research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(NH4)2[UO2Cl4]·2H2O, a new uranyl tetra­chloride with ammonium charge-balancing cations

crossmark logo

aPacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
*Correspondence e-mail: robert.surbella@pnnl.gov

Edited by S. Parkin, University of Kentucky, USA (Received 25 May 2023; accepted 29 June 2023; online 7 July 2023)

A new uranyl tetra­chloride salt with chemical formula, (NH4)2[UO2Cl4]·2H2O, namely, di­ammonium uranyl tetra­chloride dihydrate, 1, was prepared and crystallized via slow evaporation from a solution of 2 M hydro­chloric acid. As confirmed by powder X-ray diffraction, the title compound crystallizes with an ammonium chloride impurity that formed as a result of the breakdown of a triazine precursor. The (UO2Cl4)2− dianion is charge balanced by ammonium cations, while an extensive hydrogen-bond network donated from structural water mol­ecules stabilize the overall assembly. Compound 1 adds to the extensive collection of actinyl tetra­chloride salts, but it represents the first without an alkali cation for purely inorganic compounds. Diffuse reflectance and luminescence spectra show typical absorption and emission behavior, respectively, of uranyl materials.

1. Chemical context

Hexavalent actinides such as uranium, neptunium, and plutonium exist in aqueous solution as the linear triatomic actinyl cation, with formula (AnO2)2+. The actinyl ion coordinates a variety of poly- and mono-atomic anions such that four to six atoms bond in the equatorial plane (Burns, 2005[Burns, P. C. (2005). Can. Mineral. 43, 1839-1894.]; Lussier et al., 2016[Lussier, A. J., Lopez, R. A. K. & Burns, P. C. (2016). Can. Mineral. 54, 177-283.]). In part due to their ease of synthesis, structural simplicity, and high symmetry, the actinyl tetra­halide family of compounds has remained a relevant subclass of materials over several decades and has led to a deeper understanding of actinide electronic structure, bonding, and optical properties, among many others. The actinyl tetra­halides have general formula (AnO2X4)2− (where An = UVI, NpVI, and PuVI and X = Cl and Br) and have been studied to investigate periodic trends in f-element chemistry. Of the numerous compounds that include this anionic complex, the Cs+ salt with formula Cs2(AnO2Cl4) has been one of the most extensively characterized actinyl compounds. The uranyl structure was first reported in 1966 (Hall et al., 1966[Hall, D., Rae, A. D. & Waters, T. N. (1966). Acta Cryst. 20, 160-162.]) with an improved model reported in 1991 (Watkin et al., 1991[Watkin, D. J., Denning, R. G. & Prout, K. (1991). Acta Cryst. C47, 2517-2519.]). In that time, it was used to qu­anti­tatively assign infrared (Ohwada, 1975[Ohwada, K. (1975). Spectrochim. Acta A, 31, 973-977.]) and Raman (Ohwada, 1980[Ohwada, K. (1980). Appl. Spectrosc. 34, 327-331.]) active bands of the uranyl ion, which were found to be at 916 cm−1 and 831 cm−1, respectively. Improvements in analytical (i.e. X-ray absorption spectroscopies) and computational techniques (i.e. density functional theory calculations) over time have advanced our understanding in the electronic and mol­ecular orbital energies of the uranyl ion in Cs2(UO2Cl4), providing strong evidence that actinide atoms can bind with significant covalent character (Denning, 2007[Denning, R. G. (2007). J. Phys. Chem. A, 111, 4125-4143.]; Vitova et al., 2015[Vitova, T., Green, J. C., Denning, R. G., Löble, M., Kvashnina, K., Kas, J. J., Jorissen, K., Rehr, J. J., Malcherek, T. & Denecke, M. A. (2015). Inorg. Chem. 54, 174-182.]). Luminescence spectroscopy, Raman spectroscopy, and computational works have also been used to study bond-length changes of the uranyl ion with respect to different pressures in Cs2(UO2Cl4) (Osman et al., 2016[Osman, H. H., Pertierra, P., Salvadó, M. A., Izquierdo-Ruiz, F. & Recio, J. M. (2016). Phys. Chem. Chem. Phys. 18, 18398-18405.]; Warzecha et al., 2019[Warzecha, E., Celis-Barros, C., Dilbeck, T., Hanson, K. & Albrecht-Schmitt, T. E. (2019). Inorg. Chem. 58, 228-233.]). Beyond the Cs salt, systematic studies into actinyl bond strength changes as a function of metal center (i.e. An = UVI, NpVI and PuVI) have been reported for organic-based counter-cations (Schnaars & Wilson, 2013[Schnaars, D. D. & Wilson, R. E. (2013). Inorg. Chem. 52, 14138-14147.]; Surbella III et al., 2017[Surbella, R. G. III, Ducati, L. C., Pellegrini, K. L., McNamara, B. K., Autschbach, J., Schwantes, J. M. & Cahill, C. L. (2017). J. Am. Chem. Soc. 139, 10843-10855.]; Schnaars & Wilson, 2018[Schnaars, D. D. & Wilson, R. E. (2018). Inorg. Chem. 57, 3008-3016.]). Quite recently, focus has been placed on the cationic influence on supra­molecular assembly as well as actinyl bond-strength changes (Schnaars & Wilson, 2013[Schnaars, D. D. & Wilson, R. E. (2013). Inorg. Chem. 52, 14138-14147.]; Surbella III et al., 2016[Surbella, R. G. III, Andrews, M. B. & Cahill, C. L. (2016). J. Solid State Chem. 236, 257-271.]; Carter et al., 2018[Carter, K. P., Surbella, R. G. III, Kalaj, M. & Cahill, C. L. (2018). Chem. Eur. J. 24, 12747-12756.]; Pyrch et al., 2020[Pyrch, M. M., Williams, J. M., Kasperski, M. W., Applegate, L. C. & Forbes, T. Z. (2020). Inorg. Chim. Acta, 508, 119628.]; Augustine et al., 2023[Augustine, L. J., Rajapaksha, H., Pyrch, M. M., Kasperski, M., Forbes, T. Z. & Mason, S. E. (2023). Inorg. Chem. 62, 372-380.]). Despite these numerous studies with actinyl tetra­halide species, we report a new inorganic uranyl tetra­chloride not charge-balanced by an alkali cation, with formula (NH4)2(UO2Cl4)·2H2O (compound 1).

