research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of K6[Zn(CO3)4]

crossmark logo

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/E164-05-1, A-1060 Vienna, Austria
*Correspondence e-mail: matthias.weil@tuwien.ac.at

Edited by S. Parkin, University of Kentucky, USA (Received 3 July 2023; accepted 10 July 2023; online 14 July 2023)

The crystal structure of K6[Zn(CO3)4], hexa­potassium tetra­carbonato­zincate(II), comprises four unique potassium cations (two located on a general position, and two on the twofold rotation axis of the space group C2/c) and a [Zn(CO3)4]6− anion. The ZnII atom of the latter is located on the twofold rotation axis and is surrounded in a slightly distorted tetra­hedral manner by two pairs of monodentately binding carbonate groups, with Zn—O distances of 1.9554 (18) and 1.9839 (18) Å. Both carbonate groups exhibit a slight deviation from planarity, with the C atom being shifted by 0.008 (2) and 0.006 (3) Å, respectively, from the plane of the three O atoms. The coordination numbers of the potassium cations range from 6 to 8, using a threshold of 3.0 Å for K—O bonding inter­actions being significant. In the crystal structure, [KOx] polyhedra and [Zn(CO3)4]6− groups share O atoms to build up the framework structure.

1. Chemical context

Oxidotellurates(IV) exhibit a multifarious crystal chemistry (Christy et al., 2016[Christy, A. G., Mills, S. J. & Kampf, A. R. (2016). Miner. Mag. 80, 415-545.]) that can be attributed to the different coordination numbers of TeIV (usually between 3 and 5) in an oxidic environment and, particularly, to the stereoactive non-bonding 5s2 electron lone pair at the TeIV atom (Galy et al., 1975[Galy, J., Meunier, G., Andersson, S. & Åström, A. (1975). J. Solid State Chem. 13, 142-159.]). The space requirement of the lone pair leads to unilateral coordination polyhedra [TeIVOx] with rather low point-group symmetries. From a crystal-engineering point of view, [TeIVOx] units are promising building blocks for the construction of new ferro-, pyro- or piezoelectric compounds or materials exhibiting non-linear optical behaviour like second-harmonic generation, as such compounds need to crystallize in non-centrosymmetric space groups with polar axes (Ok et al., 2006[Ok, K. M., Chi, E. O. & Halasyamani, P. S. (2006). Chem. Soc. Rev. 35, 710-717.]).

In the quest to obtain new transition-metal oxidotellurates(IV) modified by addition of alkali cations, we developed syntheses under pseudo-hydro­thermal conditions where water does not act as a typical solvent but rather as a mineralizer (Eder & Weil, 2022[Eder, F. & Weil, M. (2022). Z. Anorg. Allg. Chem. 648, e202200089.]; Eder et al., 2022[Eder, F., Stöger, B. & Weil, M. (2022). Z. Kristallogr. 237, 329-341.], 2023[Eder, F., Marsollier, A. & Weil, M. (2023). Miner. Petrol. 117, 145-163.]). Characteristic for this kind of preparation method, only a few drops of water are added to the reaction mixture instead of the few millilitres typically used in a hydro­thermal experiment. In an alternative route employed also for the present study, water is not added at all to the reaction mixture but originates from the initial decomposition of one of the educt(s) in the closed reaction container where it then acts as a mineralizing agent. Simultaneously, the employed oxidotellurate(VI) phase can be reduced under these conditions to an oxidotellurate(IV). In this sense, solid K2CO3, ZnO and H6TeO6 (as the source for water) were treated thermally under these conditions. However, the reaction did not result in an intended potassium zinc oxidotellurate(IV) phase. Instead, K6[Zn(CO3)4] was one of the obtained products, and its crystal structure is reported in the present communication.

2. Structural commentary

Of the 13 atoms (4 K, 1 Zn, 2 C, 6 O) in the asymmetric unit of K6[Zn(CO3)4], three are located on the twofold rotation axis (Zn1, K3, K4; Wyckoff position 4 e) of the space group C2/c. The remaining ten all are located on the general 8 f position. The most peculiar structural feature in the crystal structure is the tetra­carbonatozincate(II) anion, [Zn(CO3)4]6−, for which bond lengths and angles are given in Table 1[link]. The ZnII atom is surrounded in a slightly distorted tetra­hedral manner by two pairs of monodentately binding carbonate groups (Fig. 1[link]). The mean Zn—O distance of 1.976 Å conforms with the value of 1.952 (31) Å for Zn with a coordination number (CN) of 4 (Gagné & Hawthorne, 2020[Gagné, O. C. & Hawthorne, F. C. (2020). IUCrJ, 7, 581-629.]). The deviation from the ideal tetra­hedral shape is small (Table 1[link]), as indicated by the τ4 index of 0.92 (τ4 = 1 for an ideal tetra­hedron; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). In the carbonate groups, the mean C—O bond lengths of 1.290 (25) Å for C1 and 1.285 (25) Å for C2 are in very good agreement with the grand mean bond length of 1.284 (20) Å calculated from 389 individual carbonate groups (Gagné & Hawthorne, 2018[Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 79-96.]). In the title compound, the longest C—O bond of ≃ 1.315 Å occurs for the O atoms that are bonded to the ZnII atom. The angular distortions of the carbonate groups are minute (Table 1[link]), with an angular sum of 360° in each case. However, both CO32− groups in the [Zn(CO3)4]6− anion are aplanar, with the C atoms slightly shifted out of the plane of the three O atoms [C1 by −0.008 (2) Å from the plane defined by O1, O2, O3 and C2 by −0.006 (3) Å from O4, O5, O6]. Such a deviation from planarity is a frequently observed phenomenon for carbonate groups (Zemann, 1981[Zemann, J. (1981). Fortschr. Mineral. 59, 95-116.]; Winkler et al., 2000[Winkler, B., Zemann, J. & Milman, V. (2000). Acta Cryst. B56, 648-653.]).

Table 1
Selected geometric parameters (Å, °)

Zn1—O4 1.9554 (18) O2—C1 1.273 (3)
Zn1—O4i 1.9554 (18) O3—C1 1.278 (3)
Zn1—O1i 1.9838 (18) O4—C2 1.313 (3)
Zn1—O1 1.9839 (18) O5—C2ii 1.268 (3)
O1—C1 1.319 (3) O6—C2 1.273 (3)
       
O4—Zn1—O4i 113.95 (11) O2—C1—O1 120.1 (2)
O4—Zn1—O1i 99.62 (8) O3—C1—O1 118.3 (2)
O4—Zn1—O1 114.01 (8) O5ii—C2—O6 123.1 (3)
O1i—Zn1—O1 116.44 (10) O5ii—C2—O4 118.0 (2)
O2—C1—O3 121.7 (2) O6—C2—O4 119.0 (2)
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The tetra­hedral [Zn(CO3)4]6− anion in the crystal structure of K6[Zn(CO3)4], with displacement ellipsoids drawn at the 74% probability level. [Symmetry codes: (i) −x, y, −z + [{1\over 2}]; (ii) −x + [{1\over 2}], −y + [{1\over 2}], −z + 1.]

The charge of the [Zn(CO3)4]6− anion is compensated by large potassium cations. Since coordination numbers of large cations are not always simple to derive because there is no clear boundary for longer bonds and the corresponding (weak) inter­actions between the central atom and the ligand atom (Gagné & Hawthorne, 2016[Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625.]), we defined a threshold of 3.0 Å for K—O inter­actions as being significant in K6[Zn(CO3)4]. Based on this value, K1 and K2 have a CN of 7, K3 of 8 and K4 of 6, with distorted [KOx] polyhedra in each case. The mean K—O bond lengths of 2.852 Å (K1), 2.763 Å (K2), 2.809 Å (K3) and 2.814 Å (K4) roughly correlate with literature values (Gagné & Hawthorne, 2016[Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625.]) of 2.828 (177) Å for a CN of 6, 2.861 (179) Å for a CN of 7, and 2.894 (172) Å for a CN of 8. The large standard deviations of the literature data likewise reflect the difficulties in defining coordination numbers for large cations.

Bond-valence sums (Brown, 2002[Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.]) were calculated with the values provided by Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]). Individual values (in valence units) are collated in the following list and are in agreement with the expected values of 1 for K, 2 for Zn, 4 for C and 2 for O: K1: 1.02; K2: 1.31; K3: 1.32; K4: 0.96; Zn1: 1.95; C1: 3.84; C2: 3.99; O1 (CN = 4 with C, Zn, 2K): 1.94; O2 (CN = 5 with C, 4K): 1.92; O3 (CN = 6 with C, 5K): 2.18; O4 (CN = 4 with C, Zn, 2K): 2.00; O5 (CN = 5 with C, 4K): 1.92; O6 (CN = 5 with C, 4K): 1.92.

