research communications
6[Zn(CO3)4]
of KaInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/E164-05-1, A-1060 Vienna, Austria
*Correspondence e-mail: matthias.weil@tuwien.ac.at
The 6[Zn(CO3)4], hexapotassium tetracarbonatozincate(II), comprises four unique potassium cations (two located on a general position, and two on the twofold rotation axis of the C2/c) and a [Zn(CO3)4]6− anion. The ZnII atom of the latter is located on the twofold rotation axis and is surrounded in a slightly distorted tetrahedral manner by two pairs of monodentately binding carbonate groups, with Zn—O distances of 1.9554 (18) and 1.9839 (18) Å. Both carbonate groups exhibit a slight deviation from planarity, with the C atom being shifted by 0.008 (2) and 0.006 (3) Å, respectively, from the plane of the three O atoms. The coordination numbers of the potassium cations range from 6 to 8, using a threshold of 3.0 Å for K—O bonding interactions being significant. In the [KOx] polyhedra and [Zn(CO3)4]6− groups share O atoms to build up the framework structure.
of KKeywords: crystal structure; zinc in tetrahedral coordination; carbonate.
CCDC reference: 2280530
1. Chemical context
Oxidotellurates(IV) exhibit a multifarious crystal chemistry (Christy et al., 2016) that can be attributed to the different coordination numbers of TeIV (usually between 3 and 5) in an oxidic environment and, particularly, to the stereoactive non-bonding 5s2 electron lone pair at the TeIV atom (Galy et al., 1975). The space requirement of the lone pair leads to unilateral coordination polyhedra [TeIVOx] with rather low point-group symmetries. From a crystal-engineering point of view, [TeIVOx] units are promising building blocks for the construction of new ferro-, pyro- or piezoelectric compounds or materials exhibiting non-linear optical behaviour like second-harmonic generation, as such compounds need to crystallize in non-centrosymmetric space groups with polar axes (Ok et al., 2006).
In the quest to obtain new transition-metal oxidotellurates(IV) modified by addition of alkali cations, we developed syntheses under pseudo-hydrothermal conditions where water does not act as a typical solvent but rather as a mineralizer (Eder & Weil, 2022; Eder et al., 2022, 2023). Characteristic for this kind of preparation method, only a few drops of water are added to the reaction mixture instead of the few millilitres typically used in a hydrothermal experiment. In an alternative route employed also for the present study, water is not added at all to the reaction mixture but originates from the initial decomposition of one of the educt(s) in the closed reaction container where it then acts as a mineralizing agent. Simultaneously, the employed oxidotellurate(VI) phase can be reduced under these conditions to an oxidotellurate(IV). In this sense, solid K2CO3, ZnO and H6TeO6 (as the source for water) were treated thermally under these conditions. However, the reaction did not result in an intended potassium zinc oxidotellurate(IV) phase. Instead, K6[Zn(CO3)4] was one of the obtained products, and its is reported in the present communication.
2. Structural commentary
Of the 13 atoms (4 K, 1 Zn, 2 C, 6 O) in the 6[Zn(CO3)4], three are located on the twofold rotation axis (Zn1, K3, K4; 4 e) of the C2/c. The remaining ten all are located on the general 8 f position. The most peculiar structural feature in the is the tetracarbonatozincate(II) anion, [Zn(CO3)4]6−, for which bond lengths and angles are given in Table 1. The ZnII atom is surrounded in a slightly distorted tetrahedral manner by two pairs of monodentately binding carbonate groups (Fig. 1). The mean Zn—O distance of 1.976 Å conforms with the value of 1.952 (31) Å for Zn with a (CN) of 4 (Gagné & Hawthorne, 2020). The deviation from the ideal tetrahedral shape is small (Table 1), as indicated by the τ4 index of 0.92 (τ4 = 1 for an ideal tetrahedron; Yang et al., 2007). In the carbonate groups, the mean C—O bond lengths of 1.290 (25) Å for C1 and 1.285 (25) Å for C2 are in very good agreement with the grand mean bond length of 1.284 (20) Å calculated from 389 individual carbonate groups (Gagné & Hawthorne, 2018). In the title compound, the longest C—O bond of ≃ 1.315 Å occurs for the O atoms that are bonded to the ZnII atom. The angular distortions of the carbonate groups are minute (Table 1), with an angular sum of 360° in each case. However, both CO32− groups in the [Zn(CO3)4]6− anion are aplanar, with the C atoms slightly shifted out of the plane of the three O atoms [C1 by −0.008 (2) Å from the plane defined by O1, O2, O3 and C2 by −0.006 (3) Å from O4, O5, O6]. Such a deviation from planarity is a frequently observed phenomenon for carbonate groups (Zemann, 1981; Winkler et al., 2000).
of KThe charge of the [Zn(CO3)4]6− anion is compensated by large potassium cations. Since coordination numbers of large cations are not always simple to derive because there is no clear boundary for longer bonds and the corresponding (weak) interactions between the central atom and the ligand atom (Gagné & Hawthorne, 2016), we defined a threshold of 3.0 Å for K—O interactions as being significant in K6[Zn(CO3)4]. Based on this value, K1 and K2 have a CN of 7, K3 of 8 and K4 of 6, with distorted [KOx] polyhedra in each case. The mean K—O bond lengths of 2.852 Å (K1), 2.763 Å (K2), 2.809 Å (K3) and 2.814 Å (K4) roughly correlate with literature values (Gagné & Hawthorne, 2016) of 2.828 (177) Å for a CN of 6, 2.861 (179) Å for a CN of 7, and 2.894 (172) Å for a CN of 8. The large standard deviations of the literature data likewise reflect the difficulties in defining coordination numbers for large cations.
Bond-valence sums (Brown, 2002) were calculated with the values provided by Brese & O'Keeffe (1991). Individual values (in valence units) are collated in the following list and are in agreement with the expected values of 1 for K, 2 for Zn, 4 for C and 2 for O: K1: 1.02; K2: 1.31; K3: 1.32; K4: 0.96; Zn1: 1.95; C1: 3.84; C2: 3.99; O1 (CN = 4 with C, Zn, 2K): 1.94; O2 (CN = 5 with C, 4K): 1.92; O3 (CN = 6 with C, 5K): 2.18; O4 (CN = 4 with C, Zn, 2K): 2.00; O5 (CN = 5 with C, 4K): 1.92; O6 (CN = 5 with C, 4K): 1.92.
In the 6[Zn(CO3)4], [KOx] polyhedra and the isolated [Zn(CO3)4]6− anions share O atoms to build up a framework (Fig. 2).
of K3. Database survey
A search in the Inorganic Structure Database (ICSD, version April 2022; Zagorac et al., 2019) for mixed alkali-metal/transition-metal carbonates revealed only eight anhydrous phases, viz. Na2Cu(CO3)2 (Healy & White, 1972), K2Cu(CO3)2 (Farrand et al., 1980), Na3Y(CO3)3 (Luo et al., 2014), Na5Y(CO3)4 (Awaleh et al., 2003), KY(CO3)2 (Cao et al., 2018), Na2Cd(CO3)2 (Kim et al., 2018), K2Cd(CO3)2 (Kim et al., 2021), and KAgCO3 (Hans et al., 2015). This makes K6[Zn(CO3)4] the phase with the highest quantity of an alkali metal. Except for the two copper(II) compounds where CuII shows a square-planar coordination by carbonate O atoms, the coordination numbers of all other transition metals are higher than 4.
However, numerous hydrous mixed alkali-metal/transition-metal carbonates are known. Limited to mixed alkali-metal zinc carbonates, these are: LiZn(CO3)(OH) (Liu et al., 2021), NaZn(CO3)(OH) (Peng et al., 2020), Na2Zn3(CO3)4·3H2O (Gier et al., 1996), NaK2{Zn2[H(CO3)2](CO3)2(H2O)2 and NaRb2{Zn2[H(CO3)2](CO3)2(H2O)2 (Zheng & Adam, 1995).
In the 3)(OH), the ZnII atom is tetrahedrally coordinated by two O atoms of monodentate carbonate groups and two bridging OH groups, leading to ∞1[ZnO2/1(OH)2/2] chains extending parallel to [100] that are bridged by the carbonate groups into layers. In NaZn(CO3)(OH), the ZnII atom is likewise tetrahedrally coordinated by two O atoms of monodentate carbonate groups and two OH groups, leading to isolated [ZnO2(OH)2] tetrahedra. In the of Na2Zn3(CO3)4·3H2O, the ZnII atom is coordinated tetrahedrally by four oxygen atoms belonging to four carbonate ions. Each carbonate group binds to three different zinc atoms forming an open framework structure. Finally, in NaK2{Zn2[H(CO3)2](CO3)2(H2O)2 and isotypic NaRb2{Zn2[H(CO3)2](CO3)2(H2O)2, the ZnII atom is coordinated by five oxygen atoms belonging to four carbonate groups and one water molecule. Very similarly, in Na3Zn2(CO3)3F (Tang et al., 2018) the same results by coordination from four carbonate groups and a fluoride anion.
of LiZn(CO4. Synthesis and crystallization
All employed educts were obtained from commercial sources and were chemically pure. Solid ZnO, H6TeO6 and K2CO3 were thoroughly mixed in the molar ratio 2:3:10 (original sample weights 0.0584 g, 0.2486 g, 0.4498 g, respectively) and locked in a Teflon container with an inner volume of about 3 ml. The container was sealed and placed in a steel autoclave that was heated for one week at 483 K. The obtained solid product was colourless, comprising the title compound in the form of a few colourless crystals with a plate-like form. Powder X-ray diffraction (PXRD) revealed K6[Zn(CO3)4], K2CO3·1.5H2O (Skakle et al., 2001), KTeO3OH (Lindqvist, 1972) and the starting material ZnO as product phases with approximate contingents (in mass percentages) of 45%, 40%, 10% and <5%, respectively, together with some unassigned reflections of low intensities.
K6[Zn(CO3)4] could also be synthesized by slow evaporation of a solution containing Zn(NO3)2·6H2O and K2CO3 in a molar ratio of 1:5, resulting in an increased yield of the title compound (70%), together with K2CO3·1.5H2O (25%) and ZnO (<5%) as by-products, as determined by phase analysis on basis of PXRD data.
5. Refinement
Crystal data, data collection and structure . Structure data were standardized with STRUCTURE-TIDY (Gelato & Parthé, 1987).
details are summarized in Table 2
|
Supporting information
CCDC reference: 2280530
https://doi.org/10.1107/S2056989023006072/pk2691sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023006072/pk2691Isup3.hkl
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: PLATON (Spek, 2020) and publCIF (Westrip, 2010).K6[Zn(CO3)4] | F(000) = 1056 |
Mr = 540.01 | Dx = 2.625 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1850 (6) Å | Cell parameters from 1545 reflections |
b = 18.1117 (14) Å | θ = 4.5–29.4° |
c = 10.5206 (8) Å | µ = 3.69 mm−1 |
β = 93.579 (2)° | T = 296 K |
V = 1366.40 (19) Å3 | Block, colourless |
Z = 4 | 0.08 × 0.04 × 0.02 mm |
Bruker APEXII CCD diffractometer | 1712 reflections with I > 2σ(I) |
ω– and φ–scans | Rint = 0.056 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 33.9°, θmin = 3.0° |
Tmin = 0.665, Tmax = 0.747 | h = −11→11 |
8980 measured reflections | k = −26→27 |
2592 independent reflections | l = −15→16 |
Refinement on F2 | 106 parameters |
Least-squares matrix: full | 0 restraints |
R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.0241P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.072 | (Δ/σ)max = 0.001 |
S = 0.98 | Δρmax = 1.02 e Å−3 |
2592 reflections | Δρmin = −0.63 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.000000 | 0.33426 (2) | 0.250000 | 0.01451 (11) | |
K1 | 0.34220 (9) | 0.40604 (3) | 0.07452 (6) | 0.02200 (14) | |
K2 | 0.38485 (8) | 0.20542 (3) | 0.40224 (6) | 0.02155 (14) | |
K3 | 0.000000 | 0.06967 (4) | 0.250000 | 0.01697 (17) | |
K4 | 0.000000 | 0.54036 (5) | 0.250000 | 0.0235 (2) | |
O1 | 0.2160 (3) | 0.27658 (10) | 0.19578 (18) | 0.0184 (4) | |
O2 | 0.0052 (3) | 0.20449 (10) | 0.08928 (18) | 0.0216 (4) | |
O3 | 0.2802 (2) | 0.15837 (9) | 0.15907 (16) | 0.0169 (4) | |
O4 | 0.0538 (3) | 0.39310 (10) | 0.40374 (17) | 0.0206 (4) | |
O5 | 0.2533 (3) | 0.05284 (11) | 0.45294 (18) | 0.0264 (5) | |
O6 | 0.3006 (3) | 0.45433 (11) | 0.34053 (19) | 0.0271 (5) | |
C1 | 0.1656 (4) | 0.21218 (14) | 0.1462 (2) | 0.0146 (5) | |
C2 | 0.2048 (4) | 0.43226 (13) | 0.4310 (2) | 0.0155 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0148 (2) | 0.0142 (2) | 0.0144 (2) | 0.000 | −0.00042 (17) | 0.000 |
K1 | 0.0222 (3) | 0.0204 (3) | 0.0233 (3) | −0.0016 (2) | 0.0010 (3) | −0.0040 (2) |
K2 | 0.0210 (3) | 0.0265 (3) | 0.0168 (3) | 0.0032 (3) | −0.0013 (2) | −0.0030 (2) |
K3 | 0.0162 (4) | 0.0160 (4) | 0.0188 (4) | 0.000 | 0.0014 (3) | 0.000 |
K4 | 0.0177 (4) | 0.0182 (4) | 0.0339 (5) | 0.000 | −0.0038 (4) | 0.000 |
O1 | 0.0173 (10) | 0.0130 (8) | 0.0250 (10) | −0.0008 (8) | 0.0026 (8) | −0.0020 (8) |
O2 | 0.0163 (9) | 0.0263 (11) | 0.0217 (10) | 0.0018 (8) | −0.0035 (8) | 0.0007 (8) |
O3 | 0.0146 (9) | 0.0161 (9) | 0.0200 (10) | 0.0034 (7) | 0.0012 (8) | −0.0006 (7) |
O4 | 0.0189 (10) | 0.0259 (10) | 0.0169 (10) | −0.0088 (8) | 0.0005 (8) | −0.0049 (8) |
O5 | 0.0317 (12) | 0.0246 (10) | 0.0213 (10) | −0.0024 (9) | −0.0100 (9) | −0.0034 (9) |
O6 | 0.0193 (10) | 0.0332 (12) | 0.0290 (12) | −0.0050 (9) | 0.0018 (9) | 0.0138 (9) |
C1 | 0.0152 (12) | 0.0191 (13) | 0.0097 (12) | 0.0012 (10) | 0.0022 (10) | 0.0048 (10) |
C2 | 0.0185 (13) | 0.0128 (12) | 0.0149 (13) | 0.0029 (10) | −0.0028 (11) | 0.0026 (10) |
Zn1—O4 | 1.9554 (18) | K3—O5 | 2.7344 (19) |
Zn1—O4i | 1.9554 (18) | K3—O6ix | 2.738 (2) |
Zn1—O1i | 1.9838 (18) | K3—O6x | 2.738 (2) |
Zn1—O1 | 1.9839 (18) | K3—O3 | 2.7910 (18) |
K1—O5ii | 2.756 (2) | K3—O3i | 2.7910 (18) |
K1—O6iii | 2.804 (2) | K3—O2i | 2.972 (2) |
K1—O3iv | 2.8113 (18) | K3—O2 | 2.972 (2) |
K1—O1 | 2.8448 (19) | K3—C1i | 3.071 (3) |
K1—O4i | 2.879 (2) | K3—C1 | 3.071 (3) |
K1—O2iv | 2.901 (2) | K3—K4ix | 3.6315 (3) |
K1—O6 | 2.965 (2) | K3—K4xi | 3.6315 (3) |
K1—C1iv | 3.156 (3) | K4—O6i | 2.782 (2) |
K1—C2iii | 3.293 (3) | K4—O6 | 2.783 (2) |
K1—O5v | 3.374 (2) | K4—O3ii | 2.7908 (18) |
K1—C2vi | 3.412 (3) | K4—O3xii | 2.7908 (18) |
K2—O2vii | 2.6590 (19) | K4—O5xii | 2.868 (2) |
K2—O3iii | 2.6697 (19) | K4—O5ii | 2.868 (2) |
K2—O4viii | 2.726 (2) | K4—C2 | 3.046 (2) |
K2—O1 | 2.7426 (19) | K4—C2i | 3.046 (2) |
K2—O3 | 2.7561 (18) | K4—O4i | 3.131 (2) |
K2—O2i | 2.810 (2) | K4—O4 | 3.131 (2) |
K2—O5 | 2.980 (2) | O1—C1 | 1.319 (3) |
K2—C1 | 3.037 (3) | O2—C1 | 1.273 (3) |
K2—C2viii | 3.139 (3) | O3—C1 | 1.278 (3) |
K2—C1iii | 3.303 (3) | O4—C2 | 1.313 (3) |
K2—K2viii | 3.3304 (12) | O5—C2viii | 1.268 (3) |
K2—O1iii | 3.3644 (19) | O6—C2 | 1.273 (3) |
K3—O5i | 2.7344 (19) | ||
O4—Zn1—O4i | 113.95 (11) | O6i—K4—O5xii | 78.24 (6) |
O4—Zn1—O1i | 99.62 (8) | O6—K4—O5xii | 106.98 (6) |
O4i—Zn1—O1i | 114.01 (8) | O3ii—K4—O5xii | 92.71 (5) |
O4—Zn1—O1 | 114.01 (8) | O3xii—K4—O5xii | 80.33 (5) |
O4i—Zn1—O1 | 99.62 (8) | O6i—K4—O5ii | 106.98 (6) |
O1i—Zn1—O1 | 116.44 (10) | O6—K4—O5ii | 78.24 (6) |
O5ii—K1—O6iii | 87.09 (6) | O3ii—K4—O5ii | 80.33 (5) |
O5ii—K1—O3iv | 104.27 (6) | O3xii—K4—O5ii | 92.71 (5) |
O6iii—K1—O3iv | 129.66 (6) | O5xii—K4—O5ii | 170.96 (8) |
O5ii—K1—O1 | 139.27 (6) | O6i—K4—O4i | 43.77 (5) |
O6iii—K1—O1 | 115.16 (6) | O6—K4—O4i | 76.59 (6) |
O3iv—K1—O1 | 87.64 (5) | O3ii—K4—O4i | 151.47 (5) |
O5ii—K1—O4i | 81.15 (6) | O3xii—K4—O4i | 115.23 (5) |
O6iii—K1—O4i | 152.83 (6) | O5xii—K4—O4i | 112.93 (6) |
O3iv—K1—O4i | 77.22 (5) | O5ii—K4—O4i | 75.21 (5) |
O1—K1—O4i | 63.44 (5) | C2—K4—O4i | 79.32 (6) |
O5ii—K1—O2iv | 134.76 (6) | C2i—K4—O4i | 24.49 (6) |
O6iii—K1—O2iv | 91.85 (6) | O6i—K4—O4 | 76.59 (6) |
O3iv—K1—O2iv | 45.86 (5) | O6—K4—O4 | 43.77 (5) |
O1—K1—O2iv | 80.82 (5) | O3ii—K4—O4 | 115.23 (5) |
O4i—K1—O2iv | 113.78 (6) | O3xii—K4—O4 | 151.47 (5) |
O5ii—K1—O6 | 77.01 (6) | O5xii—K4—O4 | 75.21 (5) |
O6iii—K1—O6 | 75.60 (6) | O5ii—K4—O4 | 112.93 (6) |
O3iv—K1—O6 | 154.55 (6) | C2—K4—O4 | 24.49 (6) |
O1—K1—O6 | 76.47 (5) | C2i—K4—O4 | 79.32 (6) |
O4i—K1—O6 | 77.91 (6) | O4i—K4—O4 | 63.16 (7) |
O2iv—K1—O6 | 145.94 (6) | C1—O1—Zn1 | 112.29 (16) |
O5ii—K1—O5v | 88.01 (6) | C1—O1—K2 | 89.70 (14) |
O6iii—K1—O5v | 41.12 (5) | Zn1—O1—K2 | 109.58 (8) |
O3iv—K1—O5v | 89.64 (5) | C1—O1—K1 | 129.69 (16) |
O1—K1—O5v | 131.53 (5) | Zn1—O1—K1 | 88.39 (6) |
O4i—K1—O5v | 160.24 (5) | K2—O1—K1 | 127.22 (7) |
O2iv—K1—O5v | 63.57 (5) | C1—O1—K2iii | 76.00 (13) |
O6—K1—O5v | 115.78 (5) | Zn1—O1—K2iii | 170.74 (8) |
C1iv—K1—O5v | 81.18 (6) | K2—O1—K2iii | 73.70 (5) |
C2iii—K1—O5v | 21.89 (5) | K1—O1—K2iii | 82.91 (5) |
O2vii—K2—O3iii | 96.79 (6) | C1—O2—K2xiii | 121.60 (16) |
O2vii—K2—O4viii | 79.50 (6) | C1—O2—K2i | 149.34 (17) |
O3iii—K2—O4viii | 82.30 (6) | K2xiii—O2—K2i | 74.98 (5) |
O2vii—K2—O1 | 113.90 (6) | C1—O2—K1iv | 89.44 (15) |
O3iii—K2—O1 | 108.64 (6) | K2xiii—O2—K1iv | 95.82 (6) |
O4viii—K2—O1 | 160.62 (6) | K2i—O2—K1iv | 115.96 (7) |
O2vii—K2—O3 | 159.06 (6) | C1—O2—K3 | 82.28 (14) |
O3iii—K2—O3 | 82.81 (6) | K2xiii—O2—K3 | 155.54 (8) |
O4viii—K2—O3 | 120.97 (6) | K2i—O2—K3 | 86.49 (5) |
O1—K2—O3 | 47.83 (5) | K1iv—O2—K3 | 77.86 (5) |
O2vii—K2—O2i | 105.02 (5) | C1—O3—K2iii | 108.39 (15) |
O3iii—K2—O2i | 157.18 (6) | C1—O3—K2 | 89.96 (14) |
O4viii—K2—O2i | 95.00 (6) | K2iii—O3—K2 | 85.86 (5) |
O1—K2—O2i | 68.60 (5) | C1—O3—K4xi | 165.41 (16) |
O3—K2—O2i | 79.21 (6) | K2iii—O3—K4xi | 80.09 (5) |
O2vii—K2—O5 | 121.93 (6) | K2—O3—K4xi | 78.63 (5) |
O3iii—K2—O5 | 92.76 (6) | C1—O3—K3 | 90.09 (15) |
O4viii—K2—O5 | 45.34 (5) | K2iii—O3—K3 | 161.25 (7) |
O1—K2—O5 | 116.61 (6) | K2—O3—K3 | 91.18 (5) |
O3—K2—O5 | 78.94 (5) | K4xi—O3—K3 | 81.17 (5) |
O2i—K2—O5 | 70.15 (6) | C1—O3—K1iv | 93.41 (14) |
O2vii—K2—O1iii | 75.38 (5) | K2iii—O3—K1iv | 99.14 (6) |
O3iii—K2—O1iii | 41.38 (5) | K2—O3—K1iv | 172.75 (7) |
O4viii—K2—O1iii | 112.29 (5) | K4xi—O3—K1iv | 96.97 (5) |
O1—K2—O1iii | 85.45 (6) | K3—O3—K1iv | 82.40 (5) |
O3—K2—O1iii | 91.28 (5) | C2—O4—Zn1 | 126.39 (17) |
O2i—K2—O1iii | 152.02 (5) | C2—O4—K2viii | 95.59 (14) |
O5—K2—O1iii | 134.13 (5) | Zn1—O4—K2viii | 106.08 (8) |
C1—K2—O1iii | 96.75 (6) | C2—O4—K1i | 138.26 (16) |
C2viii—K2—O1iii | 133.18 (6) | Zn1—O4—K1i | 87.97 (7) |
C1iii—K2—O1iii | 22.80 (5) | K2viii—O4—K1i | 96.21 (6) |
K2viii—K2—O1iii | 122.93 (4) | C2—O4—K4 | 74.12 (13) |
O5i—K3—O5 | 167.20 (9) | Zn1—O4—K4 | 91.45 (7) |
O5i—K3—O6ix | 81.34 (6) | K2viii—O4—K4 | 162.44 (7) |
O5—K3—O6ix | 88.88 (6) | K1i—O4—K4 | 83.15 (5) |
O5i—K3—O6x | 88.88 (6) | C2viii—O5—K3 | 146.56 (17) |
O5—K3—O6x | 81.33 (6) | C2viii—O5—K1x | 110.41 (16) |
O6ix—K3—O6x | 80.53 (9) | K3—O5—K1x | 82.91 (6) |
O5i—K3—O3 | 104.81 (6) | C2viii—O5—K4xi | 127.79 (17) |
O5—K3—O3 | 82.69 (6) | K3—O5—K4xi | 80.78 (5) |
O6ix—K3—O3 | 164.34 (6) | K1x—O5—K4xi | 90.42 (6) |
O6x—K3—O3 | 85.15 (6) | C2viii—O5—K2 | 85.18 (15) |
O5i—K3—O3i | 82.69 (6) | K3—O5—K2 | 87.70 (6) |
O5—K3—O3i | 104.81 (6) | K1x—O5—K2 | 162.84 (8) |
O6ix—K3—O3i | 85.16 (6) | K4xi—O5—K2 | 73.86 (5) |
O6x—K3—O3i | 164.34 (6) | C2viii—O5—K1xiv | 75.47 (15) |
O3—K3—O3i | 109.72 (7) | K3—O5—K1xiv | 73.49 (5) |
O5i—K3—O2i | 120.30 (6) | K1x—O5—K1xiv | 91.99 (6) |
O5—K3—O2i | 71.26 (6) | K4xi—O5—K1xiv | 153.64 (7) |
O6ix—K3—O2i | 113.80 (6) | K2—O5—K1xiv | 99.10 (6) |
O6x—K3—O2i | 148.26 (5) | C2—O6—K3xv | 144.96 (18) |
O3—K3—O2i | 75.94 (5) | C2—O6—K4 | 89.28 (15) |
O3i—K3—O2i | 45.33 (5) | K3xv—O6—K4 | 82.27 (5) |
O5i—K3—O2 | 71.26 (6) | C2—O6—K1iii | 100.98 (15) |
O5—K3—O2 | 120.30 (6) | K3xv—O6—K1iii | 81.98 (5) |
O6ix—K3—O2 | 148.26 (5) | K4—O6—K1iii | 163.55 (8) |
O6x—K3—O2 | 113.80 (6) | C2—O6—K1 | 134.75 (17) |
O3—K3—O2 | 45.34 (5) | K3xv—O6—K1 | 79.10 (5) |
O3i—K3—O2 | 75.94 (5) | K4—O6—K1 | 87.93 (6) |
O2i—K3—O2 | 69.49 (8) | K1iii—O6—K1 | 93.70 (6) |
O6i—K4—O6 | 111.90 (9) | O2—C1—O3 | 121.7 (2) |
O6i—K4—O3ii | 163.07 (6) | O2—C1—O1 | 120.1 (2) |
O6—K4—O3ii | 84.32 (6) | O3—C1—O1 | 118.3 (2) |
O6i—K4—O3xii | 84.32 (6) | O5viii—C2—O6 | 123.1 (3) |
O6—K4—O3xii | 163.07 (6) | O5viii—C2—O4 | 118.0 (2) |
O3ii—K4—O3xii | 80.03 (8) | O6—C2—O4 | 119.0 (2) |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+1, y, −z+1/2; (iv) −x+1/2, −y+1/2, −z; (v) x+1/2, −y+1/2, z−1/2; (vi) x, −y+1, z−1/2; (vii) x+1/2, −y+1/2, z+1/2; (viii) −x+1/2, −y+1/2, −z+1; (ix) x−1/2, y−1/2, z; (x) −x+1/2, y−1/2, −z+1/2; (xi) x+1/2, y−1/2, z; (xii) x−1/2, y+1/2, z; (xiii) x−1/2, −y+1/2, z−1/2; (xiv) x−1/2, −y+1/2, z+1/2; (xv) x+1/2, y+1/2, z. |
Acknowledgements
The X-ray centre of TU Wien is acknowledged for providing access to the single-crystal and powder X-ray diffractometers. The authors acknowledge TU Wien Bibliothek for financial support through its Open Access Funding Programme.
References
Awaleh, M. O., Ben Ali, A., Maisonneuve, V. & Leblanc, M. (2003). J. Alloys Compd. 349, 114–120. Web of Science CrossRef ICSD CAS Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press. Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA Google Scholar
Cao, L., Peng, G., Yan, T., Luo, M., Lin, C. & Ye, N. (2018). J. Alloys Compd. 742, 587–593. Web of Science CrossRef ICSD CAS Google Scholar
Christy, A. G., Mills, S. J. & Kampf, A. R. (2016). Miner. Mag. 80, 415–545. Web of Science CrossRef CAS Google Scholar
Dowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA. Google Scholar
Eder, F., Marsollier, A. & Weil, M. (2023). Miner. Petrol. 117, 145–163. Web of Science CrossRef CAS Google Scholar
Eder, F., Stöger, B. & Weil, M. (2022). Z. Kristallogr. 237, 329–341. Web of Science CSD CrossRef ICSD CAS Google Scholar
Eder, F. & Weil, M. (2022). Z. Anorg. Allg. Chem. 648, e202200089. Google Scholar
Farrand, A., Gregson, A. K., Skelton, B. W. & White, A. H. (1980). Aust. J. Chem. 33, 431–434. CrossRef ICSD CAS Web of Science Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625. Web of Science CrossRef IUCr Journals Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 79–96. Web of Science CrossRef IUCr Journals Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2020). IUCrJ, 7, 581–629. Web of Science CrossRef PubMed IUCr Journals Google Scholar
Galy, J., Meunier, G., Andersson, S. & Åström, A. (1975). J. Solid State Chem. 13, 142–159. CrossRef CAS Web of Science Google Scholar
Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143. CrossRef Web of Science IUCr Journals Google Scholar
Gier, T. E., Bu, X., Wang, S.-L. & Stucky, G. D. (1996). J. Am. Chem. Soc. 118, 3039–3040. CrossRef ICSD CAS Web of Science Google Scholar
Hans, P., Stöger, B., Weil, M. & Zobetz, E. (2015). Acta Cryst. B71, 194–202. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Healy, P. C. & White, A. H. (1972). J. Chem. Soc. Dalton Trans. pp. 1913–1917. CrossRef ICSD Web of Science Google Scholar
Kim, K.-Y., Kwak, J.-S., Lee, J.-M. & Kwon, Y.-U. (2021). J. Solid State Chem. 293, 121767. Web of Science CrossRef ICSD Google Scholar
Kim, K.-Y., Kwak, J.-S., Oh, K.-R., Atila, G. & Kwon, Y.-U. (2018). J. Solid State Chem. 267, 63–67. Web of Science CrossRef ICSD CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lindqvist, O. (1972). Acta Chem. Scand. 26, 4109–4120. Google Scholar
Liu, X., Kang, K., Gong, P. & Lin, Z. (2021). Angew. Chem. Int. Ed. 60, 13574–13578. Web of Science CSD CrossRef CAS Google Scholar
Luo, M., Lin, C., Zou, G., Ye, N. & Cheng, W. (2014). CrystEngComm, 16, 4414–4421. Web of Science CrossRef ICSD CAS Google Scholar
Ok, K. M., Chi, E. O. & Halasyamani, P. S. (2006). Chem. Soc. Rev. 35, 710–717. Web of Science CrossRef PubMed CAS Google Scholar
Peng, G., Lin, C. & Ye, N. (2020). J. Am. Chem. Soc. 142, 20542–20546. Web of Science CrossRef ICSD CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Skakle, J. M. S., Wilson, M. & Feldmann, J. (2001). Acta Cryst. E57, i94–i97. Web of Science CSD CrossRef ICSD IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tang, C., Jiang, X., Guo, S., Xia, M., Liu, L., Wang, X., Lin, Z. & Chen, C. (2018). Dalton Trans. 47, 6464–6469. Web of Science CrossRef ICSD CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Winkler, B., Zemann, J. & Milman, V. (2000). Acta Cryst. B56, 648–653. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zemann, J. (1981). Fortschr. Mineral. 59, 95–116. CAS Google Scholar
Zheng, Y.-Q. & Adam, A. (1995). Z. Naturforsch. Teil B, 50, 1185–1194. CrossRef ICSD CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.