2. Structural commentary

Compound 1 crystallizes in the space group P[\overline{1}]. The uranyl tetra­chloride dianion (UO2Cl4)2− is composed of a UVI metal center that is coordinated to two terminal, axial oxygen atoms and four equatorial chlorine atoms as shown in Fig. 1[link]. The (UO2Cl4)2− dianion adopts a square-bipyramidal coordination geometry with D4h point group symmetry. The UVI atom sits on a center of inversion symmetry, resulting in a linear uranyl (UO2)2+ cation with a U1—O1 bond distance of 1.7745 (14) Å and O1—U1—O1 angle of 180°. The UVI atom is also coordinated to two crystallographically unique chlorine atoms with U1—Cl1 and U1—Cl2 bond distances of 2.6752 (5) Å and 2.6623 (4) Å, respectively. The two Cl1—U1—Cl2 bond angles measure 88.855 (15)° and 91.145 (15)°, and O1—U1—Cl1, bond angles also slightly deviate from 90°. The U—O (Lussier et al., 2016[Lussier, A. J., Lopez, R. A. K. & Burns, P. C. (2016). Can. Mineral. 54, 177-283.]) and U—Cl (Surbella III et al., 2016[Surbella, R. G. III, Andrews, M. B. & Cahill, C. L. (2016). J. Solid State Chem. 236, 257-271.]) bond lengths are typical for these compounds. The structure contains one crystallographically unique structural water mol­ecule (O1w) with two O—H covalent bonds with restrained bond lengths near 0.95 Å, and one crystallographically unique ammonium cation (N1) is present to provide charge balance to the overall structure. There are four N—H covalent bonds with restrained bond lengths that are approximately 0.87 Å. The extended crystal structure is shown in Fig. 2[link].

[Figure 1]
Figure 1
The uranyl tetra­chloride anionic unit along with a crystallographically unique water mol­ecule and ammonium cation. Displacement ellipsoids for non-hydrogen atoms are shown at 50% probability.
[Figure 2]
Figure 2
The crystal packing observed in compound 1 as viewed along the a-axis.

3. Supra­molecular features

A hydrogen-bond network consisting of seven unique inter­actions exists between ammonium cations, water mol­ecules, and uranyl tetra­chloride units as depicted in Fig. 3[link] and as tabulated in Table 1[link]. Each water mol­ecule donates two hydrogen bonds via H1A and H1B donor atoms to two separate uranyl tetra­chloride complexes. On the other hand, each ammonium cation donates hydrogen bonds in three dimensions to three separate uranyl tetra­chloride units and two separate water mol­ecules, stabilizing the overall crystal structure into a complex network. Fig. 4[link] shows the hydrogen-bond network in the extended structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1A⋯Cl1i 0.95 (6) 2.36 (7) 3.283 (2) 165 (7)
O1w—H1B⋯Cl2ii 0.95 (5) 2.35 (5) 3.268 (2) 163 (5)
N1—H2A⋯O1w 0.87 (3) 2.02 (3) 2.843 (2) 157 (3)
N1—H2B⋯Cl1iii 0.87 (4) 2.68 (4) 3.441 (2) 148 (3)
N1—H2C⋯O1 0.87 (2) 2.32 (4) 3.014 (3) 137 (4)
N1—H2C⋯Cl1iv 0.87 (2) 2.77 (3) 3.4060 (17) 131 (4)
N1—H2D⋯O1wv 0.87 (3) 2.03 (3) 2.887 (3) 169 (3)
Symmetry codes: (i) [-x, -y+1, -z+2]; (ii) x, y, z+1; (iii) x, y+1, z; (iv) [-x, -y+1, -z+1]; (v) [-x+1, -y+2, -z+2].
[Figure 3]
Figure 3
The seven unique hydrogen-bond inter­actions shown with the hydrogen-bond distances from donor hydrogen atom to acceptor atom.
[Figure 4]
Figure 4
The crystal packing along with the hydrogen-bond network observed in compound 1 as viewed slightly offset along the a-axis.

