research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Cyclo­hexyl­tryptamine: freebase, bromide and fumarate

crossmark logo

aUniversity of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA, and bCaaMTech, Inc., 58 East Sunset Way, Suite 209, Issaquah, WA 98027, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 29 June 2023; accepted 15 July 2023; online 25 July 2023)

The solid-state structures of N-cyclo­hexyl­tryptamine (I) {systematic name: N-[2-(1H-indol-3-yl)eth­yl]cyclo­hexa­namine}, C16H22N2, and two of its salts, N-cyclo­hexyl­tryptammonium bromide (II) {systematic name: N-[2-(1H-indol-3-yl)eth­yl]cyclo­hexa­naminium bromide}, C16H23N2+·Br, and N-cyclo­hexyl­tryptammonium fumarate (III) (systematic name: bis­{N-[2-(1H-indol-3-yl)eth­yl]cyclo­hexa­naminium} (2E)-but-2-enedioate), 2C16H23N2+·C4H2O42−, were determined by single-crystal X-ray diffraction. The freebase compound forms infinite chains along [010] through N—H⋯N hydrogen bonds. The bromide salt is held together by N—H⋯Br inter­actions in two-dimensional sheets along (001). The fumarate salt is held together in infinite three-dimensional frameworks by N—H⋯O hydrogen bonds.

1. Chemical context

Tryptamine, an indole with a 2-amino­ethyl sidechain, is a metabolite of the essential amino acid tryptophan. Tryptamine and its derivatives are an important class of biologically active compounds that are found in almost all organisms on Earth. In humans these compounds play significant roles ranging from the function of the gastrointestinal tract to neurotransmission and control subjective phenomena like happiness. The most abundant of these compounds, occurring naturally in the body, are primary tryptamines like tryptamine itself and serotonin (5-hy­droxy­tryptamine; 5-HT) (Palego et al., 2016[Palego, L., Betti, L., Rossi, A. & Giannaccini, G. (2016). J. Amino Acids, Article ID 8952520. https://doi.org/10.1155/2016/8952520]).

[Scheme 1]

There are many well-known tertiary (dialk­yl) tryptamines, including the natural products N,N-di­methyl­tryptamine (DMT), 5-meth­oxy-N,N-di­methyl­tryptamine (5-MeO-DMT) and 4-hy­droxy-N,N-di­methyl­tryptamine (psilocin) which are known agonists of the serotonin 2A (5-HT2A) receptor and elicit a psychedelic response in humans. These and similar compounds have attracted a great deal of inter­est due to their potential for treating conditions including depression (Mertens et al., 2020[Mertens, L. J., Wall, M. B., Roseman, L., Demetriou, L., Nutt, D. J. & Carhart-Harris, R. L. (2020). J. Psychopharmacol. 34, 167-180.]), end-of-life distress (Ross et al., 2021[Ross, S., Agin-Liebes, G., Lo, S., Zeifman, R. J., Ghazal, L., Benville, J., Franco Corso, S., Bjerre Real, C., Guss, J., Bossis, A. & Mennenga, S. E. (2021). ACS Pharmacol. Transl. Sci. 4, 553-562.]), post-traumatic stress disorder (Varker et al., 2021[Varker, T., Watson, L., Gibson, K., Forbes, D. & O'Donnell, M. L. (2021). J. Psychoactive Drugs, 53, 85-95.]), pain (Ramaekers et al., 2021[Ramaekers, J. G., Hutten, N., Mason, N. L., Dolder, P., Theunissen, E. L., Holze, F., Liechti, M. E., Feilding, A. & Kuypers, K. P. C. (2021). J. Psychopharmacol. 35, 398-405.]), and eating disorders (Spriggs et al., 2021[Spriggs, M. J., Kettner, H. & Carhart-Harris, R. L. (2021). Eat. Weight Disord. 26, 1265-1270.]). There are also many synthetic tertiary tryptamines used as pharmaceuticals including the triptans, which have long been used for the treatment of migraine headaches by activating the serotonin 1D (5-HT1D) receptor (Goadsby & Holland, 2018[Goadsby, P. J. & Holland, P. R. (2018). Neurotherapeutics, 15, 271-273.]). The biological impact of primary and tertiary tryptamines has been recognized for a long time and continues to be studied in great detail today.