In the crystal structure of K6[Zn(CO3)4], [KOx] polyhedra and the isolated [Zn(CO3)4]6− anions share O atoms to build up a framework (Fig. 2[link]).

[Figure 2]
Figure 2
The crystal structure of K6[Zn(CO3)4] in a projection along [[\overline{1}]00]. Carbonate groups are shown as flattened red polyhedra and [ZnO4] units as blue tetra­hedra. All atoms are drawn as spheres of arbitrary radii (K green, O white, Zn blue, C red).

3. Database survey

A search in the Inorganic Structure Database (ICSD, version April 2022; Zagorac et al., 2019[Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918-925.]) for mixed alkali-metal/trans­ition-metal carbonates revealed only eight anhydrous phases, viz. Na2Cu(CO3)2 (Healy & White, 1972[Healy, P. C. & White, A. H. (1972). J. Chem. Soc. Dalton Trans. pp. 1913-1917.]), K2Cu(CO3)2 (Farrand et al., 1980[Farrand, A., Gregson, A. K., Skelton, B. W. & White, A. H. (1980). Aust. J. Chem. 33, 431-434.]), Na3Y(CO3)3 (Luo et al., 2014[Luo, M., Lin, C., Zou, G., Ye, N. & Cheng, W. (2014). CrystEngComm, 16, 4414-4421.]), Na5Y(CO3)4 (Awaleh et al., 2003[Awaleh, M. O., Ben Ali, A., Maisonneuve, V. & Leblanc, M. (2003). J. Alloys Compd. 349, 114-120.]), KY(CO3)2 (Cao et al., 2018[Cao, L., Peng, G., Yan, T., Luo, M., Lin, C. & Ye, N. (2018). J. Alloys Compd. 742, 587-593.]), Na2Cd(CO3)2 (Kim et al., 2018[Kim, K.-Y., Kwak, J.-S., Oh, K.-R., Atila, G. & Kwon, Y.-U. (2018). J. Solid State Chem. 267, 63-67.]), K2Cd(CO3)2 (Kim et al., 2021[Kim, K.-Y., Kwak, J.-S., Lee, J.-M. & Kwon, Y.-U. (2021). J. Solid State Chem. 293, 121767.]), and KAgCO3 (Hans et al., 2015[Hans, P., Stöger, B., Weil, M. & Zobetz, E. (2015). Acta Cryst. B71, 194-202.]). This makes K6[Zn(CO3)4] the phase with the highest qu­antity of an alkali metal. Except for the two copper(II) compounds where CuII shows a square-planar coordination by carbonate O atoms, the coordination numbers of all other transition metals are higher than 4.

However, numerous hydrous mixed alkali-metal/transition-metal carbonates are known. Limited to mixed alkali-metal zinc carbonates, these are: LiZn(CO3)(OH) (Liu et al., 2021[Liu, X., Kang, K., Gong, P. & Lin, Z. (2021). Angew. Chem. Int. Ed. 60, 13574-13578.]), NaZn(CO3)(OH) (Peng et al., 2020[Peng, G., Lin, C. & Ye, N. (2020). J. Am. Chem. Soc. 142, 20542-20546.]), Na2Zn3(CO3)4·3H2O (Gier et al., 1996[Gier, T. E., Bu, X., Wang, S.-L. & Stucky, G. D. (1996). J. Am. Chem. Soc. 118, 3039-3040.]), NaK2{Zn2[H(CO3)2](CO3)2(H2O)2 and NaRb2{Zn2[H(CO3)2](CO3)2(H2O)2 (Zheng & Adam, 1995[Zheng, Y.-Q. & Adam, A. (1995). Z. Naturforsch. Teil B, 50, 1185-1194.]).

In the crystal structure of LiZn(CO3)(OH), the ZnII atom is tetra­hedrally coordinated by two O atoms of monodentate carbonate groups and two bridging OH groups, leading to 1[ZnO2/1(OH)2/2] chains extending parallel to [100] that are bridged by the carbonate groups into layers. In NaZn(CO3)(OH), the ZnII atom is likewise tetra­hedrally coordinated by two O atoms of monodentate carbonate groups and two OH groups, leading to isolated [ZnO2(OH)2] tetra­hedra. In the crystal structure of Na2Zn3(CO3)4·3H2O, the ZnII atom is coordinated tetra­hedrally by four oxygen atoms belonging to four carbonate ions. Each carbonate group binds to three different zinc atoms forming an open framework structure. Finally, in NaK2{Zn2[H(CO3)2](CO3)2(H2O)2 and isotypic NaRb2{Zn2[H(CO3)2](CO3)2(H2O)2, the ZnII atom is coord­inated by five oxygen atoms belonging to four carbonate groups and one water mol­ecule. Very similarly, in Na3Zn2(CO3)3F (Tang et al., 2018[Tang, C., Jiang, X., Guo, S., Xia, M., Liu, L., Wang, X., Lin, Z. & Chen, C. (2018). Dalton Trans. 47, 6464-6469.]) the same coordination number results by coordination from four carbonate groups and a fluoride anion.

4. Synthesis and crystallization

All employed educts were obtained from commercial sources and were chemically pure. Solid ZnO, H6TeO6 and K2CO3 were thoroughly mixed in the molar ratio 2:3:10 (original sample weights 0.0584 g, 0.2486 g, 0.4498 g, respectively) and locked in a Teflon container with an inner volume of about 3 ml. The container was sealed and placed in a steel autoclave that was heated for one week at 483 K. The obtained solid product was colourless, comprising the title compound in the form of a few colourless crystals with a plate-like form. Powder X-ray diffraction (PXRD) revealed K6[Zn(CO3)4], K2CO3·1.5H2O (Skakle et al., 2001[Skakle, J. M. S., Wilson, M. & Feldmann, J. (2001). Acta Cryst. E57, i94-i97.]), KTeO3OH (Lindqvist, 1972[Lindqvist, O. (1972). Acta Chem. Scand. 26, 4109-4120.]) and the starting material ZnO as product phases with approximate contingents (in mass percentages) of 45%, 40%, 10% and <5%, respectively, together with some unassigned reflections of low intensities.

K6[Zn(CO3)4] could also be synthesized by slow evaporation of a solution containing Zn(NO3)2·6H2O and K2CO3 in a molar ratio of 1:5, resulting in an increased yield of the title compound (70%), together with K2CO3·1.5H2O (25%) and ZnO (<5%) as by-products, as determined by phase analysis on basis of PXRD data.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Structure data were standardized with STRUCTURE-TIDY (Gelato & Parthé, 1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]).

Table 2
Experimental details

Crystal data
Chemical formula K6[Zn(CO3)4]
Mr 540.01
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 7.1850 (6), 18.1117 (14), 10.5206 (8)
β (°) 93.579 (2)
V3) 1366.40 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.69
Crystal size (mm) 0.08 × 0.04 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.665, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 8980, 2592, 1712
Rint 0.056
(sin θ/λ)max−1) 0.785
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.072, 0.98
No. of reflections 2592
No. of parameters 106
Δρmax, Δρmin (e Å−3) 1.02, −0.63
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ATOMS (Dowty, 2006[Dowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: PLATON (Spek, 2020) and publCIF (Westrip, 2010).

Hexapotassium tetracarbonatozincate(II) top
Crystal data top
K6[Zn(CO3)4]F(000) = 1056
Mr = 540.01Dx = 2.625 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 7.1850 (6) ÅCell parameters from 1545 reflections
b = 18.1117 (14) Åθ = 4.5–29.4°
c = 10.5206 (8) ŵ = 3.69 mm1
β = 93.579 (2)°T = 296 K
V = 1366.40 (19) Å3Block, colourless
Z = 40.08 × 0.04 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
1712 reflections with I > 2σ(I)
ω– and φ–scansRint = 0.056
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 33.9°, θmin = 3.0°
Tmin = 0.665, Tmax = 0.747h = 1111
8980 measured reflectionsk = 2627
2592 independent reflectionsl = 1516
Refinement top
Refinement on F2106 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0241P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072(Δ/σ)max = 0.001
S = 0.98Δρmax = 1.02 e Å3
2592 reflectionsΔρmin = 0.63 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.0000000.33426 (2)0.2500000.01451 (11)
K10.34220 (9)0.40604 (3)0.07452 (6)0.02200 (14)
K20.38485 (8)0.20542 (3)0.40224 (6)0.02155 (14)
K30.0000000.06967 (4)0.2500000.01697 (17)
K40.0000000.54036 (5)0.2500000.0235 (2)
O10.2160 (3)0.27658 (10)0.19578 (18)0.0184 (4)
O20.0052 (3)0.20449 (10)0.08928 (18)0.0216 (4)
O30.2802 (2)0.15837 (9)0.15907 (16)0.0169 (4)
O40.0538 (3)0.39310 (10)0.40374 (17)0.0206 (4)
O50.2533 (3)0.05284 (11)0.45294 (18)0.0264 (5)
O60.3006 (3)0.45433 (11)0.34053 (19)0.0271 (5)
C10.1656 (4)0.21218 (14)0.1462 (2)0.0146 (5)
C20.2048 (4)0.43226 (13)0.4310 (2)0.0155 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0148 (2)0.0142 (2)0.0144 (2)0.0000.00042 (17)0.000
K10.0222 (3)0.0204 (3)0.0233 (3)0.0016 (2)0.0010 (3)0.0040 (2)
K20.0210 (3)0.0265 (3)0.0168 (3)0.0032 (3)0.0013 (2)0.0030 (2)
K30.0162 (4)0.0160 (4)0.0188 (4)0.0000.0014 (3)0.000
K40.0177 (4)0.0182 (4)0.0339 (5)0.0000.0038 (4)0.000
O10.0173 (10)0.0130 (8)0.0250 (10)0.0008 (8)0.0026 (8)0.0020 (8)
O20.0163 (9)0.0263 (11)0.0217 (10)0.0018 (8)0.0035 (8)0.0007 (8)
O30.0146 (9)0.0161 (9)0.0200 (10)0.0034 (7)0.0012 (8)0.0006 (7)
O40.0189 (10)0.0259 (10)0.0169 (10)0.0088 (8)0.0005 (8)0.0049 (8)
O50.0317 (12)0.0246 (10)0.0213 (10)0.0024 (9)0.0100 (9)0.0034 (9)
O60.0193 (10)0.0332 (12)0.0290 (12)0.0050 (9)0.0018 (9)0.0138 (9)
C10.0152 (12)0.0191 (13)0.0097 (12)0.0012 (10)0.0022 (10)0.0048 (10)
C20.0185 (13)0.0128 (12)0.0149 (13)0.0029 (10)0.0028 (11)0.0026 (10)
Geometric parameters (Å, º) top
Zn1—O41.9554 (18)K3—O52.7344 (19)
Zn1—O4i1.9554 (18)K3—O6ix2.738 (2)
Zn1—O1i1.9838 (18)K3—O6x2.738 (2)
Zn1—O11.9839 (18)K3—O32.7910 (18)
K1—O5ii2.756 (2)K3—O3i2.7910 (18)
K1—O6iii2.804 (2)K3—O2i2.972 (2)