4. Database survey

Compound 1 is the first inorganic uranyl tetra­chloride charge-balanced with a non-alkali metal in the Inorganic Crystal Structure Database (Zagorac et al., 2019[Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918-925.]). With respect to structures in the ICSD, Cs salts of the (AnO2Cl4)2− species have been reported for U (Hall et al., 1966[Hall, D., Rae, A. D. & Waters, T. N. (1966). Acta Cryst. 20, 160-162.]; Watkin et al., 1991[Watkin, D. J., Denning, R. G. & Prout, K. (1991). Acta Cryst. C47, 2517-2519.]; Tutov et al., 1991[Tutov, A. G., Plakhtij, V. P., Usov, O. A., Bublyaev, R. A. & Chernenkov, Y. P. (1991). Kristallografiya, 36, 1135-1138.]; Schnaars & Wilson, 2013[Schnaars, D. D. & Wilson, R. E. (2013). Inorg. Chem. 52, 14138-14147.]), Np (Wilkerson et al., 2007[Wilkerson, M. P., Arrington, C. A., Berg, J. M. & Scott, B. L. (2007). J. Alloys Compd. 444-445, 634-639.]), and Pu (Wilkerson & Scott, 2008[Wilkerson, M. P. & Scott, B. L. (2008). Acta Cryst. E64, i5.]; Schnaars & Wilson, 2013[Schnaars, D. D. & Wilson, R. E. (2013). Inorg. Chem. 52, 14138-14147.]). Other charge-balancing cations reported in the ICSD for UVI and PuVI include Rb (Anson et al., 1996[Anson, C. E., Al-Jowder, O., Jayasooriya, U. A. & Powell, A. K. (1996). Acta Cryst. C52, 279-281.]; Schnaars & Wilson, 2013[Schnaars, D. D. & Wilson, R. E. (2013). Inorg. Chem. 52, 14138-14147.]) and tetra­methyl­ammonium (Schnaars & Wilson, 2013[Schnaars, D. D. & Wilson, R. E. (2013). Inorg. Chem. 52, 14138-14147.]), while that of Np includes (UO2Cl4)2−-doped NpVI (Wilkerson & Berg, 2009[Wilkerson, M. P. & Berg, J. M. (2009). Radiochim. Acta, 97, 223-226.]) and a mixed NpV/VI oxidation state Cs salt (Alcock et al., 1986[Alcock, N. W., Flanders, D. J. & Brown, D. (1986). J. Chem. Soc. Dalton Trans. pp. 1403-1404.]). Although there is a tetra­methyl­ammonium salt in the ICSD, we consider it as a better member of the Crystal Structure Database (CSD) given the presence of organic-based (i.e. C—H bonds) components in the structure (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

With respect to the CSD, there are numerous reports with ammonium-based charge-balancing species (Di Sipio et al., 1974a[Di Sipio, L., Tondello, E., Pelizzi, G., Ingletto, G. & Montenero, A. (1974a). Cryst. Struct. Commun. 3, 527-530.],b[Di Sipio, L., Tondello, E., Pelizzi, G., Ingletto, G. & Montenero, A. (1974b). Cryst. Struct. Commun. 3, 731-734.]; Bois et al., 1976a[Bois, C., Nguyen, Q. D. & Rodier, N. (1976a). Acta Cryst. B32, 1541-1544.],b[Bois, C., Dao, N. Q. & Rodier, N. (1976b). J. Inorg. Nucl. Chem. 38, 755-757.]; Rogers et al., 1987[Rogers, R. D., Kurihara, L. K. & Benning, M. M. (1987). Inorg. Chem. 26, 4346-4352.]; Gatto et al., 2004[Gatto, C. C., Schulz Lang, E., Kupfer, A., Hagenbach, A. & Abram, U. (2004). Z. Anorg. Allg. Chem. 630, 1286-1295.]; Schnaars & Wilson, 2013[Schnaars, D. D. & Wilson, R. E. (2013). Inorg. Chem. 52, 14138-14147.]; Biswas et al., 2017[Biswas, S., Ma, S., Nuzzo, S., Twamley, B., Russell, A. T., Platts, J. A., Hartl, F. & Baker, R. J. (2017). Inorg. Chem. 56, 14426-14437.]; Serezkhina et al., 2021[Serezkhina, L. B., Grigoriev, M. S., Rogaleva, E. F. & Serezhkin, V. N. (2021). Radiokhim. 63, 327-336.]). Compound 1 has ammonium with a water mol­ecule, while one report has ammonium with crown ethers (Rogers et al., 1987[Rogers, R. D., Kurihara, L. K. & Benning, M. M. (1987). Inorg. Chem. 26, 4346-4352.]). The other ammonium-based cations include organic-functional groups (Di Sipio et al., 1974a[Di Sipio, L., Tondello, E., Pelizzi, G., Ingletto, G. & Montenero, A. (1974a). Cryst. Struct. Commun. 3, 527-530.],b[Di Sipio, L., Tondello, E., Pelizzi, G., Ingletto, G. & Montenero, A. (1974b). Cryst. Struct. Commun. 3, 731-734.]; Bois et al., 1976a[Bois, C., Nguyen, Q. D. & Rodier, N. (1976a). Acta Cryst. B32, 1541-1544.],b[Bois, C., Dao, N. Q. & Rodier, N. (1976b). J. Inorg. Nucl. Chem. 38, 755-757.]; Gatto et al., 2004[Gatto, C. C., Schulz Lang, E., Kupfer, A., Hagenbach, A. & Abram, U. (2004). Z. Anorg. Allg. Chem. 630, 1286-1295.]; Schnaars & Wilson, 2013[Schnaars, D. D. & Wilson, R. E. (2013). Inorg. Chem. 52, 14138-14147.]; Biswas et al., 2017[Biswas, S., Ma, S., Nuzzo, S., Twamley, B., Russell, A. T., Platts, J. A., Hartl, F. & Baker, R. J. (2017). Inorg. Chem. 56, 14426-14437.]; Serezkhina et al., 2021[Serezkhina, L. B., Grigoriev, M. S., Rogaleva, E. F. & Serezhkin, V. N. (2021). Radiokhim. 63, 327-336.]). Other types of cations that charge-balance (UO2Cl4)2− in the CSD include pyridinium-based (Graziani et al., 1975[Graziani, R., Bombieri, G., Forsellini, E. & Paolucci, G. (1975). J. Cryst. Mol. Struct. 5, 1-14.]; Bombieri et al., 1978[Bombieri, G., Forsellini, E. & Graziani, R. (1978). Acta Cryst. B34, 2622-2624.]; Marsh, 1988[Marsh, R. E. (1988). J. Crystallogr. Spectrosc. Res. 18, 219-222.]; Pospieszna et al., 2008[Pospieszna, I., Radecka-Paryzek, W. & Kubicki, M. (2008). Acta Cryst. E64, m239.]; Deifel & Cahill, 2009[Deifel, N. P. & Cahill, C. L. (2009). CrystEngComm, 11, 2739-2744.]; Baker et al., 2010[Baker, R. J., Hashem, E., Motevalli, M., Ogilvie, H. V. & Walshe, A. (2010). Z. Anorg. Allg. Chem. 636, 443-445.]; Andrews & Cahill, 2012[Andrews, M. B. & Cahill, C. L. (2012). Dalton Trans. 41, 3911-3914.]; Lhoste et al., 2013[Lhoste, J., Henry, N., Loiseau, T., Guyot, Y. & Abraham, F. (2013). Polyhedron, 50, 321-327.]; Hashem et al., 2013[Hashem, E., Swinburne, A. N., Schulzke, C., Evans, R. C., Platts, J. A., Kerridge, A., Natrajan, L. S. & Baker, R. J. (2013). RSC Adv. 3, 4350-4361.]; Surbella III et al., 2016[Surbella, R. G. III, Andrews, M. B. & Cahill, C. L. (2016). J. Solid State Chem. 236, 257-271.], 2017[Surbella, R. G. III, Ducati, L. C., Pellegrini, K. L., McNamara, B. K., Autschbach, J., Schwantes, J. M. & Cahill, C. L. (2017). J. Am. Chem. Soc. 139, 10843-10855.]; Carter et al., 2018[Carter, K. P., Surbella, R. G. III, Kalaj, M. & Cahill, C. L. (2018). Chem. Eur. J. 24, 12747-12756.]; Mishra et al., 2019[Mishra, M. K., Choudhary, H., Cordes, D. B., Kelley, S. P. & Rogers, R. D. (2019). Cryst. Growth Des. 19, 3529-3542.]; Pyrch et al., 2020[Pyrch, M. M., Williams, J. M., Kasperski, M. W., Applegate, L. C. & Forbes, T. Z. (2020). Inorg. Chim. Acta, 508, 119628.]), phenanthrolinium-based (Di Sipio et al., 1981[Di Sipio, L., Pasquetto, A., Pelizzi, G., Ingletto, G. & Montenero, A. (1981). Cryst. Struct. Commun. 10, 1153-1157.]), imidazolium-based (Zalkin et al., 1983[Zalkin, A., Perry, D., Tsao, L. & Zhang, D. (1983). Acta Cryst. C39, 1186-1188.]; Qu et al., 2014[Qu, F., Zhu, Q. & Liu, C. (2014). Cryst. Growth Des. 14, 6421-6432.]; Kohlgruber, 2022[Kohlgruber, T. A. (2022). PhD thesis, University of Notre Dame, Notre Dame, Indiana, USA.]), and phospho­nium-based (Brown et al., 1996[Brown, D. R., Chippindale, A. M. & Denning, R. G. (1996). Acta Cryst. C52, 1164-1166.]; Schnaars & Wilson, 2014[Schnaars, D. D. & Wilson, R. E. (2014). Inorg. Chem. 53, 11036-11045.]) species. Other (UO2Cl4)2− complexes have crystallized in the presence of separate metal complexes (Moody & Ryan, 1979[Moody, D. C. & Ryan, R. R. (1979). Cryst. Struct. Commun. 8, 973-977.]; Rogers et al., 1987[Rogers, R. D., Kurihara, L. K. & Benning, M. M. (1987). Inorg. Chem. 26, 4346-4352.], 1990[Rogers, R. D., Bond, A. H. & Hipple, W. G. (1990). J. Crystallogr. Spectrosc. Res. 20, 611-616.]; Pons y Moll et al., 2001[Pons y Moll, O., Le Borgne, T., Thuéry, P. & Ephritikhine, M. (2001). Acta Cryst. C57, 392-393.]; Hashem et al., 2014[Hashem, E., McCabe, T., Schulzke, C. & Baker, R. J. (2014). Dalton Trans. 43, 1125-1131.]; Falaise et al., 2015[Falaise, C., Volkringer, C., Hennig, C. & Loiseau, T. (2015). Chem. Eur. J. 21, 16654-16664.]; Zhang et al., 2017[Zhang, Y., Bhadbhade, M., Kong, L., Karatchevtseva, I. & Zheng, R. (2017). Polyhedron, 138, 82-87.]; Schöne et al., 2018[Schöne, S., Radoske, T., März, J., Stumpf, T. & Ikeda-Ohno, A. (2018). Inorg. Chem. 57, 13318-13329.]), crown ethers (Wang et al., 1986[Wang, W., Chen, B., Zheng, P., Wang, B. & Wang, M. (1986). Inorg. Chim. Acta, 117, 81-82.]; Rogers et al., 1987[Rogers, R. D., Kurihara, L. K. & Benning, M. M. (1987). Inorg. Chem. 26, 4346-4352.], 1991[Rogers, R. D., Bond, A. H., Hipple, W. G., Rollins, A. N. & Henry, R. F. (1991). Inorg. Chem. 30, 2671-2679.]; Rogers & Benning, 1991[Rogers, R. D. & Benning, M. M. (1991). J. Incl Phenom. Macrocycl Chem. 11, 121-135.]; Evans et al., 2002[Evans, D. J., Junk, P. C. & Smith, M. K. (2002). New J. Chem. 26, 1043-1048.]) and porphyrins (Mishra et al., 2019[Mishra, M. K., Choudhary, H., Cordes, D. B., Kelley, S. P. & Rogers, R. D. (2019). Cryst. Growth Des. 19, 3529-3542.]). In total, there are over 60 known uranyl tetra­chloride crystal structures in the CSD. Reference codes for these compounds can be found in the supporting information.

5. Synthesis and crystallization

Concentrated hydro­chloric acid, HCl, (Sigma-Aldrich, 37%) was diluted to 2 M. Then, 0.0366 g (0.44 mmol) of 1,3,5-triazine (Sigma-Aldrich, 97.0%) was dissolved into 1 mL of 2 M HCl in a 1-dram borosilicate glass reaction vial. Uranyl acetate dihydrate (0.10216 g; 2.4 mmol) was added to this solution and allowed to dissolve completely. The vial was placed uncapped in a 20 mL centrifuge tube on a bed of desiccant. The centrifuge tube was capped, and the reaction solution was allowed to evaporate for 3 weeks until large yellow crystals formed. It was noticed that compound 1 partially dissolves in ethanol, affecting the preparation for characterization beyond single-crystal X-ray diffraction. Powder-diffraction data was collected using a Rigaku Ultima IV Diffractometer with Cu Kα radiation and a linear position-sensitive detector. The analysis revealed an ammonium chloride, NH4Cl, impurity phase along with compound 1. Diffuse reflectance and luminescence spectra were also collected for the mixed-phase material and can be found in the supporting information along with the powder-diffraction data.

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link]. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were found in Fourier difference maps, and their positions refined with positional restraints.

Table 2
Experimental details

Crystal data
Chemical formula (NH4)2[UO2Cl4]·2H2O
Mr 483.95
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 6.6574 (4), 6.6954 (4), 7.4018 (4)
α, β, γ (°) 99.827 (2), 93.879 (2), 117.354 (1)
V3) 284.69 (3)
Z 1
Radiation type Mo Kα
μ (mm−1) 15.17
Crystal size (mm) 0.10 × 0.03 × 0.03
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.460, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 24049, 2803, 2803
Rint 0.042
(sin θ/λ)max−1) 0.842
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.041, 1.09
No. of reflections 2803
No. of parameters 76
No. of restraints 12
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 2.94, −1.97
Computer programs: APEX4 and SAINT (Bruker, 2014[Bruker (2014). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), CrystalMaker (CrystalMaker, 2014[CrystalMaker (2014). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX4 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: CrystalMaker (CrystalMaker, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Diammonium uranyl tetrachloride dihydrate top
Crystal data top
(NH4)2[UO2Cl4]·2H2OZ = 1
Mr = 483.95F(000) = 218
Triclinic, P1Dx = 2.823 Mg m3
a = 6.6574 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.6954 (4) ÅCell parameters from 9764 reflections
c = 7.4018 (4) Åθ = 3.5–36.7°
α = 99.827 (2)°µ = 15.17 mm1
β = 93.879 (2)°T = 100 K
γ = 117.354 (1)°Block, yellow
V = 284.69 (3) Å30.10 × 0.03 × 0.03 mm
Data collection top
Bruker D8 Venture
diffractometer
2803 reflections with I > 2σ(I)
Radiation source: microsource Diamond IIRint = 0.042
φ and ω scansθmax = 36.8°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.460, Tmax = 0.747k = 1111
24049 measured reflectionsl = 1212
2803 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: difference Fourier map
wR(F2) = 0.041All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0306P)2]
where P = (Fo2 + 2Fc2)/3
2803 reflections(Δ/σ)max = 0.001
76 parametersΔρmax = 2.94 e Å3
12 restraintsΔρmin = 1.97 e Å3
Special details top

Geometry. All estimated standard deviations (esds), except those pertaining to the dihedral angle between two least squares (ls) planes, are estimated using the full covariance matrix.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.5000000.5000000.5000000.00924 (3)
Cl10.11039 (7)0.32334 (9)0.63968 (6)0.01683 (7)
Cl20.27372 (8)0.27569 (9)0.15652 (6)0.01779 (7)
O10.4614 (3)0.7395 (3)0.4746 (2)0.0157 (2)
O1W0.2602 (3)0.7346 (3)1.0758 (2)0.0193 (2)
H1A0.173 (10)0.747 (13)1.169 (7)0.060 (19)*
H1B0.253 (11)0.589 (5)1.071 (9)0.048 (16)*
N10.2678 (3)0.9378 (3)0.7673 (2)0.0165 (2)
H2A0.227 (6)0.850 (5)0.846 (4)0.028 (11)*
H2B0.186 (5)1.008 (6)0.765 (5)0.042 (14)*
H2C0.247 (7)0.855 (6)0.657 (2)0.042 (14)*
H2D0.412 (2)1.040 (5)0.800 (5)0.049 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.01069 (4)0.01103 (4)0.00762 (4)0.00584 (3)0.00291 (2)0.00367 (2)
Cl10.01357 (14)0.02264 (19)0.01467 (15)0.00771 (14)0.00622 (12)0.00655 (14)
Cl20.01902 (16)0.02084 (18)0.01029 (14)0.00814 (14)0.00083 (12)0.00047 (13)
O10.0210 (5)0.0150 (5)0.0159 (5)0.0113 (5)0.0057 (4)0.0067 (4)
O1W0.0189 (6)0.0234 (7)0.0175 (6)0.0096 (5)0.0063 (5)0.0093 (5)
N10.0180 (6)0.0189 (6)0.0126 (5)0.0085 (5)0.0027 (5)0.0045 (5)
Geometric parameters (Å, º) top
U1—O11.7745 (14)O1W—H1A0.948 (10)
U1—O1i1.7745 (14)O1W—H1B0.947 (10)
U1—Cl22.6623 (4)N1—H2A0.868 (9)
U1—Cl2i2.6623 (4)N1—H2B0.872 (9)
U1—Cl12.6752 (5)N1—H2C0.870 (9)
U1—Cl1i2.6752 (5)N1—H2D0.871 (9)
O1—U1—O1i180.0O1i—U1—Cl1i89.87 (5)
O1—U1—Cl290.32 (5)Cl2—U1—Cl1i88.855 (15)
O1i—U1—Cl289.68 (5)Cl2i—U1—Cl1i91.145 (15)
O1—U1—Cl2i89.68 (5)Cl1—U1—Cl1i180.000 (17)
O1i—U1—Cl2i90.32 (5)H1A—O1W—H1B104 (6)
Cl2—U1—Cl2i180.000 (11)H2A—N1—H2B109.7 (14)
O1—U1—Cl189.86 (5)H2A—N1—H2C109.8 (14)
O1i—U1—Cl190.13 (5)H2B—N1—H2C109.1 (14)
Cl2—U1—Cl191.145 (15)H2A—N1—H2D109.7 (14)
Cl2i—U1—Cl188.855 (15)H2B—N1—H2D109.1 (14)
O1—U1—Cl1i90.14 (5)H2C—N1—H2D109.5 (14)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1A···Cl1ii0.95 (6)2.36 (7)3.283 (2)165 (7)
O1w—H1B···Cl2iii0.95 (5)2.35 (5)3.268 (2)163 (5)
N1—H2A···O1w0.87 (3)2.02 (3)2.843 (2)157 (3)
N1—H2B···Cl1iv0.87 (4)2.68 (4)3.441 (2)148 (3)
N1—H2C···O10.87 (2)2.32 (4)3.014 (3)137 (4)
N1—H2C···Cl1v0.87 (2)2.77 (3)3.4060 (17)131 (4)
N1—H2D···O1wvi0.87 (3)2.03 (3)2.887 (3)169 (3)
Symmetry codes: (ii) x, y+1, z+2; (iii) x, y, z+1; (iv) x, y+1, z; (v) x, y+1, z+1; (vi) x+1, y+2, z+2.
 

Acknowledgements

The authors thank Dr Aaron D. Nicholas for his feedback in preparing this manuscript.

Funding information

Funding for this research was provided by: U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, Heavy Element Chemistry Program, FWP 73200 .

References

First citationAlcock, N. W., Flanders, D. J. & Brown, D. (1986). J. Chem. Soc. Dalton Trans. pp. 1403–1404.  CrossRef ICSD Web of Science Google Scholar
First citationAndrews, M. B. & Cahill, C. L. (2012). Dalton Trans. 41, 3911–3914.  Web of Science CSD CrossRef PubMed Google Scholar
First citationAnson, C. E., Al-Jowder, O., Jayasooriya, U. A. & Powell, A. K. (1996). Acta Cryst. C52, 279–281.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationAugustine, L. J., Rajapaksha, H., Pyrch, M. M., Kasperski, M., Forbes, T. Z. & Mason, S. E. (2023). Inorg. Chem. 62, 372–380.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationBaker, R. J., Hashem, E., Motevalli, M., Ogilvie, H. V. & Walshe, A. (2010). Z. Anorg. Allg. Chem. 636, 443–445.  Web of Science CSD CrossRef CAS Google Scholar
First citationBiswas, S., Ma, S., Nuzzo, S., Twamley, B., Russell, A. T., Platts, J. A., Hartl, F. & Baker, R. J. (2017). Inorg. Chem. 56, 14426–14437.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBois, C., Dao, N. Q. & Rodier, N. (1976b). J. Inorg. Nucl. Chem. 38, 755–757.  CSD CrossRef CAS Web of Science Google Scholar
First citationBois, C., Nguyen, Q. D. & Rodier, N. (1976a). Acta Cryst. B32, 1541–1544.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBombieri, G., Forsellini, E. & Graziani, R. (1978). Acta Cryst. B34, 2622–2624.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationBrown, D. R., Chippindale, A. M. & Denning, R. G. (1996). Acta Cryst. C52, 1164–1166.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2014). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurns, P. C. (2005). Can. Mineral. 43, 1839–1894.  Web of Science CrossRef CAS Google Scholar
First citationCarter, K. P., Surbella, R. G. III, Kalaj, M. & Cahill, C. L. (2018). Chem. Eur. J. 24, 12747–12756.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCrystalMaker (2014). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England.  Google Scholar
First citationDeifel, N. P. & Cahill, C. L. (2009). CrystEngComm, 11, 2739–2744.  Web of Science CSD CrossRef CAS Google Scholar
First citationDenning, R. G. (2007). J. Phys. Chem. A, 111, 4125–4143.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDi Sipio, L., Pasquetto, A., Pelizzi, G., Ingletto, G. & Montenero, A. (1981). Cryst. Struct. Commun. 10, 1153–1157.  CAS Google Scholar
First citationDi Sipio, L., Tondello, E., Pelizzi, G., Ingletto, G. & Montenero, A. (1974a). Cryst. Struct. Commun. 3, 527–530.  CAS Google Scholar
First citationDi Sipio, L., Tondello, E., Pelizzi, G., Ingletto, G. & Montenero, A. (1974b). Cryst. Struct. Commun. 3, 731–734.  CAS Google Scholar
First citationEvans, D. J., Junk, P. C. & Smith, M. K. (2002). New J. Chem. 26, 1043–1048.  Web of Science CSD CrossRef CAS Google Scholar
First citationFalaise, C., Volkringer, C., Hennig, C. & Loiseau, T. (2015). Chem. Eur. J. 21, 16654–16664.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGatto, C. C., Schulz Lang, E., Kupfer, A., Hagenbach, A. & Abram, U. (2004). Z. Anorg. Allg. Chem. 630, 1286–1295.  Web of Science CSD CrossRef CAS Google Scholar
First citationGraziani, R., Bombieri, G., Forsellini, E. & Paolucci, G. (1975). J. Cryst. Mol. Struct. 5, 1–14.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHall, D., Rae, A. D. & Waters, T. N. (1966). Acta Cryst. 20, 160–162.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationHashem, E., McCabe, T., Schulzke, C. & Baker, R. J. (2014). Dalton Trans. 43, 1125–1131.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHashem, E., Swinburne, A. N., Schulzke, C., Evans, R. C., Platts, J. A., Kerridge, A., Natrajan, L. S. & Baker, R. J. (2013). RSC Adv. 3, 4350–4361.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKohlgruber, T. A. (2022). PhD thesis, University of Notre Dame, Notre Dame, Indiana, USA.  Google Scholar
First citationLhoste, J., Henry, N., Loiseau, T., Guyot, Y. & Abraham, F. (2013). Polyhedron, 50, 321–327.  Web of Science CSD CrossRef CAS Google Scholar
First citationLussier, A. J., Lopez, R. A. K. & Burns, P. C. (2016). Can. Mineral. 54, 177–283.  Web of Science CrossRef CAS Google Scholar
First citationMarsh, R. E. (1988). J. Crystallogr. Spectrosc. Res. 18, 219–222.  CSD CrossRef CAS Web of Science Google Scholar
First citationMishra, M. K., Choudhary, H., Cordes, D. B., Kelley, S. P. & Rogers, R. D. (2019). Cryst. Growth Des. 19, 3529–3542.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoody, D. C. & Ryan, R. R. (1979). Cryst. Struct. Commun. 8, 973–977.  Google Scholar
First citationOhwada, K. (1975). Spectrochim. Acta A, 31, 973–977.  CrossRef Web of Science Google Scholar
First citationOhwada, K. (1980). Appl. Spectrosc. 34, 327–331.  CrossRef CAS Web of Science Google Scholar
First citationOsman, H. H., Pertierra, P., Salvadó, M. A., Izquierdo-Ruiz, F. & Recio, J. M. (2016). Phys. Chem. Chem. Phys. 18, 18398–18405.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPons y Moll, O., Le Borgne, T., Thuéry, P. & Ephritikhine, M. (2001). Acta Cryst. C57, 392–393.  Google Scholar
First citationPospieszna, I., Radecka-Paryzek, W. & Kubicki, M. (2008). Acta Cryst. E64, m239.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPyrch, M. M., Williams, J. M., Kasperski, M. W., Applegate, L. C. & Forbes, T. Z. (2020). Inorg. Chim. Acta, 508, 119628.  Web of Science CSD CrossRef Google Scholar
First citationQu, F., Zhu, Q. & Liu, C. (2014). Cryst. Growth Des. 14, 6421–6432.  Web of Science CSD CrossRef CAS Google Scholar
First citationRogers, R. D. & Benning, M. M. (1991). J. Incl Phenom. Macrocycl Chem. 11, 121–135.  CSD CrossRef CAS Web of Science Google Scholar
First citationRogers, R. D., Bond, A. H. & Hipple, W. G. (1990). J. Crystallogr. Spectrosc. Res. 20, 611–616.  CSD CrossRef CAS Web of Science Google Scholar
First citationRogers, R. D., Bond, A. H., Hipple, W. G., Rollins, A. N. & Henry, R. F. (1991). Inorg. Chem. 30, 2671–2679.  CSD CrossRef CAS Web of Science Google Scholar
First citationRogers, R. D., Kurihara, L. K. & Benning, M. M. (1987). Inorg. Chem. 26, 4346–4352.  CSD CrossRef CAS Web of Science Google Scholar
First citationSchnaars, D. D. & Wilson, R. E. (2013). Inorg. Chem. 52, 14138–14147.  Web of Science CSD CrossRef ICSD CAS PubMed Google Scholar
First citationSchnaars, D. D. & Wilson, R. E. (2014). Inorg. Chem. 53, 11036–11045.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSchnaars, D. D. & Wilson, R. E. (2018). Inorg. Chem. 57, 3008–3016.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSchöne, S., Radoske, T., März, J., Stumpf, T. & Ikeda-Ohno, A. (2018). Inorg. Chem. 57, 13318–13329.  Web of Science PubMed Google Scholar
First citationSerezkhina, L. B., Grigoriev, M. S., Rogaleva, E. F. & Serezhkin, V. N. (2021). Radiokhim. 63, 327–336.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSurbella, R. G. III, Andrews, M. B. & Cahill, C. L. (2016). J. Solid State Chem. 236, 257–271.  Web of Science CSD CrossRef CAS Google Scholar
First citationSurbella, R. G. III, Ducati, L. C., Pellegrini, K. L., McNamara, B. K., Autschbach, J., Schwantes, J. M. & Cahill, C. L. (2017). J. Am. Chem. Soc. 139, 10843–10855.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTutov, A. G., Plakhtij, V. P., Usov, O. A., Bublyaev, R. A. & Chernenkov, Y. P. (1991). Kristallografiya, 36, 1135–1138.  CAS Google Scholar
First citationVitova, T., Green, J. C., Denning, R. G., Löble, M., Kvashnina, K., Kas, J. J., Jorissen, K., Rehr, J. J., Malcherek, T. & Denecke, M. A. (2015). Inorg. Chem. 54, 174–182.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWang, W., Chen, B., Zheng, P., Wang, B. & Wang, M. (1986). Inorg. Chim. Acta, 117, 81–82.  CSD CrossRef CAS Web of Science Google Scholar
First citationWarzecha, E., Celis-Barros, C., Dilbeck, T., Hanson, K. & Albrecht-Schmitt, T. E. (2019). Inorg. Chem. 58, 228–233.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWatkin, D. J., Denning, R. G. & Prout, K. (1991). Acta Cryst. C47, 2517–2519.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilkerson, M. P., Arrington, C. A., Berg, J. M. & Scott, B. L. (2007). J. Alloys Compd. 444–445, 634–639.  Web of Science CrossRef CAS Google Scholar
First citationWilkerson, M. P. & Berg, J. M. (2009). Radiochim. Acta, 97, 223–226.  Web of Science CrossRef CAS Google Scholar
First citationWilkerson, M. P. & Scott, B. L. (2008). Acta Cryst. E64, i5.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationZagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZalkin, A., Perry, D., Tsao, L. & Zhang, D. (1983). Acta Cryst. C39, 1186–1188.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZhang, Y., Bhadbhade, M., Kong, L., Karatchevtseva, I. & Zheng, R. (2017). Polyhedron, 138, 82–87.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds