, N 17.61.
5.3. Compound VI: 1-(quinolin-8-yl)hydrazine
8-Hydroxyquinoline, V (145.158 mg, 0.001 mmol), was added to hydrazine hydrate (0.486 ml, 0.01 mmol) and the reaction mixture was refluxed for 48 h. The product crystallized as the reaction mixture was slowly cooled to room temperature. The yellow crystalline product isolated by vacuum filtration, followed by washing with warm water and air drying was 8-hydrazinoquinoline VI (see Scheme 2) (Guo et al., 2020; Taylor et al., 2017).
5.4. Compound VII: (E)-2-(4-chlorobenzylidene)-1-(quinolin-8-yl)hydrazine
4-Chlorobenzaldehyde (140.57 mg, 0.001 mmol) and glacial acetic acid (1 ml) were first added to a solution of 1-(quinolin-8-yl)hydrazine, VI (159.18 mg, 0.001 mmol), in ethanol (10 ml). The reaction mixture was refluxed for 8 h, then cooled to room temperature. The solid obtained was filtered off, washed with cold ethanol and recrystallized from ethanol to afford brown crystals (70% yield) of the target compound VII.
M.p. 126–128 °C; IR (KBr, ν cm−1): 3301 (NH), 3037 (CH aromatic), 2942 (CH aliphatic), 1576, 1518 (2C=N); 1H NMR (DMSO-d6, 400 MHz): δ 10.83 (s, 1H, NH, D2O exchangeable), 8.83 (d, 1H, J = 2.8 Hz, quinoline-H), 8.39 (s, 1H, CH=N), 8.29 (d, 1H, J = 8 Hz, quinoline-H), 7.72 (d, 2H, J = 8.4 Hz, Ar-Hs), 7.65 (d, 1H, J = 7.2 Hz, quinoline-H), 7.56–7.54 (dd, 1H, J = 8, 4.8 Hz, quinoline-H), 7.52 (t like, 1H, J = 8.4, 7.6 Hz, quinoline-H), 7.46 (d, 2H, J = 8.4 Hz, Ar-Hs), 7.33 (d, 1H, J = 8 Hz, quinoline-H); 13C NMR (DMSO-d6, 100 MHz): δ 14 carbon type, 140.95, 136.60, 136.50, 135.16, 133.05, 129.23, 128.78, 128.11, 127.95, 122.29, 117.20, 108.31, 148.07 (C=N Ar-c), 139.15 (C=N); MS (EI) m/z (%): 281.76 (M+, 50.00), 217 (100, C11H8ClN3); analysis calculated (%) for C16H12ClN3: C 68.21, H 4.29, N 14.91; found: C 68.43, H 4.38; N 15.17.
6. Refinement
Crystal and structure . The nitro group in IV is disordered, with the two components related by a 75.0 (6)° twist about the C—N bond, with occupancies of 0.837 (4) and 0.163 (4). H atoms were inserted in idealized positions and a riding model was used, with Uiso(H) values set at 1.2 or 1.5 times the Ueq value of the atom to which they are bonded.
data are shown in Table 3Supporting information
https://doi.org/10.1107/S2056989023006412/jq2029sup1.cif
contains datablocks IV, VII, global. DOI:Structure factors: contains datablock IV. DOI: https://doi.org/10.1107/S2056989023006412/jq2029IVsup2.hkl
Structure factors: contains datablock VII. DOI: https://doi.org/10.1107/S2056989023006412/jq2029VIIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989023006412/jq2029IVsup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989023006412/jq2029VIIsup5.cml
For both structures, data collection: CrysAlis PRO (Rigaku OD, 2022); cell
CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2020).C9H8ClN3O3 | F(000) = 496 |
Mr = 241.63 | Dx = 1.500 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 4.4717 (1) Å | Cell parameters from 5559 reflections |
b = 11.9367 (2) Å | θ = 4.3–72.9° |
c = 20.1382 (3) Å | µ = 3.17 mm−1 |
β = 95.689 (2)° | T = 293 K |
V = 1069.63 (3) Å3 | Plate, yellow |
Z = 4 | 0.34 × 0.21 × 0.06 mm |
Rigaku OD SuperNova Dual source diffractometer with an Atlas detector | 1960 reflections with I > 2σ(I) |
ω scans | Rint = 0.021 |
Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2022) | θmax = 72.6°, θmin = 4.3° |
Tmin = 0.500, Tmax = 1.000 | h = −5→4 |
7967 measured reflections | k = −11→14 |
2107 independent reflections | l = −24→23 |
Refinement on F2 | 132 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.111 | w = 1/[σ2(Fo2) + (0.0628P)2 + 0.2562P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
2107 reflections | Δρmax = 0.30 e Å−3 |
174 parameters | Δρmin = −0.26 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Single-crystal XRD data were collected on an Agilent SuperNova Dual Atlas diffractometer with a mirror monochromator using Cu radiation. Crystal structures were solved and refined using SHELXT (Sheldrick, 2015a) and SHELXL (Sheldrick, 2015b). Non-hydrogen atoms for both IV and VII were refined with anisotropic displacement parameters. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 1.1687 (3) | 0.64078 (14) | 0.65566 (9) | 0.0471 (4) | 0.837 (4) |
N1 | 1.2480 (5) | 0.52916 (17) | 0.63231 (17) | 0.0625 (7) | 0.837 (4) |
O1 | 1.2534 (7) | 0.45143 (16) | 0.67293 (12) | 0.0952 (8) | 0.837 (4) |
O2 | 1.2958 (7) | 0.51630 (18) | 0.57543 (12) | 0.1103 (10) | 0.837 (4) |
C1A | 1.1687 (3) | 0.64078 (14) | 0.65566 (9) | 0.0471 (4) | 0.163 (4) |
N1A | 1.2420 (17) | 0.5222 (3) | 0.6464 (8) | 0.068 (3) | 0.163 (4) |
O1A | 1.034 (2) | 0.4543 (3) | 0.6471 (9) | 0.116 (4) | 0.163 (4) |
O2A | 1.4995 (17) | 0.4946 (6) | 0.6475 (7) | 0.090 (3) | 0.163 (4) |
C2 | 1.3004 (3) | 0.68734 (15) | 0.71455 (8) | 0.0482 (4) | |
C3 | 1.2216 (4) | 0.79476 (16) | 0.73109 (8) | 0.0512 (4) | |
H3 | 1.313563 | 0.828395 | 0.769479 | 0.061* | |
C4 | 1.0057 (4) | 0.85255 (15) | 0.69064 (8) | 0.0472 (4) | |
H4 | 0.952715 | 0.924666 | 0.702441 | 0.057* | |
C5 | 0.8667 (3) | 0.80468 (13) | 0.63268 (7) | 0.0411 (3) | |
C6 | 0.9539 (3) | 0.69802 (13) | 0.61454 (8) | 0.0450 (4) | |
H6 | 0.868744 | 0.665462 | 0.575164 | 0.054* | |
C7 | 0.6293 (3) | 0.86655 (13) | 0.59289 (8) | 0.0415 (3) | |
H7 | 0.572080 | 0.936881 | 0.606968 | 0.050* | |
C8 | 0.1213 (3) | 0.85608 (14) | 0.44985 (8) | 0.0446 (3) | |
C9 | 0.2010 (5) | 0.74632 (18) | 0.42125 (11) | 0.0691 (5) | |
H9A | 0.062133 | 0.729457 | 0.383109 | 0.104* | |
H9B | 0.191210 | 0.688737 | 0.454244 | 0.104* | |
H9C | 0.401094 | 0.749991 | 0.407961 | 0.104* | |
N2 | 0.5005 (3) | 0.82510 (11) | 0.53927 (6) | 0.0419 (3) | |
N3 | 0.2774 (3) | 0.88996 (11) | 0.50721 (7) | 0.0428 (3) | |
H3A | 0.235971 | 0.953659 | 0.524035 | 0.051* | |
O3 | −0.0780 (3) | 0.91708 (11) | 0.42345 (6) | 0.0548 (3) | |
Cl1 | 1.56369 (10) | 0.61768 (4) | 0.76803 (3) | 0.0685 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0399 (7) | 0.0448 (8) | 0.0565 (9) | −0.0002 (6) | 0.0039 (7) | 0.0106 (7) |
N1 | 0.0628 (13) | 0.0481 (11) | 0.0749 (17) | 0.0061 (10) | −0.0019 (10) | 0.0087 (10) |
O1 | 0.137 (2) | 0.0523 (11) | 0.0910 (15) | 0.0084 (12) | −0.0170 (14) | 0.0188 (10) |
O2 | 0.171 (2) | 0.0700 (13) | 0.0966 (17) | 0.0287 (14) | 0.0491 (17) | −0.0050 (11) |
C1A | 0.0399 (7) | 0.0448 (8) | 0.0565 (9) | −0.0002 (6) | 0.0039 (7) | 0.0106 (7) |
N1A | 0.071 (5) | 0.055 (5) | 0.078 (5) | 0.002 (4) | 0.007 (4) | 0.015 (4) |
O1A | 0.122 (8) | 0.077 (6) | 0.146 (8) | −0.015 (6) | 0.003 (7) | −0.005 (6) |
O2A | 0.072 (5) | 0.060 (5) | 0.138 (7) | 0.027 (4) | 0.010 (5) | −0.007 (5) |
C2 | 0.0362 (7) | 0.0569 (9) | 0.0509 (9) | −0.0012 (6) | 0.0014 (6) | 0.0177 (7) |
C3 | 0.0457 (8) | 0.0625 (10) | 0.0435 (8) | −0.0052 (7) | −0.0046 (7) | 0.0048 (7) |
C4 | 0.0446 (8) | 0.0496 (9) | 0.0464 (8) | −0.0002 (7) | 0.0003 (6) | 0.0018 (7) |
C5 | 0.0343 (7) | 0.0465 (8) | 0.0421 (7) | −0.0018 (6) | 0.0021 (6) | 0.0084 (6) |
C6 | 0.0418 (7) | 0.0462 (8) | 0.0461 (8) | −0.0028 (6) | −0.0005 (6) | 0.0049 (6) |
C7 | 0.0356 (7) | 0.0437 (8) | 0.0447 (8) | 0.0003 (6) | 0.0016 (6) | 0.0053 (6) |
C8 | 0.0418 (7) | 0.0490 (8) | 0.0422 (8) | −0.0022 (6) | −0.0003 (6) | 0.0015 (6) |
C9 | 0.0786 (13) | 0.0622 (11) | 0.0628 (11) | 0.0109 (10) | −0.0116 (10) | −0.0160 (9) |
N2 | 0.0359 (6) | 0.0448 (7) | 0.0444 (7) | 0.0028 (5) | 0.0004 (5) | 0.0067 (5) |
N3 | 0.0396 (6) | 0.0429 (7) | 0.0443 (7) | 0.0049 (5) | −0.0044 (5) | 0.0006 (5) |
O3 | 0.0522 (6) | 0.0591 (7) | 0.0494 (6) | 0.0066 (5) | −0.0138 (5) | −0.0016 (5) |
Cl1 | 0.0502 (3) | 0.0778 (4) | 0.0735 (3) | 0.0036 (2) | −0.0134 (2) | 0.0291 (2) |
C1—C6 | 1.385 (2) | C4—H4 | 0.9300 |
C1—C2 | 1.387 (2) | C5—C6 | 1.391 (2) |
C1—N1 | 1.468 (3) | C5—C7 | 1.465 (2) |
N1—O2 | 1.196 (4) | C6—H6 | 0.9300 |
N1—O1 | 1.236 (3) | C7—N2 | 1.273 (2) |
C1A—C6 | 1.385 (2) | C7—H7 | 0.9300 |
C1A—C2 | 1.387 (2) | C8—O3 | 1.230 (2) |
C1A—N1A | 1.469 (3) | C8—N3 | 1.351 (2) |
N1A—O2A | 1.196 (4) | C8—C9 | 1.489 (3) |
N1A—O1A | 1.236 (4) | C9—H9A | 0.9600 |
C2—C3 | 1.379 (3) | C9—H9B | 0.9600 |
C2—Cl1 | 1.7281 (15) | C9—H9C | 0.9600 |
C3—C4 | 1.384 (2) | N2—N3 | 1.3726 (17) |
C3—H3 | 0.9300 | N3—H3A | 0.8600 |
C4—C5 | 1.390 (2) | ||
C6—C1—C2 | 121.62 (15) | C4—C5—C6 | 118.90 (14) |
C6—C1—N1 | 115.56 (19) | C4—C5—C7 | 119.45 (14) |
C2—C1—N1 | 122.81 (18) | C6—C5—C7 | 121.64 (14) |
O2—N1—O1 | 123.0 (2) | C1A—C6—C5 | 119.37 (15) |
O2—N1—C1 | 119.7 (2) | C1—C6—C5 | 119.37 (15) |
O1—N1—C1 | 117.3 (3) | C1—C6—H6 | 120.3 |
C6—C1A—C2 | 121.62 (15) | C5—C6—H6 | 120.3 |
C6—C1A—N1A | 123.4 (6) | N2—C7—C5 | 120.71 (14) |
C2—C1A—N1A | 114.4 (6) | N2—C7—H7 | 119.6 |
O2A—N1A—O1A | 122.9 (3) | C5—C7—H7 | 119.6 |
O2A—N1A—C1A | 119.4 (3) | O3—C8—N3 | 118.88 (15) |
O1A—N1A—C1A | 117.0 (3) | O3—C8—C9 | 123.02 (15) |
C3—C2—C1 | 118.81 (14) | N3—C8—C9 | 118.10 (15) |
C3—C2—C1A | 118.81 (14) | C8—C9—H9A | 109.5 |
C3—C2—Cl1 | 118.12 (13) | C8—C9—H9B | 109.5 |
C1—C2—Cl1 | 123.06 (14) | H9A—C9—H9B | 109.5 |
C1A—C2—Cl1 | 123.06 (14) | C8—C9—H9C | 109.5 |
C2—C3—C4 | 120.07 (16) | H9A—C9—H9C | 109.5 |
C2—C3—H3 | 120.0 | H9B—C9—H9C | 109.5 |
C4—C3—H3 | 120.0 | C7—N2—N3 | 115.24 (13) |
C3—C4—C5 | 121.15 (16) | C8—N3—N2 | 121.54 (13) |
C3—C4—H4 | 119.4 | C8—N3—H3A | 119.2 |
C5—C4—H4 | 119.4 | N2—N3—H3A | 119.2 |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O3i | 0.86 | 2.04 | 2.8803 (18) | 167 |
C3—H3···O1ii | 0.93 | 2.61 | 3.442 (3) | 149 |
C9—H9A···O1Aiii | 0.96 | 2.30 | 2.906 (8) | 120 |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+3, y+1/2, −z+3/2; (iii) −x+1, −y+1, −z+1. |
C16H12ClN3 | F(000) = 584 |
Mr = 281.74 | Dx = 1.358 Mg m−3 |
Monoclinic, Pn | Cu Kα radiation, λ = 1.54184 Å |
a = 7.7968 (3) Å | Cell parameters from 6539 reflections |
b = 12.0926 (4) Å | θ = 3.6–72.7° |
c = 14.8738 (5) Å | µ = 2.38 mm−1 |
β = 100.601 (3)° | T = 296 K |
V = 1378.42 (8) Å3 | Plate, brown |
Z = 4 | 0.26 × 0.14 × 0.07 mm |
Rigaku OD SuperNova Dual source diffractometer with an Atlas detector | 3609 reflections with I > 2σ(I) |
ω scans | Rint = 0.024 |
Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2022) | θmax = 72.8°, θmin = 3.7° |
Tmin = 0.713, Tmax = 1.000 | h = −9→6 |
11753 measured reflections | k = −14→14 |
3869 independent reflections | l = −18→18 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.031 | w = 1/[σ2(Fo2) + (0.0484P)2 + 0.0525P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.085 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.12 e Å−3 |
3869 reflections | Δρmin = −0.14 e Å−3 |
361 parameters | Absolute structure: Flack x determined using 995 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
2 restraints | Absolute structure parameter: 0.016 (12) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Single-crystal XRD data were collected on an Agilent SuperNova Dual Atlas diffractometer with a mirror monochromator using Cu radiation. Crystal structures were solved and refined using SHELXT (Sheldrick, 2015a) and SHELXL (Sheldrick, 2015b). Non-hydrogen atoms for both IV and VII were refined with anisotropic displacement parameters. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6750 (3) | 0.4572 (2) | 0.58792 (17) | 0.0527 (5) | |
C2 | 0.5178 (4) | 0.5151 (2) | 0.58122 (18) | 0.0576 (6) | |
H2 | 0.507242 | 0.585152 | 0.554930 | 0.069* | |
C3 | 0.3785 (4) | 0.4695 (2) | 0.61317 (19) | 0.0591 (6) | |
H3 | 0.274364 | 0.508481 | 0.608568 | 0.071* | |
C4 | 0.3949 (4) | 0.3653 (2) | 0.65215 (17) | 0.0559 (6) | |
C5 | 0.5470 (4) | 0.3067 (2) | 0.66004 (18) | 0.0618 (6) | |
H5 | 0.556356 | 0.236933 | 0.686762 | 0.074* | |
C6 | 0.6876 (4) | 0.3525 (2) | 0.62774 (19) | 0.0602 (6) | |
H6 | 0.791158 | 0.312863 | 0.632762 | 0.072* | |
C7 | 0.8253 (4) | 0.5031 (2) | 0.55413 (19) | 0.0581 (6) | |
H7 | 0.925239 | 0.460403 | 0.556268 | 0.070* | |
C8 | 0.9657 (3) | 0.73712 (19) | 0.44787 (16) | 0.0506 (5) | |
C9 | 0.8354 (4) | 0.8142 (2) | 0.44385 (18) | 0.0565 (6) | |
H9 | 0.740133 | 0.800018 | 0.471623 | 0.068* | |
C10 | 0.8462 (4) | 0.9148 (2) | 0.39764 (19) | 0.0620 (6) | |
H10 | 0.755828 | 0.965694 | 0.394070 | 0.074* | |
C11 | 0.9862 (4) | 0.9395 (2) | 0.35786 (19) | 0.0592 (6) | |
H11 | 0.990642 | 1.006567 | 0.327755 | 0.071* | |
C12 | 1.1237 (3) | 0.8630 (2) | 0.36266 (16) | 0.0516 (5) | |
C13 | 1.1132 (3) | 0.75964 (19) | 0.40668 (16) | 0.0502 (5) | |
C14 | 1.2766 (4) | 0.8827 (2) | 0.32737 (18) | 0.0604 (6) | |
H14 | 1.292238 | 0.950267 | 0.300041 | 0.072* | |
C15 | 1.4009 (4) | 0.8035 (3) | 0.3332 (2) | 0.0662 (7) | |
H15 | 1.500980 | 0.815666 | 0.308877 | 0.079* | |
C16 | 1.3775 (4) | 0.7031 (3) | 0.3761 (2) | 0.0671 (7) | |
H16 | 1.463862 | 0.649448 | 0.379133 | 0.080* | |
C17 | 0.1294 (4) | 0.2803 (2) | 0.41911 (17) | 0.0567 (6) | |
C18 | −0.0230 (4) | 0.2228 (2) | 0.4243 (2) | 0.0644 (7) | |
H18 | −0.015814 | 0.154010 | 0.452680 | 0.077* | |
C19 | −0.1848 (4) | 0.2662 (2) | 0.3881 (2) | 0.0681 (7) | |
H19 | −0.285878 | 0.226660 | 0.391183 | 0.082* | |
C20 | −0.1947 (4) | 0.3694 (2) | 0.34706 (19) | 0.0663 (7) | |
C21 | −0.0454 (4) | 0.4295 (2) | 0.34266 (19) | 0.0661 (7) | |
H21 | −0.053490 | 0.499214 | 0.315895 | 0.079* | |
C22 | 0.1157 (4) | 0.3847 (2) | 0.37846 (19) | 0.0626 (6) | |
H22 | 0.216388 | 0.424649 | 0.375408 | 0.075* | |
C23 | 0.3017 (4) | 0.2337 (2) | 0.45288 (18) | 0.0607 (6) | |
H23 | 0.400830 | 0.275359 | 0.450152 | 0.073* | |
C24 | 0.5092 (4) | 0.0001 (2) | 0.56549 (17) | 0.0564 (6) | |
C25 | 0.3786 (4) | −0.0730 (2) | 0.57278 (19) | 0.0637 (7) | |
H25 | 0.264350 | −0.057283 | 0.545057 | 0.076* | |
C26 | 0.4168 (5) | −0.1719 (2) | 0.6221 (2) | 0.0712 (8) | |
H26 | 0.327195 | −0.221627 | 0.625588 | 0.085* | |
C27 | 0.5824 (5) | −0.1965 (2) | 0.6649 (2) | 0.0715 (8) | |
H27 | 0.604432 | −0.261624 | 0.698298 | 0.086* | |
C28 | 0.7202 (4) | −0.1232 (2) | 0.65860 (17) | 0.0605 (6) | |
C29 | 0.6849 (4) | −0.0234 (2) | 0.60844 (17) | 0.0552 (5) | |
C30 | 0.8961 (5) | −0.1427 (3) | 0.6997 (2) | 0.0747 (8) | |
H30 | 0.926770 | −0.207020 | 0.733023 | 0.090* | |
C31 | 1.0200 (5) | −0.0667 (3) | 0.6902 (2) | 0.0787 (9) | |
H31 | 1.135851 | −0.078429 | 0.717383 | 0.094* | |
C32 | 0.9717 (4) | 0.0294 (3) | 0.6392 (2) | 0.0743 (8) | |
H32 | 1.058474 | 0.080213 | 0.633341 | 0.089* | |
N1 | 0.8201 (3) | 0.60135 (18) | 0.52172 (15) | 0.0572 (5) | |
N2 | 0.9658 (3) | 0.63652 (19) | 0.49216 (18) | 0.0624 (5) | |
H2A | 1.058243 | 0.596165 | 0.501010 | 0.075* | |
N3 | 1.2389 (3) | 0.68040 (19) | 0.41259 (17) | 0.0605 (5) | |
N4 | 0.3177 (3) | 0.13565 (18) | 0.48631 (16) | 0.0623 (6) | |
N5 | 0.4832 (3) | 0.0983 (2) | 0.51623 (18) | 0.0675 (6) | |
H5A | 0.571013 | 0.135167 | 0.504734 | 0.081* | |
N6 | 0.8104 (3) | 0.05199 (19) | 0.59898 (17) | 0.0640 (5) | |
Cl1 | 0.21942 (11) | 0.30746 (7) | 0.69220 (7) | 0.0832 (2) | |
Cl2 | −0.39863 (14) | 0.42416 (8) | 0.30136 (9) | 0.0979 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0560 (13) | 0.0488 (12) | 0.0530 (12) | −0.0026 (10) | 0.0094 (10) | 0.0045 (9) |
C2 | 0.0686 (15) | 0.0453 (12) | 0.0600 (14) | 0.0001 (11) | 0.0143 (11) | 0.0092 (9) |
C3 | 0.0610 (15) | 0.0567 (14) | 0.0608 (14) | 0.0026 (11) | 0.0143 (11) | 0.0066 (11) |
C4 | 0.0639 (15) | 0.0548 (13) | 0.0501 (12) | −0.0117 (11) | 0.0136 (11) | 0.0029 (9) |
C5 | 0.0776 (18) | 0.0491 (13) | 0.0581 (14) | −0.0073 (12) | 0.0105 (12) | 0.0136 (10) |
C6 | 0.0625 (15) | 0.0524 (13) | 0.0648 (15) | 0.0005 (11) | 0.0090 (12) | 0.0129 (11) |
C7 | 0.0596 (15) | 0.0524 (13) | 0.0632 (14) | −0.0019 (11) | 0.0135 (11) | 0.0082 (10) |
C8 | 0.0555 (14) | 0.0462 (12) | 0.0503 (12) | −0.0053 (10) | 0.0101 (10) | −0.0006 (9) |
C9 | 0.0605 (14) | 0.0515 (13) | 0.0610 (14) | −0.0019 (11) | 0.0202 (11) | −0.0030 (10) |
C10 | 0.0706 (17) | 0.0487 (13) | 0.0676 (15) | 0.0084 (11) | 0.0155 (13) | −0.0005 (10) |
C11 | 0.0727 (16) | 0.0430 (12) | 0.0621 (14) | −0.0048 (11) | 0.0127 (12) | 0.0028 (10) |
C12 | 0.0610 (14) | 0.0474 (12) | 0.0456 (11) | −0.0083 (10) | 0.0078 (9) | −0.0011 (9) |
C13 | 0.0546 (13) | 0.0469 (12) | 0.0484 (12) | −0.0051 (9) | 0.0077 (10) | −0.0007 (9) |
C14 | 0.0684 (15) | 0.0605 (14) | 0.0527 (13) | −0.0159 (13) | 0.0124 (11) | 0.0020 (10) |
C15 | 0.0547 (15) | 0.0821 (19) | 0.0638 (15) | −0.0067 (13) | 0.0158 (12) | 0.0069 (13) |
C16 | 0.0567 (15) | 0.0708 (17) | 0.0758 (17) | 0.0045 (13) | 0.0179 (13) | 0.0049 (13) |
C17 | 0.0749 (17) | 0.0454 (12) | 0.0481 (12) | 0.0036 (11) | 0.0067 (11) | −0.0006 (9) |
C18 | 0.0829 (19) | 0.0427 (13) | 0.0662 (15) | 0.0005 (12) | 0.0102 (13) | 0.0057 (10) |
C19 | 0.0748 (18) | 0.0543 (15) | 0.0740 (17) | −0.0041 (13) | 0.0106 (13) | 0.0027 (12) |
C20 | 0.079 (2) | 0.0544 (15) | 0.0620 (15) | 0.0071 (13) | 0.0031 (13) | 0.0003 (10) |
C21 | 0.087 (2) | 0.0464 (13) | 0.0612 (15) | 0.0036 (12) | 0.0036 (14) | 0.0082 (10) |
C22 | 0.0792 (18) | 0.0482 (13) | 0.0591 (15) | −0.0013 (12) | 0.0093 (13) | 0.0046 (10) |
C23 | 0.0736 (18) | 0.0521 (14) | 0.0551 (14) | 0.0056 (12) | 0.0080 (12) | 0.0030 (10) |
C24 | 0.0741 (16) | 0.0428 (11) | 0.0517 (13) | 0.0056 (11) | 0.0100 (11) | −0.0026 (9) |
C25 | 0.0721 (18) | 0.0552 (14) | 0.0617 (16) | 0.0007 (12) | 0.0068 (12) | −0.0060 (11) |
C26 | 0.089 (2) | 0.0533 (15) | 0.0721 (17) | −0.0082 (14) | 0.0158 (15) | −0.0006 (12) |
C27 | 0.101 (2) | 0.0493 (14) | 0.0635 (16) | 0.0068 (14) | 0.0133 (15) | 0.0066 (11) |
C28 | 0.0787 (18) | 0.0517 (14) | 0.0512 (13) | 0.0118 (12) | 0.0123 (12) | −0.0007 (9) |
C29 | 0.0689 (15) | 0.0465 (12) | 0.0510 (12) | 0.0071 (11) | 0.0135 (11) | −0.0054 (9) |
C30 | 0.089 (2) | 0.0681 (18) | 0.0650 (17) | 0.0239 (17) | 0.0098 (15) | 0.0024 (13) |
C31 | 0.0683 (19) | 0.089 (2) | 0.0777 (19) | 0.0205 (16) | 0.0097 (14) | −0.0059 (15) |
C32 | 0.0682 (18) | 0.0788 (19) | 0.0770 (18) | 0.0022 (15) | 0.0164 (15) | −0.0103 (14) |
N1 | 0.0635 (13) | 0.0498 (11) | 0.0611 (12) | −0.0068 (9) | 0.0185 (10) | 0.0047 (9) |
N2 | 0.0595 (13) | 0.0521 (11) | 0.0799 (14) | 0.0001 (10) | 0.0241 (11) | 0.0127 (10) |
N3 | 0.0563 (12) | 0.0565 (12) | 0.0700 (13) | 0.0016 (9) | 0.0152 (10) | 0.0064 (9) |
N4 | 0.0725 (15) | 0.0489 (11) | 0.0620 (12) | 0.0083 (10) | 0.0031 (10) | 0.0005 (9) |
N5 | 0.0710 (15) | 0.0531 (12) | 0.0762 (15) | 0.0058 (11) | 0.0075 (12) | 0.0118 (10) |
N6 | 0.0693 (14) | 0.0572 (12) | 0.0667 (13) | 0.0040 (10) | 0.0154 (11) | −0.0046 (10) |
Cl1 | 0.0837 (5) | 0.0792 (5) | 0.0940 (5) | −0.0197 (4) | 0.0358 (4) | 0.0109 (4) |
Cl2 | 0.0834 (6) | 0.0768 (5) | 0.1236 (7) | 0.0133 (4) | −0.0063 (5) | 0.0136 (5) |
C1—C6 | 1.393 (4) | C17—C23 | 1.458 (4) |
C1—C2 | 1.399 (4) | C18—C19 | 1.381 (5) |
C1—C7 | 1.467 (4) | C18—H18 | 0.9300 |
C2—C3 | 1.379 (4) | C19—C20 | 1.384 (4) |
C2—H2 | 0.9300 | C19—H19 | 0.9300 |
C3—C4 | 1.384 (4) | C20—C21 | 1.384 (5) |
C3—H3 | 0.9300 | C20—Cl2 | 1.741 (3) |
C4—C5 | 1.368 (4) | C21—C22 | 1.382 (4) |
C4—Cl1 | 1.736 (3) | C21—H21 | 0.9300 |
C5—C6 | 1.390 (4) | C22—H22 | 0.9300 |
C5—H5 | 0.9300 | C23—N4 | 1.283 (4) |
C6—H6 | 0.9300 | C23—H23 | 0.9300 |
C7—N1 | 1.281 (3) | C24—C25 | 1.367 (4) |
C7—H7 | 0.9300 | C24—N5 | 1.391 (3) |
C8—C9 | 1.372 (4) | C24—C29 | 1.429 (4) |
C8—N2 | 1.383 (3) | C25—C26 | 1.406 (4) |
C8—C13 | 1.425 (3) | C25—H25 | 0.9300 |
C9—C10 | 1.407 (4) | C26—C27 | 1.363 (5) |
C9—H9 | 0.9300 | C26—H26 | 0.9300 |
C10—C11 | 1.367 (4) | C27—C28 | 1.409 (5) |
C10—H10 | 0.9300 | C27—H27 | 0.9300 |
C11—C12 | 1.408 (4) | C28—C30 | 1.415 (5) |
C11—H11 | 0.9300 | C28—C29 | 1.419 (4) |
C12—C14 | 1.408 (4) | C29—N6 | 1.363 (4) |
C12—C13 | 1.421 (3) | C30—C31 | 1.359 (5) |
C13—N3 | 1.362 (3) | C30—H30 | 0.9300 |
C14—C15 | 1.355 (4) | C31—C32 | 1.402 (5) |
C14—H14 | 0.9300 | C31—H31 | 0.9300 |
C15—C16 | 1.399 (4) | C32—N6 | 1.318 (4) |
C15—H15 | 0.9300 | C32—H32 | 0.9300 |
C16—N3 | 1.325 (4) | N1—N2 | 1.360 (3) |
C16—H16 | 0.9300 | N2—H2A | 0.8600 |
C17—C18 | 1.391 (4) | N4—N5 | 1.363 (3) |
C17—C22 | 1.395 (4) | N5—H5A | 0.8600 |
C6—C1—C2 | 118.6 (2) | C17—C18—H18 | 119.4 |
C6—C1—C7 | 119.4 (2) | C18—C19—C20 | 119.1 (3) |
C2—C1—C7 | 122.1 (2) | C18—C19—H19 | 120.4 |
C3—C2—C1 | 120.7 (2) | C20—C19—H19 | 120.4 |
C3—C2—H2 | 119.7 | C21—C20—C19 | 121.0 (3) |
C1—C2—H2 | 119.7 | C21—C20—Cl2 | 119.8 (2) |
C2—C3—C4 | 119.4 (3) | C19—C20—Cl2 | 119.2 (3) |
C2—C3—H3 | 120.3 | C22—C21—C20 | 119.3 (2) |
C4—C3—H3 | 120.3 | C22—C21—H21 | 120.4 |
C5—C4—C3 | 121.3 (2) | C20—C21—H21 | 120.4 |
C5—C4—Cl1 | 119.20 (19) | C21—C22—C17 | 120.9 (3) |
C3—C4—Cl1 | 119.5 (2) | C21—C22—H22 | 119.6 |
C4—C5—C6 | 119.4 (2) | C17—C22—H22 | 119.6 |
C4—C5—H5 | 120.3 | N4—C23—C17 | 120.6 (3) |
C6—C5—H5 | 120.3 | N4—C23—H23 | 119.7 |
C5—C6—C1 | 120.7 (3) | C17—C23—H23 | 119.7 |
C5—C6—H6 | 119.7 | C25—C24—N5 | 123.7 (3) |
C1—C6—H6 | 119.7 | C25—C24—C29 | 120.2 (2) |
N1—C7—C1 | 120.5 (3) | N5—C24—C29 | 116.1 (2) |
N1—C7—H7 | 119.7 | C24—C25—C26 | 120.1 (3) |
C1—C7—H7 | 119.7 | C24—C25—H25 | 119.9 |
C9—C8—N2 | 123.7 (2) | C26—C25—H25 | 119.9 |
C9—C8—C13 | 120.1 (2) | C27—C26—C25 | 121.4 (3) |
N2—C8—C13 | 116.3 (2) | C27—C26—H26 | 119.3 |
C8—C9—C10 | 119.9 (2) | C25—C26—H26 | 119.3 |
C8—C9—H9 | 120.1 | C26—C27—C28 | 120.0 (3) |
C10—C9—H9 | 120.1 | C26—C27—H27 | 120.0 |
C11—C10—C9 | 121.7 (3) | C28—C27—H27 | 120.0 |
C11—C10—H10 | 119.2 | C27—C28—C30 | 123.9 (3) |
C9—C10—H10 | 119.2 | C27—C28—C29 | 119.6 (3) |
C10—C11—C12 | 119.7 (2) | C30—C28—C29 | 116.6 (3) |
C10—C11—H11 | 120.1 | N6—C29—C28 | 123.3 (3) |
C12—C11—H11 | 120.1 | N6—C29—C24 | 117.9 (2) |
C11—C12—C14 | 124.0 (2) | C28—C29—C24 | 118.7 (3) |
C11—C12—C13 | 119.6 (2) | C31—C30—C28 | 119.6 (3) |
C14—C12—C13 | 116.5 (2) | C31—C30—H30 | 120.2 |
N3—C13—C12 | 123.2 (2) | C28—C30—H30 | 120.2 |
N3—C13—C8 | 117.8 (2) | C30—C31—C32 | 119.4 (3) |
C12—C13—C8 | 119.1 (2) | C30—C31—H31 | 120.3 |
C15—C14—C12 | 120.1 (2) | C32—C31—H31 | 120.3 |
C15—C14—H14 | 120.0 | N6—C32—C31 | 123.8 (3) |
C12—C14—H14 | 120.0 | N6—C32—H32 | 118.1 |
C14—C15—C16 | 119.4 (3) | C31—C32—H32 | 118.1 |
C14—C15—H15 | 120.3 | C7—N1—N2 | 116.2 (2) |
C16—C15—H15 | 120.3 | N1—N2—C8 | 120.1 (2) |
N3—C16—C15 | 123.5 (3) | N1—N2—H2A | 120.0 |
N3—C16—H16 | 118.3 | C8—N2—H2A | 120.0 |
C15—C16—H16 | 118.3 | C16—N3—C13 | 117.4 (2) |
C18—C17—C22 | 118.6 (3) | C23—N4—N5 | 116.9 (3) |
C18—C17—C23 | 122.0 (2) | N4—N5—C24 | 119.5 (2) |
C22—C17—C23 | 119.5 (3) | N4—N5—H5A | 120.2 |
C19—C18—C17 | 121.1 (2) | C24—N5—H5A | 120.2 |
C19—C18—H18 | 119.4 | C32—N6—C29 | 117.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15···Cl1i | 0.93 | 3.04 | 3.779 (3) | 138 |
C30—H30···Cl2ii | 0.93 | 3.05 | 3.943 (3) | 163 |
Symmetry codes: (i) x+3/2, −y+1, z−1/2; (ii) x+3/2, −y, z+1/2. |
Acknowledgements
We thank Helwan University and Cardiff University for support.
References
Abd-El-Maksoud, M. A., Tawfik, H. A., Maigali, S. S., Soliman, F. M., Moharam, M. E. & Dondeti, M. F. (2016). Der Pharma Chem. 8, 291–301. CAS Google Scholar
Afzal, O., Kumar, S., Haider, M. R., Ali, M. R., Kumar, R., Jaggi, M. & Bawa, S. (2015). Eur. J. Med. Chem. 97, 871–910. Web of Science CrossRef CAS PubMed Google Scholar
Ahmed, E. Y., Abdel Latif, N. A., Nasr, T., Awad, H. M. & Abdelhafez, O. M. (2022). Chem. Biol. Drug Des. 99, 609–619. CrossRef CAS PubMed Google Scholar
Alhaider, A. A., Abdelkader, M. A. & Lien, E. J. (1985). J. Med. Chem. 28, 1394–1398. CrossRef CAS PubMed Google Scholar
Ammar, Y. A., Elhagali, G. A. M., Abusaif, M. S., Selim, M. R., Zahran, M. A., Naser, T., Mehany, A. B. M. & Fayed, E. A. (2021). Med. Chem. Res. 30, 1649–1668. CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031–1035. CrossRef CAS PubMed Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Ezelarab, H. A. A., Hassan, H. A., Abuo-Rahma, G. E. D. A. & Abbas, S. H. (2022). J. Iran. Chem. Soc. 20, 638–700. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Friedel, H. A., Campoli-Richards, D. M. & Goa, K. L. (1989). Drugs, 37, 491–522. CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Grundon, M. F. (1984). Nat. Prod. Rep. 1, 196–200. Google Scholar
Gu, W., Wu, R., Qi, S., Gu, C., Si, F. & Chen, Z. (2012). Molecules, 17, 4634–4650. Web of Science CSD CrossRef CAS PubMed Google Scholar
Guo, H., Cheng, K., Gao, Y., Bai, W., Wu, C., He, W., Li, C. & Li, Z. (2020). Bioorg. Med. Chem. 28, 115437. CrossRef PubMed Google Scholar
Ibrahim, N. M., Yosef, H. A. A. & Mahran, M. R. H. (2010). Egypt. J. Chem. 53, 673–691. CAS Google Scholar
Kajal, A., Bala, S., Sharma, N., Kamboj, S. & Saini, V. (2014). Int. J. Med. Chem. 2014, 761030. PubMed Google Scholar
Katariya, K. D., Shah, S. R. & Reddy, D. (2020). Bioorg. Chem. 94, 103406. CrossRef PubMed Google Scholar
Kaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245–3264. Web of Science CrossRef CAS PubMed Google Scholar
Kaur, R. & Kumar, K. (2021). Eur. J. Med. Chem. 215, 113220. CrossRef PubMed Google Scholar
Kumar, S., Bawa, S. & Gupta, H. (2009). Mini-Rev. Med. Chem. 9, 1648–1654. CrossRef CAS Google Scholar
LeVine, H., Ding, Q., Walker, J. A., Voss, R. S. & Augelli-Szafran, C. E. (2009). Neurosci. Lett. 465, 99–103. CrossRef PubMed CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Majumdar, K. C., Ansary, I., Samanta, S. & Roy, B. (2011). Tetrahedron Lett. 52, 411–414. CrossRef CAS Google Scholar
Mandewale, M. C., Patil, U. C., Shedge, S. V., Dappadwad, U. R. & Yamgar, R. S. (2017). Beni-Suef Univ. J. Basic Appl. Sci. 6, 354–361. Google Scholar
Marcucci Ribeiro, M. C. (2004). Patent Application Publication No. US2004/0126437 A1. Google Scholar
Marella, A., Tanwar, O. P., Saha, R., Ali, M. R., Srivastava, S., Akhter, M., Shaquiquzzaman, M. & Alam, M. M. (2013). Saudi Pharm. J. 21, 1–12. Web of Science CrossRef PubMed Google Scholar
Mitra, D., Bankoti, N., Michael, D., Sekar, K. & Row, T. N. G. (2020). J. Chem. Sci. 132, 93. CrossRef Google Scholar
Mokhnache, K. & Bourzami, R. (2020). CCDC deposition No. 2011289. CCDC, Cambridge, England. Google Scholar
Narang, R., Narasimhan, B. & Sharma, S. (2012). Curr. Med. Chem. 19, 569–612. Web of Science CrossRef CAS PubMed Google Scholar
Nasr, T., Bondock, S., Rashed, H. M., Fayad, W., Youns, M. & Sakr, T. M. (2018). Eur. J. Med. Chem. 151, 723–739. CrossRef CAS PubMed Google Scholar
Ojala, W. H., Arola, T. M., Brigino, A. M., Leavell, J. D. & Ojala, C. R. (2012). Acta Cryst. C68, o270–o278. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Orive, G., Gascón, A. R., Hernández, R. M., Igartua, M. & Luis Pedraz, J. (2003). Trends Pharmacol. Sci. 24, 207–210. CrossRef PubMed CAS Google Scholar
Paggiaro, P. & Bacci, E. (2011). Ther. Adv. Chron. Dis. 2, 47–58. CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Prasanna, M. D. & Guru Row, T. N. (2000). Cryst. Eng. 3, 135–154. CrossRef CAS Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rollas, S. & Küçükgüzel, Ş. G. (2007). Molecules, 12, 1910–1939. Web of Science CrossRef PubMed CAS Google Scholar
Rosa Monte Machado, G. da, Diedrich, D., Ruaro, T. C., Zimmer, A. R., Lettieri Teixeira, M., de Oliveira, L. F., Jean, M., Van de Weghe, P., de Andrade, S. F., Baggio Gnoatto, S. C. & Fuentefria, A. M. (2020). Braz. J. Microbiol. 51, 1691–1701. PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tahir, M. N., Tariq, M. I., Tariq, R. H. & Sarfraz, M. (2011). Acta Cryst. E67, o2377. Web of Science CSD CrossRef IUCr Journals Google Scholar
Taylor, R. A., Bonanno, N. M., Mirza, D., Lough, A. J. & Lemaire, M. T. (2017). Polyhedron, 131, 34–39. Web of Science CSD CrossRef CAS Google Scholar
Zajdel, P., Marciniec, K., Maślankiewicz, A., Grychowska, K., Satała, G., Duszyńska, B., Lenda, T., Siwek, A., Nowak, G., Partyka, A., Wróbel, D., Jastrzębska-Więsek, M., Bojarski, A. J., Wesołowska, A. & Pawłowski, M. (2013). Eur. J. Med. Chem. 60, 42–50. CrossRef CAS PubMed Google Scholar
Zhang, X., Yao, T., Campo, M. A. & Larock, R. C. (2010). Tetrahedron, 66, 1177–1187. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.