K1—O3iv2.8113 (18)K3—O22.972 (2)
K1—O12.8448 (19)K3—C1i3.071 (3)
K1—O4i2.879 (2)K3—C13.071 (3)
K1—O2iv2.901 (2)K3—K4ix3.6315 (3)
K1—O62.965 (2)K3—K4xi3.6315 (3)
K1—C1iv3.156 (3)K4—O6i2.782 (2)
K1—C2iii3.293 (3)K4—O62.783 (2)
K1—O5v3.374 (2)K4—O3ii2.7908 (18)
K1—C2vi3.412 (3)K4—O3xii2.7908 (18)
K2—O2vii2.6590 (19)K4—O5xii2.868 (2)
K2—O3iii2.6697 (19)K4—O5ii2.868 (2)
K2—O4viii2.726 (2)K4—C23.046 (2)
K2—O12.7426 (19)K4—C2i3.046 (2)
K2—O32.7561 (18)K4—O4i3.131 (2)
K2—O2i2.810 (2)K4—O43.131 (2)
K2—O52.980 (2)O1—C11.319 (3)
K2—C13.037 (3)O2—C11.273 (3)
K2—C2viii3.139 (3)O3—C11.278 (3)
K2—C1iii3.303 (3)O4—C21.313 (3)
K2—K2viii3.3304 (12)O5—C2viii1.268 (3)
K2—O1iii3.3644 (19)O6—C21.273 (3)
K3—O5i2.7344 (19)
O4—Zn1—O4i113.95 (11)O6i—K4—O5xii78.24 (6)
O4—Zn1—O1i99.62 (8)O6—K4—O5xii106.98 (6)
O4i—Zn1—O1i114.01 (8)O3ii—K4—O5xii92.71 (5)
O4—Zn1—O1114.01 (8)O3xii—K4—O5xii80.33 (5)
O4i—Zn1—O199.62 (8)O6i—K4—O5ii106.98 (6)
O1i—Zn1—O1116.44 (10)O6—K4—O5ii78.24 (6)
O5ii—K1—O6iii87.09 (6)O3ii—K4—O5ii80.33 (5)
O5ii—K1—O3iv104.27 (6)O3xii—K4—O5ii92.71 (5)
O6iii—K1—O3iv129.66 (6)O5xii—K4—O5ii170.96 (8)
O5ii—K1—O1139.27 (6)O6i—K4—O4i43.77 (5)
O6iii—K1—O1115.16 (6)O6—K4—O4i76.59 (6)
O3iv—K1—O187.64 (5)O3ii—K4—O4i151.47 (5)
O5ii—K1—O4i81.15 (6)O3xii—K4—O4i115.23 (5)
O6iii—K1—O4i152.83 (6)O5xii—K4—O4i112.93 (6)
O3iv—K1—O4i77.22 (5)O5ii—K4—O4i75.21 (5)
O1—K1—O4i63.44 (5)C2—K4—O4i79.32 (6)
O5ii—K1—O2iv134.76 (6)C2i—K4—O4i24.49 (6)
O6iii—K1—O2iv91.85 (6)O6i—K4—O476.59 (6)
O3iv—K1—O2iv45.86 (5)O6—K4—O443.77 (5)
O1—K1—O2iv80.82 (5)O3ii—K4—O4115.23 (5)
O4i—K1—O2iv113.78 (6)O3xii—K4—O4151.47 (5)
O5ii—K1—O677.01 (6)O5xii—K4—O475.21 (5)
O6iii—K1—O675.60 (6)O5ii—K4—O4112.93 (6)
O3iv—K1—O6154.55 (6)C2—K4—O424.49 (6)
O1—K1—O676.47 (5)C2i—K4—O479.32 (6)
O4i—K1—O677.91 (6)O4i—K4—O463.16 (7)
O2iv—K1—O6145.94 (6)C1—O1—Zn1112.29 (16)
O5ii—K1—O5v88.01 (6)C1—O1—K289.70 (14)
O6iii—K1—O5v41.12 (5)Zn1—O1—K2109.58 (8)
O3iv—K1—O5v89.64 (5)C1—O1—K1129.69 (16)
O1—K1—O5v131.53 (5)Zn1—O1—K188.39 (6)
O4i—K1—O5v160.24 (5)K2—O1—K1127.22 (7)
O2iv—K1—O5v63.57 (5)C1—O1—K2iii76.00 (13)
O6—K1—O5v115.78 (5)Zn1—O1—K2iii170.74 (8)
C1iv—K1—O5v81.18 (6)K2—O1—K2iii73.70 (5)
C2iii—K1—O5v21.89 (5)K1—O1—K2iii82.91 (5)
O2vii—K2—O3iii96.79 (6)C1—O2—K2xiii121.60 (16)
O2vii—K2—O4viii79.50 (6)C1—O2—K2i149.34 (17)
O3iii—K2—O4viii82.30 (6)K2xiii—O2—K2i74.98 (5)
O2vii—K2—O1113.90 (6)C1—O2—K1iv89.44 (15)
O3iii—K2—O1108.64 (6)K2xiii—O2—K1iv95.82 (6)
O4viii—K2—O1160.62 (6)K2i—O2—K1iv115.96 (7)
O2vii—K2—O3159.06 (6)C1—O2—K382.28 (14)
O3iii—K2—O382.81 (6)K2xiii—O2—K3155.54 (8)
O4viii—K2—O3120.97 (6)K2i—O2—K386.49 (5)
O1—K2—O347.83 (5)K1iv—O2—K377.86 (5)
O2vii—K2—O2i105.02 (5)C1—O3—K2iii108.39 (15)
O3iii—K2—O2i157.18 (6)C1—O3—K289.96 (14)
O4viii—K2—O2i95.00 (6)K2iii—O3—K285.86 (5)
O1—K2—O2i68.60 (5)C1—O3—K4xi165.41 (16)
O3—K2—O2i79.21 (6)K2iii—O3—K4xi80.09 (5)
O2vii—K2—O5121.93 (6)K2—O3—K4xi78.63 (5)
O3iii—K2—O592.76 (6)C1—O3—K390.09 (15)
O4viii—K2—O545.34 (5)K2iii—O3—K3161.25 (7)
O1—K2—O5116.61 (6)K2—O3—K391.18 (5)
O3—K2—O578.94 (5)K4xi—O3—K381.17 (5)
O2i—K2—O570.15 (6)C1—O3—K1iv93.41 (14)
O2vii—K2—O1iii75.38 (5)K2iii—O3—K1iv99.14 (6)
O3iii—K2—O1iii41.38 (5)K2—O3—K1iv172.75 (7)
O4viii—K2—O1iii112.29 (5)K4xi—O3—K1iv96.97 (5)
O1—K2—O1iii85.45 (6)K3—O3—K1iv82.40 (5)
O3—K2—O1iii91.28 (5)C2—O4—Zn1126.39 (17)
O2i—K2—O1iii152.02 (5)C2—O4—K2viii95.59 (14)
O5—K2—O1iii134.13 (5)Zn1—O4—K2viii106.08 (8)
C1—K2—O1iii96.75 (6)C2—O4—K1i138.26 (16)
C2viii—K2—O1iii133.18 (6)Zn1—O4—K1i87.97 (7)
C1iii—K2—O1iii22.80 (5)K2viii—O4—K1i96.21 (6)
K2viii—K2—O1iii122.93 (4)C2—O4—K474.12 (13)
O5i—K3—O5167.20 (9)Zn1—O4—K491.45 (7)
O5i—K3—O6ix81.34 (6)K2viii—O4—K4162.44 (7)
O5—K3—O6ix88.88 (6)K1i—O4—K483.15 (5)
O5i—K3—O6x88.88 (6)C2viii—O5—K3146.56 (17)
O5—K3—O6x81.33 (6)C2viii—O5—K1x110.41 (16)
O6ix—K3—O6x80.53 (9)K3—O5—K1x82.91 (6)
O5i—K3—O3104.81 (6)C2viii—O5—K4xi127.79 (17)
O5—K3—O382.69 (6)K3—O5—K4xi80.78 (5)
O6ix—K3—O3164.34 (6)K1x—O5—K4xi90.42 (6)
O6x—K3—O385.15 (6)C2viii—O5—K285.18 (15)
O5i—K3—O3i82.69 (6)K3—O5—K287.70 (6)
O5—K3—O3i104.81 (6)K1x—O5—K2162.84 (8)
O6ix—K3—O3i85.16 (6)K4xi—O5—K273.86 (5)
O6x—K3—O3i164.34 (6)C2viii—O5—K1xiv75.47 (15)
O3—K3—O3i109.72 (7)K3—O5—K1xiv73.49 (5)
O5i—K3—O2i120.30 (6)K1x—O5—K1xiv91.99 (6)
O5—K3—O2i71.26 (6)K4xi—O5—K1xiv153.64 (7)
O6ix—K3—O2i113.80 (6)K2—O5—K1xiv99.10 (6)
O6x—K3—O2i148.26 (5)C2—O6—K3xv144.96 (18)
O3—K3—O2i75.94 (5)C2—O6—K489.28 (15)
O3i—K3—O2i45.33 (5)K3xv—O6—K482.27 (5)
O5i—K3—O271.26 (6)C2—O6—K1iii100.98 (15)
O5—K3—O2120.30 (6)K3xv—O6—K1iii81.98 (5)
O6ix—K3—O2148.26 (5)K4—O6—K1iii163.55 (8)
O6x—K3—O2113.80 (6)C2—O6—K1134.75 (17)
O3—K3—O245.34 (5)K3xv—O6—K179.10 (5)
O3i—K3—O275.94 (5)K4—O6—K187.93 (6)
O2i—K3—O269.49 (8)K1iii—O6—K193.70 (6)
O6i—K4—O6111.90 (9)O2—C1—O3121.7 (2)
O6i—K4—O3ii163.07 (6)O2—C1—O1120.1 (2)
O6—K4—O3ii84.32 (6)O3—C1—O1118.3 (2)
O6i—K4—O3xii84.32 (6)O5viii—C2—O6123.1 (3)
O6—K4—O3xii163.07 (6)O5viii—C2—O4118.0 (2)
O3ii—K4—O3xii80.03 (8)O6—C2—O4119.0 (2)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z+1/2; (iv) x+1/2, y+1/2, z; (v) x+1/2, y+1/2, z1/2; (vi) x, y+1, z1/2; (vii) x+1/2, y+1/2, z+1/2; (viii) x+1/2, y+1/2, z+1; (ix) x1/2, y1/2, z; (x) x+1/2, y1/2, z+1/2; (xi) x+1/2, y1/2, z; (xii) x1/2, y+1/2, z; (xiii) x1/2, y+1/2, z1/2; (xiv) x1/2, y+1/2, z+1/2; (xv) x+1/2, y+1/2, z.
 

Acknowledgements

The X-ray centre of TU Wien is acknowledged for providing access to the single-crystal and powder X-ray diffractometers. The authors acknowledge TU Wien Bibliothek for financial support through its Open Access Funding Programme.

References

First citationAwaleh, M. O., Ben Ali, A., Maisonneuve, V. & Leblanc, M. (2003). J. Alloys Compd. 349, 114–120.  Web of Science CrossRef ICSD CAS Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationCao, L., Peng, G., Yan, T., Luo, M., Lin, C. & Ye, N. (2018). J. Alloys Compd. 742, 587–593.  Web of Science CrossRef ICSD CAS Google Scholar
First citationChristy, A. G., Mills, S. J. & Kampf, A. R. (2016). Miner. Mag. 80, 415–545.  Web of Science CrossRef CAS Google Scholar
First citationDowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationEder, F., Marsollier, A. & Weil, M. (2023). Miner. Petrol. 117, 145–163.  Web of Science CrossRef CAS Google Scholar
First citationEder, F., Stöger, B. & Weil, M. (2022). Z. Kristallogr. 237, 329–341.  Web of Science CSD CrossRef ICSD CAS Google Scholar
First citationEder, F. & Weil, M. (2022). Z. Anorg. Allg. Chem. 648, e202200089.  Google Scholar
First citationFarrand, A., Gregson, A. K., Skelton, B. W. & White, A. H. (1980). Aust. J. Chem. 33, 431–434.  CrossRef ICSD CAS Web of Science Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 79–96.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2020). IUCrJ, 7, 581–629.  Web of Science CrossRef PubMed IUCr Journals Google Scholar
First citationGaly, J., Meunier, G., Andersson, S. & Åström, A. (1975). J. Solid State Chem. 13, 142–159.  CrossRef CAS Web of Science Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationGier, T. E., Bu, X., Wang, S.-L. & Stucky, G. D. (1996). J. Am. Chem. Soc. 118, 3039–3040.  CrossRef ICSD CAS Web of Science Google Scholar
First citationHans, P., Stöger, B., Weil, M. & Zobetz, E. (2015). Acta Cryst. B71, 194–202.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationHealy, P. C. & White, A. H. (1972). J. Chem. Soc. Dalton Trans. pp. 1913–1917.  CrossRef ICSD Web of Science Google Scholar
First citationKim, K.-Y., Kwak, J.-S., Lee, J.-M. & Kwon, Y.-U. (2021). J. Solid State Chem. 293, 121767.  Web of Science CrossRef ICSD Google Scholar
First citationKim, K.-Y., Kwak, J.-S., Oh, K.-R., Atila, G. & Kwon, Y.-U. (2018). J. Solid State Chem. 267, 63–67.  Web of Science CrossRef ICSD CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLindqvist, O. (1972). Acta Chem. Scand. 26, 4109–4120.  Google Scholar
First citationLiu, X., Kang, K., Gong, P. & Lin, Z. (2021). Angew. Chem. Int. Ed. 60, 13574–13578.  Web of Science CSD CrossRef CAS Google Scholar
First citationLuo, M., Lin, C., Zou, G., Ye, N. & Cheng, W. (2014). CrystEngComm, 16, 4414–4421.  Web of Science CrossRef ICSD CAS Google Scholar
First citationOk, K. M., Chi, E. O. & Halasyamani, P. S. (2006). Chem. Soc. Rev. 35, 710–717.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPeng, G., Lin, C. & Ye, N. (2020). J. Am. Chem. Soc. 142, 20542–20546.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkakle, J. M. S., Wilson, M. & Feldmann, J. (2001). Acta Cryst. E57, i94–i97.  Web of Science CSD CrossRef ICSD IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTang, C., Jiang, X., Guo, S., Xia, M., Liu, L., Wang, X., Lin, Z. & Chen, C. (2018). Dalton Trans. 47, 6464–6469.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinkler, B., Zemann, J. & Milman, V. (2000). Acta Cryst. B56, 648–653.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZemann, J. (1981). Fortschr. Mineral. 59, 95–116.  CAS Google Scholar
First citationZheng, Y.-Q. & Adam, A. (1995). Z. Naturforsch. Teil B, 50, 1185–1194.  CrossRef ICSD CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds