research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­{S-octyl-3-[(thio­phen-2-yl)methyl­­idene]di­thio­carbazato-κ2N3,S}nickel(II)

crossmark logo

aDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, bDepartment of Applied Science, Faculty of Science, Okayama University of Science, Japan, cCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, and dDepartment of Chemical and Pharmaceutical Sciences, University of Trieste, Italy
*Correspondence e-mail: mbhhowlader@yahoo.com

Edited by S. Parkin, University of Kentucky, USA (Received 6 June 2023; accepted 6 July 2023; online 11 July 2023)

In the title complex, [Ni(C14H21N2S3)2], the nickel(II) atom is located on a crystallographic inversion center and exhibits a square-planar coordination environment, being coordinated by two negatively charged N,S-chelating ligands in a trans configuration. In the crystal, the non-H atoms of the complex are practically coplanar (r.m.s. deviation of fitted atoms = 0.135 Å), and the angle between the thienyl and the chelating rings is 6.7 (1)°. The mol­ecules stack at a distance of 3.623 (2) Å along the b-axis direction.

1. Chemical context

Thio­semicarbazones, semicarbazones, hydrazide/hydrazones and di­thio­carbazate ligands have been widely employed for the preparation of metal complexes. Over the last few decades, di­thio­carbazate Schiff bases and their metal complexes have gained considerable inter­est because of their promising bioactivities against diverse cancer cell lines (Yusof et al., 2015[Yusof, E. N. M., Ravoof, T. B. S. A., Jamsari, J., Tiekink, E. R. T., Veerakumarasivam, A., Crouse, K. A., Tahir, M. I. M. & Ahmad, H. (2015). Inorg. Chim. Acta, 438, 85-93.]; Ramilo-Gomes et al., 2021[Ramilo-Gomes, F., Addis, Y., Tekamo, I., Cavaco, I., Campos, D. L., Pavan, F. R., Gomes, C. S. B., Brito, V., Santos, A. O., Domingues, F., Luís, Â., Marques, M. M., Pessoa, J. C., Ferreira, S., Silvestre, S. & Correia, I. (2021). J. Inorg. Biochem. 216, 111331.]; Low et al., 2016[Low, M. L., Maigre, L., Tahir, M. I. M., Tiekink, E. R. T., Dorlet, P., Guillot, R., Ravoof, T. B., Rosli, R., Pagès, J.-M., Policar, C., Delsuc, N. & Crouse, K. A. (2016). Eur. J. Med. Chem. 120, 1-12.]), as well as anti­microbial activity (Zangrando et al., 2017[Zangrando, E., Begum, M. S., Sheikh, M. C., Miyatake, R., Hossain, M. M., Alam, M. M., Hasnat, M. A., Halim, M. A., Ahmed, S., Rahman, M. N. & Ghosh, A. (2017). Arab. J. Chem. 10, 172-184.]). Clearly, the biological properties of these compounds can be modulated by using different organic substituents, leading to concomitant structural modifications (How et al., 2008[How, F. N.-F., Crouse, K. A., Tahir, M. I. M., Tarafder, M. T. H. & Cowley, A. R. (2008). Polyhedron, 27, 3325-3329.]; Yusof et al., 2022[Yusof, E. N. M., Azam, M., Sirat, S. S., Ravoof, T. B. S. A., Page, A. J., Veerakumarasivam, A., Karunakaran, T. & Razali, M. R. (2022). Bioinorg. Chem. Appl. 2004052.]). A study of structure–activity relationships was described by Beshir et al. (2008[Beshir, A. B., Guchhait, S. K., Gascón, J. A. & Fenteany, G. (2008). Bioorg. Med. Chem. Lett. 18, 498-504.]).

[Scheme 1]

Therefore, considering the diverse significance of di­thio­carbazate bases and their role in a variety of biological applications, herein we report a novel NiII complex with a di­thio­carbazate Schiff base ligand bearing an octyl alkyl chain and a thienyl ring (Fig. 1[link]).

[Figure 1]
Figure 1
An ellipsoid plot (50% probability) of the title compound.

2. Structural commentary

The nickel(II) atom is located on a crystallographic center of symmetry and exhibits a square-planar coordination sphere, being coordinated by two negatively charged N,S-chelating ligands in a trans configuration. The Ni—N1 and Ni—S1 bond distances are 1.9168 (19) and 2.1735 (7) Å, respectively with a chelating N1—Ni—S1 bond angle of 85.88 (6)°. These values agree with those reported in previous papers (Begum et al., 2016[Begum, M. S., Zangrando, E., Howlader, M. B. H., Sheikh, M. C., Miyatake, R., Hossain, M. M., Alam, M. M. & Hasnat, M. A. (2016). Polyhedron, 105, 56-61.]; Islam et al., 2014[Islam, M. A. A. A. A., Sheikh, M. C., Alam, M. S., Zangrando, E., Alam, M. A., Tarafder, M. T. H. & Miyatake, R. (2014). Transition Met. Chem. 39, 141-149.]; Howlader et al., 2015[Howlader, M. B. H., Begum, M. S., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, m26-m27.]) for related compounds. It is worth mentioning that nickel(II) and copper(II) complexes with di­thio­carbazate ligands have been reported to crystallize in both cis and trans configurations, although the latter is slightly more frequent (Begum et al., 2020[Begum, K., Begum, S., Sheikh, C., Miyatake, R. & Zangrando, E. (2020). Acta Cryst. E76, 692-696.]).

All of the non-H atoms of the complex are almost coplanar, with S1 and C1 [−0.28 Å] and C13, C14 [+0.24, +0.31 Å], respectively deviating the most from its mean plane (r.m.s. deviation of fitted atoms = 0.135 Å). The thienyl ring forms a small dihedral angle of 6.7 (1)° with respect to the chelating five-membered ring. The long alkyl chain is in a staggered conformation with torsion angles along the chain that range between 176.7 (2) and 179.8 (2)°.

The mol­ecule is stabilized by an intra­molecular unconventional hydrogen bond between C5—H5 with S1′ [at 1 − x, 1 − y, 1 − z] of the symmetry-related ligand [C5⋯S1′ distance of 3.067 (3) Å, C5—H5⋯S1′ angle of 125°].

3. Supra­molecular features

The mol­ecules stack with an inter­planar distance of 3.623 (2) Å, and the crystal packing shows that all hydro­phobic n-octyl chains segregate together, so as to share the same regions of space (Fig. 2[link]), as already observed in similar complexes (Begum et al., 2016[Begum, M. S., Zangrando, E., Howlader, M. B. H., Sheikh, M. C., Miyatake, R., Hossain, M. M., Alam, M. M. & Hasnat, M. A. (2016). Polyhedron, 105, 56-61.]). Fig. 3[link] overlays this structure of the complex superimposed onto that of a 4-meth­oxy­benzyl derivative (WEGKEB: Begum et al., 2018[Begum, K., Zangrando, E., Begum, M. S., Sheikh, C. & Miyatake, R. (2018). IUCrData, 3, x181684.]), where it is worth noting the different orientation of octyl chains in the two cases. This is due to the different torsion angle C6—S2—C7—C8 of −177.36 (18)° in this structure vs 86.8 (6)° and −160.0 (9)° (for the two disorder components of the equivalent torsion angle in WEGKEB), likely induced by crystal-packing requirements. Details of hydrogen-bonding inter­actions are given in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯S1i 0.95 3.00 3.684 (3) 131
C2—H2⋯S2ii 0.95 2.93 3.752 (3) 146
C5—H5⋯S1iii 0.95 2.42 3.067 (3) 125
C7—H7A⋯S3 0.99 2.93 3.406 (3) 110
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
A partial packing view showing complexes stacked in the b-axis direction.
[Figure 3]
Figure 3
Superposition of this structure with the 4-meth­oxy­benzyl derivative WEGKEB (Begum et al., 2018[Begum, K., Zangrando, E., Begum, M. S., Sheikh, C. & Miyatake, R. (2018). IUCrData, 3, x181684.]; only one disorder component shown), where it is worth noting the different orientation of the octyl moiety, likely induced by crystal-packing requirements.

4. Database survey

For comparison, NiII complexes with comparable ligands bearing long alkyl chains have been reported from these laboratories (Begum et al., 2016[Begum, M. S., Zangrando, E., Howlader, M. B. H., Sheikh, M. C., Miyatake, R., Hossain, M. M., Alam, M. M. & Hasnat, M. A. (2016). Polyhedron, 105, 56-61.], 2017[Begum, M. S., Zangrando, E., Sheikh, M. C., Miyatake, R., Howlader, M. B. H., Rahman, M. N. & Ghosh, A. (2017). Transit. Met. Chem. 42, 553-563.], 2018[Begum, K., Zangrando, E., Begum, M. S., Sheikh, C. & Miyatake, R. (2018). IUCrData, 3, x181684.], 2020[Begum, K., Begum, S., Sheikh, C., Miyatake, R. & Zangrando, E. (2020). Acta Cryst. E76, 692-696.], 2023[Begum, M. S., Das, D., Zangrando, E., Rahman, S., Alodhayb, A., Begum, M. K., Sheikh, C. M., Miyatake, R., Howlader, M. B. H., Karim, M. R. & Chowdhury, M. B. (2023). J. Mol. Struct. 1277, 134808.]; CSD refcodes = JUYCAJ, WEGKEB, BIQTIH, TILVUJ and PICMOH, respectively).

5. Synthesis and crystallization

A solution of Ni(CH3COO)2·4H2O (0.12 g, 0.5 mmol in 10 mL methanol) was added to a solution of S-octyl-β-N-(2-thien­yl)methyl­enedi­thio­carbazate (0.314 g, 1.0 mmol in 30 mL of methanol). The resulting mixture was stirred at room temperature for 4 h. The dark-orange precipitate that formed was filtered off, washed with methanol and dried in vacuo over anhydrous CaCl2. Orange needle-shaped single crystals, suitable for X-ray diffraction, were obtained by slow evaporation of the compound from a mixture of chloro­form and aceto­nitrile (4:1, v/v) after 14 days. Yield: 66%; m. p. (377-378) K.

FT–IR (KBr, cm−1): 2920 ν(C—H, alk­yl), 1639, 1572 ν(C=N—N=C).

1H NMR (400 MHz, CDCl3, ppm) δ: 7.999 (s, 2×1H, CH=N, C-5), 7.715 (d, 2×1H, C-1, J = 5.2 Hz), 7.468 (d, 2×1H, C-3, J = 5.2 Hz), 7.103 (t, 2×1H, C-2), 3.269 (t, 2×2H, –SCH2, C-7), 1.764 (p, 2×2H, C-8), 1.460 (p, 2×2H, C-9), 1.318–1.270 (m, 2×8H, C-10, 11, 12, 13), 0.878 (t, 2×3H, C-14).

UV–Vis spectrum [CHCl3, λmax nm]: 475, 400, 276.

HRMS (FAB) Calculated for C28H42N4NiS6 [M+H]+: 685.11599, found [M+H]+: 685.11549.

6. Refinement

Crystal data, data collection and structure refinement are summarized in Table 2[link]. Hydrogen atoms were placed at calculated positions (C–H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C14H21N2S3)2]
Mr 685.72
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 15.5444 (6), 5.5388 (3), 20.1592 (8)
β (°) 103.675 (7)
V3) 1686.44 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.97
Crystal size (mm) 0.08 × 0.02 × 0.01
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.815, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 15791, 3850, 2621
Rint 0.077
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.079, 1.00
No. of reflections 3850
No. of parameters 179
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.27
Computer programs: RAPID-AUTO (Rigaku, 2018[Rigaku (2018). RAPID AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: RAPID-AUTO (Rigaku, 2018); cell refinement: RAPID-AUTO (Rigaku, 2018); data reduction: RAPID-AUTO (Rigaku, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Bis{S-octyl-3-[(thiophen-2-yl)methylidene]dithiocarbazato-κ2N3,S}nickel(II) top
Crystal data top
[Ni(C14H21N2S3)2]F(000) = 724
Mr = 685.72Dx = 1.350 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 15.5444 (6) ÅCell parameters from 10434 reflections
b = 5.5388 (3) Åθ = 2.1–27.5°
c = 20.1592 (8) ŵ = 0.97 mm1
β = 103.675 (7)°T = 173 K
V = 1686.44 (13) Å3Needle, orange
Z = 20.08 × 0.02 × 0.01 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2621 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.077
ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 1920
Tmin = 0.815, Tmax = 0.990k = 77
15791 measured reflectionsl = 2625
3850 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0329P)2 + 0.0128P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3850 reflectionsΔρmax = 0.44 e Å3
179 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.5000000.5000000.5000000.02461 (12)
S10.43249 (4)0.34173 (13)0.57239 (3)0.03295 (17)
S20.30020 (4)0.04469 (12)0.55073 (3)0.03283 (17)
S30.33321 (4)0.17114 (13)0.33566 (3)0.03364 (17)
N10.43677 (12)0.2681 (4)0.43617 (10)0.0263 (5)
N20.37776 (13)0.1034 (4)0.45452 (10)0.0274 (5)
C10.32299 (17)0.2689 (5)0.25377 (13)0.0364 (7)
H10.2906490.4089910.2355050.044*
C20.36579 (17)0.1259 (5)0.21773 (13)0.0384 (7)
H20.3661850.1529190.1712630.046*
C30.40956 (16)0.0668 (5)0.25668 (12)0.0331 (6)
H30.4431100.1843420.2394440.040*
C40.39872 (15)0.0677 (4)0.32296 (12)0.0273 (6)
C50.44139 (15)0.2400 (5)0.37290 (12)0.0289 (6)
H50.4789650.3513050.3575400.035*
C60.37280 (14)0.1323 (4)0.51739 (12)0.0255 (5)
C70.25455 (16)0.2377 (5)0.47858 (12)0.0317 (6)
H7A0.2281170.1365450.4384530.038*
H7B0.3027300.3343610.4672630.038*
C80.18415 (17)0.4070 (5)0.49347 (13)0.0338 (6)
H8A0.2105470.5128210.5325530.041*
H8B0.1361690.3117950.5056000.041*
C90.14665 (17)0.5596 (5)0.43057 (13)0.0364 (7)
H9A0.1238440.4504520.3914780.044*
H9B0.1953650.6554820.4198060.044*
C100.07291 (17)0.7307 (5)0.43757 (13)0.0368 (6)
H10A0.0251850.6371680.4506180.044*
H10B0.0962830.8476210.4745880.044*
C110.03444 (17)0.8679 (5)0.37195 (13)0.0393 (7)
H11A0.0118980.7497980.3350900.047*
H11B0.0825840.9604480.3591720.047*
C120.03979 (17)1.0408 (5)0.37605 (14)0.0403 (7)
H12A0.0168711.1631480.4116320.048*
H12B0.0872820.9498270.3902280.048*
C130.0790 (2)1.1686 (7)0.30929 (15)0.0569 (9)
H13A0.1026511.0461740.2739130.068*
H13B0.0312281.2572740.2947680.068*
C140.1521 (2)1.3442 (7)0.31334 (18)0.0693 (11)
H14A0.1287881.4697180.3470540.083*
H14B0.1748721.4188560.2685490.083*
H14C0.2001581.2576870.3270440.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0294 (2)0.0213 (3)0.0228 (2)0.0016 (2)0.00554 (18)0.00261 (19)
S10.0420 (4)0.0320 (4)0.0256 (3)0.0103 (3)0.0095 (3)0.0052 (3)
S20.0415 (4)0.0294 (4)0.0287 (3)0.0086 (3)0.0105 (3)0.0004 (3)
S30.0419 (4)0.0278 (4)0.0300 (3)0.0062 (3)0.0062 (3)0.0026 (3)
N10.0299 (11)0.0220 (12)0.0270 (11)0.0014 (9)0.0067 (9)0.0013 (9)
N20.0345 (11)0.0225 (12)0.0265 (11)0.0050 (9)0.0098 (9)0.0008 (9)
C10.0406 (15)0.0330 (17)0.0324 (14)0.0041 (13)0.0021 (12)0.0101 (12)
C20.0391 (15)0.0460 (19)0.0297 (13)0.0038 (13)0.0076 (13)0.0126 (13)
C30.0365 (14)0.0368 (17)0.0265 (12)0.0044 (12)0.0087 (12)0.0051 (11)
C40.0298 (13)0.0232 (14)0.0278 (12)0.0008 (10)0.0046 (11)0.0025 (10)
C50.0327 (13)0.0260 (15)0.0298 (13)0.0038 (11)0.0109 (11)0.0015 (11)
C60.0270 (12)0.0202 (14)0.0285 (13)0.0008 (10)0.0049 (11)0.0037 (10)
C70.0377 (14)0.0261 (15)0.0306 (13)0.0045 (11)0.0068 (12)0.0009 (11)
C80.0373 (14)0.0291 (15)0.0347 (14)0.0064 (11)0.0077 (12)0.0019 (11)
C90.0379 (14)0.0314 (17)0.0398 (15)0.0074 (12)0.0091 (13)0.0027 (12)
C100.0397 (14)0.0300 (16)0.0421 (15)0.0072 (12)0.0122 (13)0.0020 (12)
C110.0396 (15)0.0370 (18)0.0405 (15)0.0097 (13)0.0078 (13)0.0037 (13)
C120.0419 (15)0.0355 (18)0.0430 (15)0.0089 (13)0.0090 (13)0.0027 (13)
C130.0565 (19)0.060 (2)0.0522 (19)0.0206 (17)0.0084 (16)0.0114 (17)
C140.063 (2)0.062 (3)0.072 (2)0.0261 (19)0.0053 (19)0.009 (2)
Geometric parameters (Å, º) top
Ni1—N1i1.9168 (19)C7—H7B0.9900
Ni1—N11.9168 (19)C8—C91.521 (3)
Ni1—S1i2.1735 (7)C8—H8A0.9900
Ni1—S1i2.1735 (7)C8—H8B0.9900
Ni1—S12.1735 (7)C9—C101.519 (3)
S1—C61.717 (2)C9—H9A0.9900
S2—C61.745 (2)C9—H9B0.9900
S2—C71.809 (2)C10—C111.520 (3)
S3—C11.709 (3)C10—H10A0.9900
S3—C41.725 (3)C10—H10B0.9900
N1—C51.304 (3)C11—C121.516 (4)
N1—N21.404 (3)C11—H11A0.9900
N2—C61.298 (3)C11—H11B0.9900
C1—C21.351 (4)C12—C131.515 (4)
C1—H10.9500C12—H12A0.9900
C2—C31.402 (4)C12—H12B0.9900
C2—H20.9500C13—C141.513 (4)
C3—C41.386 (3)C13—H13A0.9900
C3—H30.9500C13—H13B0.9900
C4—C51.431 (3)C14—H14A0.9800
C5—H50.9500C14—H14B0.9800
C7—C81.524 (3)C14—H14C0.9800
C7—H7A0.9900
N1i—Ni1—N1180.0C9—C8—H8A109.8
N1i—Ni1—S1i85.88 (6)C7—C8—H8A109.8
N1—Ni1—S1i94.12 (6)C9—C8—H8B109.8
N1i—Ni1—S1i85.88 (6)C7—C8—H8B109.8
N1—Ni1—S1i94.12 (6)H8A—C8—H8B108.3
S1i—Ni1—S1i0.00 (2)C10—C9—C8114.7 (2)
N1i—Ni1—S194.12 (6)C10—C9—H9A108.6
N1—Ni1—S185.88 (6)C8—C9—H9A108.6
S1i—Ni1—S1180.0C10—C9—H9B108.6
S1i—Ni1—S1180.0C8—C9—H9B108.6
C6—S1—Ni196.42 (8)H9A—C9—H9B107.6
C6—S2—C7100.88 (12)C9—C10—C11112.4 (2)
C1—S3—C491.32 (13)C9—C10—H10A109.1
C5—N1—N2111.8 (2)C11—C10—H10A109.1
C5—N1—Ni1126.77 (17)C9—C10—H10B109.1
N2—N1—Ni1121.46 (14)C11—C10—H10B109.1
C6—N2—N1111.74 (19)H10A—C10—H10B107.9
C2—C1—S3112.9 (2)C12—C11—C10114.6 (2)
C2—C1—H1123.6C12—C11—H11A108.6
S3—C1—H1123.6C10—C11—H11A108.6
C1—C2—C3112.4 (2)C12—C11—H11B108.6
C1—C2—H2123.8C10—C11—H11B108.6
C3—C2—H2123.8H11A—C11—H11B107.6
C4—C3—C2112.9 (2)C13—C12—C11113.4 (2)
C4—C3—H3123.5C13—C12—H12A108.9
C2—C3—H3123.5C11—C12—H12A108.9
C3—C4—C5122.6 (2)C13—C12—H12B108.9
C3—C4—S3110.53 (18)C11—C12—H12B108.9
C5—C4—S3126.78 (19)H12A—C12—H12B107.7
N1—C5—C4130.1 (2)C14—C13—C12113.7 (3)
N1—C5—H5115.0C14—C13—H13A108.8
C4—C5—H5115.0C12—C13—H13A108.8
N2—C6—S1124.49 (19)C14—C13—H13B108.8
N2—C6—S2119.99 (18)C12—C13—H13B108.8
S1—C6—S2115.51 (14)H13A—C13—H13B107.7
C8—C7—S2111.63 (17)C13—C14—H14A109.5
C8—C7—H7A109.3C13—C14—H14B109.5
S2—C7—H7A109.3H14A—C14—H14B109.5
C8—C7—H7B109.3C13—C14—H14C109.5
S2—C7—H7B109.3H14A—C14—H14C109.5
H7A—C7—H7B108.0H14B—C14—H14C109.5
C9—C8—C7109.2 (2)
C5—N1—N2—C6179.6 (2)N1—N2—C6—S11.3 (3)
Ni1—N1—N2—C60.4 (3)N1—N2—C6—S2177.52 (15)
C4—S3—C1—C21.0 (2)Ni1—S1—C6—N21.4 (2)
S3—C1—C2—C30.9 (3)Ni1—S1—C6—S2177.45 (11)
C1—C2—C3—C40.3 (3)C7—S2—C6—N22.3 (2)
C2—C3—C4—C5176.5 (2)C7—S2—C6—S1178.84 (14)
C2—C3—C4—S30.5 (3)C6—S2—C7—C8177.36 (18)
C1—S3—C4—C30.8 (2)S2—C7—C8—C9178.55 (18)
C1—S3—C4—C5176.0 (2)C7—C8—C9—C10177.8 (2)
N2—N1—C5—C42.1 (4)C8—C9—C10—C11176.7 (2)
Ni1—N1—C5—C4177.9 (2)C9—C10—C11—C12179.8 (2)
C3—C4—C5—N1178.5 (3)C10—C11—C12—C13178.0 (3)
S3—C4—C5—N15.1 (4)C11—C12—C13—C14179.1 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···S1ii0.953.003.684 (3)131
C2—H2···S2iii0.952.933.752 (3)146
C5—H5···S1i0.952.423.067 (3)125
C7—H7A···S30.992.933.406 (3)110
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2; (iii) x, y1/2, z1/2.
 

Acknowledgements

MBHH and SSK are grateful to the Department of Chemistry, Rajshahi University for the provision of laboratory facilities. MCS and RM acknowledge the Center for Environmental Conservation and Research Safety, University of Toyama, for providing facilities for single-crystal X-ray analyses.

References

First citationBegum, K., Begum, S., Sheikh, C., Miyatake, R. & Zangrando, E. (2020). Acta Cryst. E76, 692–696.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBegum, K., Zangrando, E., Begum, M. S., Sheikh, C. & Miyatake, R. (2018). IUCrData, 3, x181684.  Google Scholar
First citationBegum, M. S., Das, D., Zangrando, E., Rahman, S., Alodhayb, A., Begum, M. K., Sheikh, C. M., Miyatake, R., Howlader, M. B. H., Karim, M. R. & Chowdhury, M. B. (2023). J. Mol. Struct. 1277, 134808.  Web of Science CSD CrossRef Google Scholar
First citationBegum, M. S., Zangrando, E., Howlader, M. B. H., Sheikh, M. C., Miyatake, R., Hossain, M. M., Alam, M. M. & Hasnat, M. A. (2016). Polyhedron, 105, 56–61.  Web of Science CSD CrossRef CAS Google Scholar
First citationBegum, M. S., Zangrando, E., Sheikh, M. C., Miyatake, R., Howlader, M. B. H., Rahman, M. N. & Ghosh, A. (2017). Transit. Met. Chem. 42, 553–563.  Web of Science CSD CrossRef CAS Google Scholar
First citationBeshir, A. B., Guchhait, S. K., Gascón, J. A. & Fenteany, G. (2008). Bioorg. Med. Chem. Lett. 18, 498–504.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHow, F. N.-F., Crouse, K. A., Tahir, M. I. M., Tarafder, M. T. H. & Cowley, A. R. (2008). Polyhedron, 27, 3325–3329.  Web of Science CSD CrossRef CAS Google Scholar
First citationHowlader, M. B. H., Begum, M. S., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, m26–m27.  CSD CrossRef IUCr Journals Google Scholar
First citationIslam, M. A. A. A. A., Sheikh, M. C., Alam, M. S., Zangrando, E., Alam, M. A., Tarafder, M. T. H. & Miyatake, R. (2014). Transition Met. Chem. 39, 141–149.  Web of Science CSD CrossRef CAS Google Scholar
First citationLow, M. L., Maigre, L., Tahir, M. I. M., Tiekink, E. R. T., Dorlet, P., Guillot, R., Ravoof, T. B., Rosli, R., Pagès, J.-M., Policar, C., Delsuc, N. & Crouse, K. A. (2016). Eur. J. Med. Chem. 120, 1–12.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRamilo-Gomes, F., Addis, Y., Tekamo, I., Cavaco, I., Campos, D. L., Pavan, F. R., Gomes, C. S. B., Brito, V., Santos, A. O., Domingues, F., Luís, Â., Marques, M. M., Pessoa, J. C., Ferreira, S., Silvestre, S. & Correia, I. (2021). J. Inorg. Biochem. 216, 111331.  Web of Science PubMed Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2018). RAPID AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYusof, E. N. M., Azam, M., Sirat, S. S., Ravoof, T. B. S. A., Page, A. J., Veerakumarasivam, A., Karunakaran, T. & Razali, M. R. (2022). Bioinorg. Chem. Appl. 2004052.  Google Scholar
First citationYusof, E. N. M., Ravoof, T. B. S. A., Jamsari, J., Tiekink, E. R. T., Veerakumarasivam, A., Crouse, K. A., Tahir, M. I. M. & Ahmad, H. (2015). Inorg. Chim. Acta, 438, 85–93.  Web of Science CSD CrossRef CAS Google Scholar
First citationZangrando, E., Begum, M. S., Sheikh, M. C., Miyatake, R., Hossain, M. M., Alam, M. M., Hasnat, M. A., Halim, M. A., Ahmed, S., Rahman, M. N. & Ghosh, A. (2017). Arab. J. Chem. 10, 172–184.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds