research communications
(NH4)2[UO2Cl4]·2H2O, a new uranyl tetrachloride with ammonium charge-balancing cations
aPacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
*Correspondence e-mail: robert.surbella@pnnl.gov
A new uranyl tetrachloride salt with chemical formula, (NH4)2[UO2Cl4]·2H2O, namely, diammonium uranyl tetrachloride dihydrate, 1, was prepared and crystallized via slow evaporation from a solution of 2 M hydrochloric acid. As confirmed by powder X-ray diffraction, the title compound crystallizes with an ammonium chloride impurity that formed as a result of the breakdown of a triazine precursor. The (UO2Cl4)2− dianion is charge balanced by ammonium cations, while an extensive hydrogen-bond network donated from structural water molecules stabilize the overall assembly. Compound 1 adds to the extensive collection of actinyl tetrachloride salts, but it represents the first without an alkali cation for purely inorganic compounds. Diffuse reflectance and luminescence spectra show typical absorption and emission behavior, respectively, of uranyl materials.
Keywords: ammonium; optical properties; uranyl tetrachloride; X-ray diffraction; crystal structure.
CCDC reference: 2278035
1. Chemical context
Hexavalent actinides such as uranium, neptunium, and plutonium exist in aqueous solution as the linear triatomic actinyl cation, with formula (AnO2)2+. The actinyl ion coordinates a variety of poly- and mono-atomic anions such that four to six atoms bond in the equatorial plane (Burns, 2005; Lussier et al., 2016). In part due to their ease of synthesis, structural simplicity, and high symmetry, the actinyl tetrahalide family of compounds has remained a relevant subclass of materials over several decades and has led to a deeper understanding of actinide electronic structure, bonding, and optical properties, among many others. The actinyl tetrahalides have general formula (AnO2X4)2− (where An = UVI, NpVI, and PuVI and X = Cl− and Br−) and have been studied to investigate periodic trends in f-element chemistry. Of the numerous compounds that include this anionic complex, the Cs+ salt with formula Cs2(AnO2Cl4) has been one of the most extensively characterized actinyl compounds. The uranyl structure was first reported in 1966 (Hall et al., 1966) with an improved model reported in 1991 (Watkin et al., 1991). In that time, it was used to quantitatively assign infrared (Ohwada, 1975) and Raman (Ohwada, 1980) active bands of the uranyl ion, which were found to be at 916 cm−1 and 831 cm−1, respectively. Improvements in analytical (i.e. X-ray absorption spectroscopies) and computational techniques (i.e. density functional theory calculations) over time have advanced our understanding in the electronic and molecular orbital energies of the uranyl ion in Cs2(UO2Cl4), providing strong evidence that actinide atoms can bind with significant covalent character (Denning, 2007; Vitova et al., 2015). Luminescence spectroscopy, Raman spectroscopy, and computational works have also been used to study bond-length changes of the uranyl ion with respect to different pressures in Cs2(UO2Cl4) (Osman et al., 2016; Warzecha et al., 2019). Beyond the Cs salt, systematic studies into actinyl bond strength changes as a function of metal center (i.e. An = UVI, NpVI and PuVI) have been reported for organic-based counter-cations (Schnaars & Wilson, 2013; Surbella III et al., 2017; Schnaars & Wilson, 2018). Quite recently, focus has been placed on the cationic influence on supramolecular assembly as well as actinyl bond-strength changes (Schnaars & Wilson, 2013; Surbella III et al., 2016; Carter et al., 2018; Pyrch et al., 2020; Augustine et al., 2023). Despite these numerous studies with actinyl tetrahalide species, we report a new inorganic uranyl tetrachloride not charge-balanced by an alkali cation, with formula (NH4)2(UO2Cl4)·2H2O (compound 1).
2. Structural commentary
Compound 1 crystallizes in the P. The uranyl tetrachloride dianion (UO2Cl4)2− is composed of a UVI metal center that is coordinated to two terminal, axial oxygen atoms and four equatorial chlorine atoms as shown in Fig. 1. The (UO2Cl4)2− dianion adopts a square-bipyramidal coordination geometry with D4h symmetry. The UVI atom sits on a center of inversion symmetry, resulting in a linear uranyl (UO2)2+ cation with a U1—O1 bond distance of 1.7745 (14) Å and O1—U1—O1 angle of 180°. The UVI atom is also coordinated to two crystallographically unique chlorine atoms with U1—Cl1 and U1—Cl2 bond distances of 2.6752 (5) Å and 2.6623 (4) Å, respectively. The two Cl1—U1—Cl2 bond angles measure 88.855 (15)° and 91.145 (15)°, and O1—U1—Cl1, bond angles also slightly deviate from 90°. The U—O (Lussier et al., 2016) and U—Cl (Surbella III et al., 2016) bond lengths are typical for these compounds. The structure contains one crystallographically unique structural water molecule (O1w) with two O—H covalent bonds with restrained bond lengths near 0.95 Å, and one crystallographically unique ammonium cation (N1) is present to provide charge balance to the overall structure. There are four N—H covalent bonds with restrained bond lengths that are approximately 0.87 Å. The extended is shown in Fig. 2.
3. Supramolecular features
A hydrogen-bond network consisting of seven unique interactions exists between ammonium cations, water molecules, and uranyl tetrachloride units as depicted in Fig. 3 and as tabulated in Table 1. Each water molecule donates two hydrogen bonds via H1A and H1B donor atoms to two separate uranyl tetrachloride complexes. On the other hand, each ammonium cation donates hydrogen bonds in three dimensions to three separate uranyl tetrachloride units and two separate water molecules, stabilizing the overall into a complex network. Fig. 4 shows the hydrogen-bond network in the extended structure.
4. Database survey
Compound 1 is the first inorganic uranyl tetrachloride charge-balanced with a non-alkali metal in the Inorganic Database (Zagorac et al., 2019). With respect to structures in the ICSD, Cs salts of the (AnO2Cl4)2− species have been reported for U (Hall et al., 1966; Watkin et al., 1991; Tutov et al., 1991; Schnaars & Wilson, 2013), Np (Wilkerson et al., 2007), and Pu (Wilkerson & Scott, 2008; Schnaars & Wilson, 2013). Other charge-balancing cations reported in the ICSD for UVI and PuVI include Rb (Anson et al., 1996; Schnaars & Wilson, 2013) and tetramethylammonium (Schnaars & Wilson, 2013), while that of Np includes (UO2Cl4)2−-doped NpVI (Wilkerson & Berg, 2009) and a mixed NpV/VI Cs salt (Alcock et al., 1986). Although there is a tetramethylammonium salt in the ICSD, we consider it as a better member of the Database (CSD) given the presence of organic-based (i.e. C—H bonds) components in the structure (Groom et al., 2016).
With respect to the CSD, there are numerous reports with ammonium-based charge-balancing species (Di Sipio et al., 1974a,b; Bois et al., 1976a,b; Rogers et al., 1987; Gatto et al., 2004; Schnaars & Wilson, 2013; Biswas et al., 2017; Serezkhina et al., 2021). Compound 1 has ammonium with a water molecule, while one report has ammonium with (Rogers et al., 1987). The other ammonium-based cations include organic-functional groups (Di Sipio et al., 1974a,b; Bois et al., 1976a,b; Gatto et al., 2004; Schnaars & Wilson, 2013; Biswas et al., 2017; Serezkhina et al., 2021). Other types of cations that charge-balance (UO2Cl4)2− in the CSD include pyridinium-based (Graziani et al., 1975; Bombieri et al., 1978; Marsh, 1988; Pospieszna et al., 2008; Deifel & Cahill, 2009; Baker et al., 2010; Andrews & Cahill, 2012; Lhoste et al., 2013; Hashem et al., 2013; Surbella III et al., 2016, 2017; Carter et al., 2018; Mishra et al., 2019; Pyrch et al., 2020), phenanthrolinium-based (Di Sipio et al., 1981), imidazolium-based (Zalkin et al., 1983; Qu et al., 2014; Kohlgruber, 2022), and phosphonium-based (Brown et al., 1996; Schnaars & Wilson, 2014) species. Other (UO2Cl4)2− complexes have crystallized in the presence of separate metal complexes (Moody & Ryan, 1979; Rogers et al., 1987, 1990; Pons y Moll et al., 2001; Hashem et al., 2014; Falaise et al., 2015; Zhang et al., 2017; Schöne et al., 2018), (Wang et al., 1986; Rogers et al., 1987, 1991; Rogers & Benning, 1991; Evans et al., 2002) and (Mishra et al., 2019). In total, there are over 60 known uranyl tetrachloride crystal structures in the CSD. Reference codes for these compounds can be found in the supporting information.
5. Synthesis and crystallization
Concentrated hydrochloric acid, HCl, (Sigma-Aldrich, 37%) was diluted to 2 M. Then, 0.0366 g (0.44 mmol) of 1,3,5-triazine (Sigma-Aldrich, 97.0%) was dissolved into 1 mL of 2 M HCl in a 1-dram borosilicate glass reaction vial. Uranyl acetate dihydrate (0.10216 g; 2.4 mmol) was added to this solution and allowed to dissolve completely. The vial was placed uncapped in a 20 mL centrifuge tube on a bed of desiccant. The centrifuge tube was capped, and the reaction solution was allowed to evaporate for 3 weeks until large yellow crystals formed. It was noticed that compound 1 partially dissolves in ethanol, affecting the preparation for characterization beyond single-crystal X-ray diffraction. Powder-diffraction data was collected using a Rigaku Ultima IV Diffractometer with Cu Kα radiation and a linear position-sensitive detector. The analysis revealed an ammonium chloride, NH4Cl, impurity phase along with compound 1. Diffuse reflectance and luminescence spectra were also collected for the mixed-phase material and can be found in the supporting information along with the powder-diffraction data.
6. Refinement
Crystal data, data collection, and structure . All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were found in Fourier difference maps, and their positions refined with positional restraints.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2278035
https://doi.org/10.1107/S2056989023005753/pk2687sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023005753/pk2687Isup2.hkl
Thermal Ellipsoidal plots and data, (e.g., Powder X-ray diffraction, diffuse reflectance spectroscopy, and photo luminescence spectroscopy). DOI: https://doi.org/10.1107/S2056989023005753/pk2687sup3.docx
Data collection: APEX4 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: CrystalMaker (CrystalMaker, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).(NH4)2[UO2Cl4]·2H2O | Z = 1 |
Mr = 483.95 | F(000) = 218 |
Triclinic, P1 | Dx = 2.823 Mg m−3 |
a = 6.6574 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 6.6954 (4) Å | Cell parameters from 9764 reflections |
c = 7.4018 (4) Å | θ = 3.5–36.7° |
α = 99.827 (2)° | µ = 15.17 mm−1 |
β = 93.879 (2)° | T = 100 K |
γ = 117.354 (1)° | Block, yellow |
V = 284.69 (3) Å3 | 0.10 × 0.03 × 0.03 mm |
Bruker D8 Venture diffractometer | 2803 reflections with I > 2σ(I) |
Radiation source: microsource Diamond II | Rint = 0.042 |
φ and ω scans | θmax = 36.8°, θmin = 3.5° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −11→11 |
Tmin = 0.460, Tmax = 0.747 | k = −11→11 |
24049 measured reflections | l = −12→12 |
2803 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.017 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.041 | All H-atom parameters refined |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0306P)2] where P = (Fo2 + 2Fc2)/3 |
2803 reflections | (Δ/σ)max = 0.001 |
76 parameters | Δρmax = 2.94 e Å−3 |
12 restraints | Δρmin = −1.97 e Å−3 |
Geometry. All estimated standard deviations (esds), except those pertaining to the dihedral angle between two least squares (ls) planes, are estimated using the full covariance matrix. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
U1 | 0.500000 | 0.500000 | 0.500000 | 0.00924 (3) | |
Cl1 | 0.11039 (7) | 0.32334 (9) | 0.63968 (6) | 0.01683 (7) | |
Cl2 | 0.27372 (8) | 0.27569 (9) | 0.15652 (6) | 0.01779 (7) | |
O1 | 0.4614 (3) | 0.7395 (3) | 0.4746 (2) | 0.0157 (2) | |
O1W | 0.2602 (3) | 0.7346 (3) | 1.0758 (2) | 0.0193 (2) | |
H1A | 0.173 (10) | 0.747 (13) | 1.169 (7) | 0.060 (19)* | |
H1B | 0.253 (11) | 0.589 (5) | 1.071 (9) | 0.048 (16)* | |
N1 | 0.2678 (3) | 0.9378 (3) | 0.7673 (2) | 0.0165 (2) | |
H2A | 0.227 (6) | 0.850 (5) | 0.846 (4) | 0.028 (11)* | |
H2B | 0.186 (5) | 1.008 (6) | 0.765 (5) | 0.042 (14)* | |
H2C | 0.247 (7) | 0.855 (6) | 0.657 (2) | 0.042 (14)* | |
H2D | 0.412 (2) | 1.040 (5) | 0.800 (5) | 0.049 (16)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
U1 | 0.01069 (4) | 0.01103 (4) | 0.00762 (4) | 0.00584 (3) | 0.00291 (2) | 0.00367 (2) |
Cl1 | 0.01357 (14) | 0.02264 (19) | 0.01467 (15) | 0.00771 (14) | 0.00622 (12) | 0.00655 (14) |
Cl2 | 0.01902 (16) | 0.02084 (18) | 0.01029 (14) | 0.00814 (14) | 0.00083 (12) | 0.00047 (13) |
O1 | 0.0210 (5) | 0.0150 (5) | 0.0159 (5) | 0.0113 (5) | 0.0057 (4) | 0.0067 (4) |
O1W | 0.0189 (6) | 0.0234 (7) | 0.0175 (6) | 0.0096 (5) | 0.0063 (5) | 0.0093 (5) |
N1 | 0.0180 (6) | 0.0189 (6) | 0.0126 (5) | 0.0085 (5) | 0.0027 (5) | 0.0045 (5) |
U1—O1 | 1.7745 (14) | O1W—H1A | 0.948 (10) |
U1—O1i | 1.7745 (14) | O1W—H1B | 0.947 (10) |
U1—Cl2 | 2.6623 (4) | N1—H2A | 0.868 (9) |
U1—Cl2i | 2.6623 (4) | N1—H2B | 0.872 (9) |
U1—Cl1 | 2.6752 (5) | N1—H2C | 0.870 (9) |
U1—Cl1i | 2.6752 (5) | N1—H2D | 0.871 (9) |
O1—U1—O1i | 180.0 | O1i—U1—Cl1i | 89.87 (5) |
O1—U1—Cl2 | 90.32 (5) | Cl2—U1—Cl1i | 88.855 (15) |
O1i—U1—Cl2 | 89.68 (5) | Cl2i—U1—Cl1i | 91.145 (15) |
O1—U1—Cl2i | 89.68 (5) | Cl1—U1—Cl1i | 180.000 (17) |
O1i—U1—Cl2i | 90.32 (5) | H1A—O1W—H1B | 104 (6) |
Cl2—U1—Cl2i | 180.000 (11) | H2A—N1—H2B | 109.7 (14) |
O1—U1—Cl1 | 89.86 (5) | H2A—N1—H2C | 109.8 (14) |
O1i—U1—Cl1 | 90.13 (5) | H2B—N1—H2C | 109.1 (14) |
Cl2—U1—Cl1 | 91.145 (15) | H2A—N1—H2D | 109.7 (14) |
Cl2i—U1—Cl1 | 88.855 (15) | H2B—N1—H2D | 109.1 (14) |
O1—U1—Cl1i | 90.14 (5) | H2C—N1—H2D | 109.5 (14) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1w—H1A···Cl1ii | 0.95 (6) | 2.36 (7) | 3.283 (2) | 165 (7) |
O1w—H1B···Cl2iii | 0.95 (5) | 2.35 (5) | 3.268 (2) | 163 (5) |
N1—H2A···O1w | 0.87 (3) | 2.02 (3) | 2.843 (2) | 157 (3) |
N1—H2B···Cl1iv | 0.87 (4) | 2.68 (4) | 3.441 (2) | 148 (3) |
N1—H2C···O1 | 0.87 (2) | 2.32 (4) | 3.014 (3) | 137 (4) |
N1—H2C···Cl1v | 0.87 (2) | 2.77 (3) | 3.4060 (17) | 131 (4) |
N1—H2D···O1wvi | 0.87 (3) | 2.03 (3) | 2.887 (3) | 169 (3) |
Symmetry codes: (ii) −x, −y+1, −z+2; (iii) x, y, z+1; (iv) x, y+1, z; (v) −x, −y+1, −z+1; (vi) −x+1, −y+2, −z+2. |
Acknowledgements
The authors thank Dr Aaron D. Nicholas for his feedback in preparing this manuscript.
Funding information
Funding for this research was provided by: U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, Heavy Element Chemistry Program, FWP 73200 .
References
Alcock, N. W., Flanders, D. J. & Brown, D. (1986). J. Chem. Soc. Dalton Trans. pp. 1403–1404. CrossRef ICSD Web of Science Google Scholar
Andrews, M. B. & Cahill, C. L. (2012). Dalton Trans. 41, 3911–3914. Web of Science CSD CrossRef PubMed Google Scholar
Anson, C. E., Al-Jowder, O., Jayasooriya, U. A. & Powell, A. K. (1996). Acta Cryst. C52, 279–281. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Augustine, L. J., Rajapaksha, H., Pyrch, M. M., Kasperski, M., Forbes, T. Z. & Mason, S. E. (2023). Inorg. Chem. 62, 372–380. Web of Science CrossRef ICSD CAS PubMed Google Scholar
Baker, R. J., Hashem, E., Motevalli, M., Ogilvie, H. V. & Walshe, A. (2010). Z. Anorg. Allg. Chem. 636, 443–445. Web of Science CSD CrossRef CAS Google Scholar
Biswas, S., Ma, S., Nuzzo, S., Twamley, B., Russell, A. T., Platts, J. A., Hartl, F. & Baker, R. J. (2017). Inorg. Chem. 56, 14426–14437. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bois, C., Dao, N. Q. & Rodier, N. (1976b). J. Inorg. Nucl. Chem. 38, 755–757. CSD CrossRef CAS Web of Science Google Scholar
Bois, C., Nguyen, Q. D. & Rodier, N. (1976a). Acta Cryst. B32, 1541–1544. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Bombieri, G., Forsellini, E. & Graziani, R. (1978). Acta Cryst. B34, 2622–2624. CSD CrossRef IUCr Journals Web of Science Google Scholar
Brown, D. R., Chippindale, A. M. & Denning, R. G. (1996). Acta Cryst. C52, 1164–1166. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2014). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burns, P. C. (2005). Can. Mineral. 43, 1839–1894. Web of Science CrossRef CAS Google Scholar
Carter, K. P., Surbella, R. G. III, Kalaj, M. & Cahill, C. L. (2018). Chem. Eur. J. 24, 12747–12756. Web of Science CrossRef CAS PubMed Google Scholar
CrystalMaker (2014). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England. Google Scholar
Deifel, N. P. & Cahill, C. L. (2009). CrystEngComm, 11, 2739–2744. Web of Science CSD CrossRef CAS Google Scholar
Denning, R. G. (2007). J. Phys. Chem. A, 111, 4125–4143. Web of Science CrossRef PubMed CAS Google Scholar
Di Sipio, L., Pasquetto, A., Pelizzi, G., Ingletto, G. & Montenero, A. (1981). Cryst. Struct. Commun. 10, 1153–1157. CAS Google Scholar
Di Sipio, L., Tondello, E., Pelizzi, G., Ingletto, G. & Montenero, A. (1974a). Cryst. Struct. Commun. 3, 527–530. CAS Google Scholar
Di Sipio, L., Tondello, E., Pelizzi, G., Ingletto, G. & Montenero, A. (1974b). Cryst. Struct. Commun. 3, 731–734. CAS Google Scholar
Evans, D. J., Junk, P. C. & Smith, M. K. (2002). New J. Chem. 26, 1043–1048. Web of Science CSD CrossRef CAS Google Scholar
Falaise, C., Volkringer, C., Hennig, C. & Loiseau, T. (2015). Chem. Eur. J. 21, 16654–16664. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gatto, C. C., Schulz Lang, E., Kupfer, A., Hagenbach, A. & Abram, U. (2004). Z. Anorg. Allg. Chem. 630, 1286–1295. Web of Science CSD CrossRef CAS Google Scholar
Graziani, R., Bombieri, G., Forsellini, E. & Paolucci, G. (1975). J. Cryst. Mol. Struct. 5, 1–14. CSD CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hall, D., Rae, A. D. & Waters, T. N. (1966). Acta Cryst. 20, 160–162. CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
Hashem, E., McCabe, T., Schulzke, C. & Baker, R. J. (2014). Dalton Trans. 43, 1125–1131. Web of Science CSD CrossRef CAS PubMed Google Scholar
Hashem, E., Swinburne, A. N., Schulzke, C., Evans, R. C., Platts, J. A., Kerridge, A., Natrajan, L. S. & Baker, R. J. (2013). RSC Adv. 3, 4350–4361. Web of Science CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kohlgruber, T. A. (2022). PhD thesis, University of Notre Dame, Notre Dame, Indiana, USA. Google Scholar
Lhoste, J., Henry, N., Loiseau, T., Guyot, Y. & Abraham, F. (2013). Polyhedron, 50, 321–327. Web of Science CSD CrossRef CAS Google Scholar
Lussier, A. J., Lopez, R. A. K. & Burns, P. C. (2016). Can. Mineral. 54, 177–283. Web of Science CrossRef CAS Google Scholar
Marsh, R. E. (1988). J. Crystallogr. Spectrosc. Res. 18, 219–222. CSD CrossRef CAS Web of Science Google Scholar
Mishra, M. K., Choudhary, H., Cordes, D. B., Kelley, S. P. & Rogers, R. D. (2019). Cryst. Growth Des. 19, 3529–3542. Web of Science CSD CrossRef CAS Google Scholar
Moody, D. C. & Ryan, R. R. (1979). Cryst. Struct. Commun. 8, 973–977. Google Scholar
Ohwada, K. (1975). Spectrochim. Acta A, 31, 973–977. CrossRef Web of Science Google Scholar
Ohwada, K. (1980). Appl. Spectrosc. 34, 327–331. CrossRef CAS Web of Science Google Scholar
Osman, H. H., Pertierra, P., Salvadó, M. A., Izquierdo-Ruiz, F. & Recio, J. M. (2016). Phys. Chem. Chem. Phys. 18, 18398–18405. Web of Science CrossRef CAS PubMed Google Scholar
Pons y Moll, O., Le Borgne, T., Thuéry, P. & Ephritikhine, M. (2001). Acta Cryst. C57, 392–393. Google Scholar
Pospieszna, I., Radecka-Paryzek, W. & Kubicki, M. (2008). Acta Cryst. E64, m239. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pyrch, M. M., Williams, J. M., Kasperski, M. W., Applegate, L. C. & Forbes, T. Z. (2020). Inorg. Chim. Acta, 508, 119628. Web of Science CSD CrossRef Google Scholar
Qu, F., Zhu, Q. & Liu, C. (2014). Cryst. Growth Des. 14, 6421–6432. Web of Science CSD CrossRef CAS Google Scholar
Rogers, R. D. & Benning, M. M. (1991). J. Incl Phenom. Macrocycl Chem. 11, 121–135. CSD CrossRef CAS Web of Science Google Scholar
Rogers, R. D., Bond, A. H. & Hipple, W. G. (1990). J. Crystallogr. Spectrosc. Res. 20, 611–616. CSD CrossRef CAS Web of Science Google Scholar
Rogers, R. D., Bond, A. H., Hipple, W. G., Rollins, A. N. & Henry, R. F. (1991). Inorg. Chem. 30, 2671–2679. CSD CrossRef CAS Web of Science Google Scholar
Rogers, R. D., Kurihara, L. K. & Benning, M. M. (1987). Inorg. Chem. 26, 4346–4352. CSD CrossRef CAS Web of Science Google Scholar
Schnaars, D. D. & Wilson, R. E. (2013). Inorg. Chem. 52, 14138–14147. Web of Science CSD CrossRef ICSD CAS PubMed Google Scholar
Schnaars, D. D. & Wilson, R. E. (2014). Inorg. Chem. 53, 11036–11045. Web of Science CSD CrossRef CAS PubMed Google Scholar
Schnaars, D. D. & Wilson, R. E. (2018). Inorg. Chem. 57, 3008–3016. Web of Science CSD CrossRef CAS PubMed Google Scholar
Schöne, S., Radoske, T., März, J., Stumpf, T. & Ikeda-Ohno, A. (2018). Inorg. Chem. 57, 13318–13329. Web of Science PubMed Google Scholar
Serezkhina, L. B., Grigoriev, M. S., Rogaleva, E. F. & Serezhkin, V. N. (2021). Radiokhim. 63, 327–336. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Surbella, R. G. III, Andrews, M. B. & Cahill, C. L. (2016). J. Solid State Chem. 236, 257–271. Web of Science CSD CrossRef CAS Google Scholar
Surbella, R. G. III, Ducati, L. C., Pellegrini, K. L., McNamara, B. K., Autschbach, J., Schwantes, J. M. & Cahill, C. L. (2017). J. Am. Chem. Soc. 139, 10843–10855. Web of Science CSD CrossRef CAS PubMed Google Scholar
Tutov, A. G., Plakhtij, V. P., Usov, O. A., Bublyaev, R. A. & Chernenkov, Y. P. (1991). Kristallografiya, 36, 1135–1138. CAS Google Scholar
Vitova, T., Green, J. C., Denning, R. G., Löble, M., Kvashnina, K., Kas, J. J., Jorissen, K., Rehr, J. J., Malcherek, T. & Denecke, M. A. (2015). Inorg. Chem. 54, 174–182. Web of Science CrossRef CAS PubMed Google Scholar
Wang, W., Chen, B., Zheng, P., Wang, B. & Wang, M. (1986). Inorg. Chim. Acta, 117, 81–82. CSD CrossRef CAS Web of Science Google Scholar
Warzecha, E., Celis-Barros, C., Dilbeck, T., Hanson, K. & Albrecht-Schmitt, T. E. (2019). Inorg. Chem. 58, 228–233. Web of Science CrossRef CAS PubMed Google Scholar
Watkin, D. J., Denning, R. G. & Prout, K. (1991). Acta Cryst. C47, 2517–2519. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wilkerson, M. P., Arrington, C. A., Berg, J. M. & Scott, B. L. (2007). J. Alloys Compd. 444–445, 634–639. Web of Science CrossRef CAS Google Scholar
Wilkerson, M. P. & Berg, J. M. (2009). Radiochim. Acta, 97, 223–226. Web of Science CrossRef CAS Google Scholar
Wilkerson, M. P. & Scott, B. L. (2008). Acta Cryst. E64, i5. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zalkin, A., Perry, D., Tsao, L. & Zhang, D. (1983). Acta Cryst. C39, 1186–1188. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Zhang, Y., Bhadbhade, M., Kong, L., Karatchevtseva, I. & Zheng, R. (2017). Polyhedron, 138, 82–87. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.