Much less studied are the secondary tryptamines, i.e. the mono­alkyl­tryptamines; many of these compounds have been observed as natural products in plants. One study suggests that mono­alkyl­tryptamines are generally less toxic than their di­alkyl­tryptamine counterparts (Brimblecombe et al., 1964[Brimblecombe, R. W., Downing, D. F., Green, D. M. & Hunt, R. R. (1964). Br. J. Pharmacol. Chemother. 23, 43-54.]). For example, the LD50 values for N-methyl­tryptamine (NMT) and N,N-di­methyl­tryptamine (DMT) in mice were 78 and 43 mg kg−1, respectively. Recent studies have suggested that the psychedelic effects of compounds may not be necessary for the expression of therapeutic effects (Olson, 2021[Olson, D. E. (2021). ACS Pharmacol. Transl. Sci, 4, 563-567.]). Monoalkyl tryptamines like norpsilocin (4-hy­droxy-N-methyl­tryptamine) are agonists of 5-HT2A but do not produce head-twitch response (HTR) in mice, which is characteristic of classic psychedelics such as psilocybin and LSD (Sherwood et al., 2020[Sherwood, A. M., Halberstadt, A. L., Klein, A. K., McCorvy, J. D., Kaylo, K. W., Kargbo, R. B. & Meisenheimer, P. (2020). J. Nat. Prod. 83, 461-467.]; Glatfelter et al., 2022a[Glatfelter, G., Chojnacki, M. R., McGriff, S. A., Wang, T. & Baumann, M. H. (2022a). ACS Pharmacol. Transl. Sci. 5, 321-330.]). Human studies have found that the compound 5-tert-butyl-N-methyl­tryptamine is a full agonist of 5-HT1D with a higher binding affinity (Ki = 0.45 nM) and selectivity five times more potent (EC50 = 0.22 nM) than the migraine drug naratriptan (EC50 = 1.6 nM) (Xu et al., 1999[Xu, Y. C., Schaus, J. M., Walker, C., Krushinski, J., Adham, N., Zgombick, J. M., Liang, S. X., Kohlman, D. T. & Audia, J. E. (1999). J. Med. Chem. 42, 526-531.]; Slassi et al., 2000[Slassi, A., Edwards, L., O'Brien, A., Meng, C. Q., Xin, T., Seto, C., Lee, D. K. H., MacLean, N., Hynd, D., Chen, C., Wang, H., Kamboj, R. & Rakhit, S. (2000). Bioorg. Med. Chem. Lett. 10, 1707-1709.]). These and other data points suggest that mono­alkyl­tryptamines possess characteristics that are conducive to the development of medicines.

Continuing our exploration of mono­alkyl­tryptamines, we present here the first crystal structure of a mono-cyclo­alkyl­tryptamine, N-cyclo­hexyl­tryptamine. The compound was synthesized in 1971 via the condensation of tryptamine with cyclo­hexa­none followed by reduction with Raney Nickel (Gerecs et al., 1971[Gerecs, Á., Barta, K. & Duda, E. (1971). Magy. Kem. Foly. 77, 531-533.]). Herein, we report three structures of N-cyclo­hexyl­tryptamine compounds, including freebase, bromide and fumarate salts, the later of which represents the first fumarate salt of a mono-cyclo­alkyl­tryptamine.

2. Structural commentary

The mol­ecular structure of the freebase of N-cyclo­hexyl­tryptamine (I) is shown in Fig. 1[link] (top left), as well as that of its bromide salt [(II), top right], and its fumarate salt [(III), bottom]. The asymmetric unit of (I) contains one full tryptamine (C16H22N2) mol­ecule. The asymmetric unit of the bromide salt (II) contains one N-cyclo­hexyl­tryptammonium (C16H23N2+) cation and one bromide anion held together with an N2—H2A⋯Br1 hydrogen bond. The asymmetric unit of the fumarate salt (III) contains one full N-cyclo­hexyl­tryptammonium (C16H23N2+) cation and one half of a fumarate (C4H2O42–) dianion, with the second half generated by inversion. The two ions are connected in the asymmetric unit through a N2—H2⋯O2 hydrogen bond. The fumarate dianion is near planar, with an r.m.s. deviation from planarity of 0.011 Å. In all three structures, the cyclo­hexyl group is in a chair configuration. Table 1[link] lists selected parameters for the three structures.

Table 1
Selected metrical parameters (Å, °) for (I)—(III)

Compound indole r.m.s. deviation from planarity C7—C8—C9—C10 C10—N2—C11
(I) 0.007 45.5 (4) 116.6 (3)
(II) 0.010 84.2 (5) 114.5 (3)
(III) 0.008 −74.77 (19) 117.72 (11)
[Figure 1]
Figure 1
The mol­ecular structures of freebase N-cyclo­hexyl­tryptamine (top left), its bromide salt (top right), and its fumarate salt (bottom), showing atomic labeling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

In the freebase, the tryptamine mol­ecules are held together in infinite chains along [010] by N1—H1⋯N2 hydrogen bonds (Table 2[link]). In the bromide, the tryptammonium cations and bromide anions are held together in two-dimensional sheets along (001) through a series of N—H⋯Br hydrogen bonds (Table 3[link]). In the fumarate salt, the tryptammonium cations and fumarate dianions are held together in an infinite three-dimensional framework through a series of N—H⋯O hydrogen bonds. The indole N—H and both ammonium N—H bonds hydrogen bond to oxygen atoms of the fumarate dianions (Table 4[link]). The packing of N-cyclo­hexyl­tryptamine is shown in Fig. 2[link] for the freebase (left), the bromide (center) and the fumarate (right).

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.86 (1) 2.22 (2) 3.069 (4) 167 (3)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+1].

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Br1 0.90 (1) 2.41 (1) 3.307 (4) 172 (4)
N1—H1⋯Br1i 0.87 (1) 2.68 (3) 3.468 (4) 151 (4)
N2—H2B⋯Br1ii 0.90 (1) 2.47 (2) 3.340 (3) 163 (4)
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 4
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2 0.91 (1) 1.81 (1) 2.7107 (15) 175 (2)
N1—H1⋯O4i 0.88 (1) 1.94 (1) 2.7899 (16) 163 (2)
N2—H2B⋯O4ii 0.91 (1) 1.87 (1) 2.7632 (16) 167 (2)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z+2].
[Figure 2]
Figure 2
The crystal packing of freebase N-cyclo­hexyl­tryptamine (left), its bromide salt (center), and its fumarate salt (right), all shown along the b-axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding are omitted for clarity.

4. Database survey

There are only seven crystal structures of mono­alkyl­tryptamine previously reported. This includes the zwitterionic natural product baeocystin (Naeem, Sherwood et al., 2022[Naeem, M., Sherwood, A. M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2022). Acta Cryst. E78, 550-553.]), its metabolite norpsilocin as both its freebase and fumarate (Chadeayne et al., 2020b[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020b). Acta Cryst. E76, 589-593.]), and its synthetic prodrug 4-acet­oxy-N-methyl­tryptamine as a chloride salt (Glatfelter et al., 2022b[Glatfelter, G., Pottie, E., Partilla, J. S., Sherwood, A. M., Kaylo, K., Pham, D. N. K., Naeem, M., Sammeta, V. R., DeBoer, S., Golen, J. A., Hulley, E. B., Stove, C. P., Chadeayne, A. R., Manke, D. R. & Baumann, M. H. (2022b). ACS Pharmacol. Transl. Sci. 5, 1181-1196.]). The remaining three are N-methyl­serotonin hydrogen oxalate (Naeem, Anas et al., 2023[Naeem, M., Anas, N. A., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2023). IUCrData, 8, x230378.]), 4-benz­yloxy-N-iso­propyl­tryptammonium chloride and 4-hy­droxy-N-iso­propyl­tryptamine (Laban et al., 2023[Laban, U., Naeem, M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2023). Acta Cryst. E79, 280-286.])

There are only four structures of freebase tryptamines known without indole substitution: the natural products tryptamine (Nowell et al., 2002[Nowell, H., Attfield, J. P. & Cole, J. C. (2002). Acta Cryst. B58, 835-840.]) and N,N-di­methyl­tryptamine (Falkenberg, 1972[Falkenberg, G. (1972). Acta Cryst. B28, 3075-3083.]), as well as N-methyl-N-propyl­tryptamine (Chadeayne et al., 2019b[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019b). IUCrData, 4, x190962.]), and 3-[2-(piperidin-1-yl)eth­yl]-1H-indole (Sahoo et al., 2020[Sahoo, A. R., Lalitha, G., Murugesh, V., Bruneau, C., Sharma, G. V. M., Suresh, S. & Achard, M. (2020). Asia. J. Org. Chem. 9, 910-913.]), while many other tryptamine freebases have been reported including serotonin (Naeem, Chadeayne et al., 2022[Naeem, M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2022). Acta Cryst. E78, 365-368.]).

The crystal structure of only one tryptammonium bromide salt has been presented, that of the natural product N,N-di­methyl­tryptamine (Falkenberg, 1972[Falkenberg, G. (1972). Acta Cryst. B28, 3075-3083.]), though numerous chloride salts have been reported (Pham, Belanger et al., 2021[Pham, D. N. K., Belanger, Z. S., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). Acta Cryst. C77, 615-620.]). By contrast, eight bis­(tryptammonium) fumarate structures have been reported recently, including the salts of norpsilocin (Chadeayne et al., 2020b[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020b). Acta Cryst. E76, 589-593.]), 4-acet­oxy-N,N-di­allyl­tryptamine (Pham et al., 2021a[Pham, D. N. K., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021a). Acta Cryst. E77, 101-106.]), 5-meth­oxy-N,N-di­allyl­tryptamine (Pham, Sammeta et al., 2021[Pham, D. N. K., Sammeta, V. R., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). Acta Cryst. E77, 416-419.]), 5-meth­oxy-N,N-di-n-propyl­tryptamine (Pham et al., 2021c[Pham, D. N. K., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021c). Acta Cryst. E77, 522-526.]), 4-hy­droxy-N-methyl-N-iso­propyl­tryptamine (Chadeayne et al., 2020a[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020a). Acta Cryst. E76, 514-517.]), 5-meth­oxy-2-methyl-N,N-di­methyl­tryptamine (Pham et al., 2021b[Pham, D. N. K., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021b). Acta Cryst. E77, 190-194.]), 4-hy­droxy-N,N-di-n-propyl­tryptamine (Chadeayne, Pham et al., 2019[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019). IUCrData, 4, x191469.]), and 4-acet­oxy-N,N-di­methyl­tryptamine (Chadeayne et al., 2019a[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 900-902.]).

5. Synthesis and crystallization

Crystals of N-cyclo­hexyl­tryptammonium bromide (II) suitable for X-ray diffraction studies were grown by slow evaporation of an ethanol solution of a commercial sample (ChemBridge).

The bromide salt was converted to freebase N-cyclo­hexyl­tryptamine (I) by stirring it in a biphasic mixture of di­chloro­ethane and aqueous sodium hydroxide. The organic layer was isolated, washed with brine and dried over sodium sulfate. The solvent was removed in vacuo to yield the freebase as a white powder. Crystals suitable for X-ray diffraction were grown by the slow evaporation of an acetone solution.

Freebase N-cyclo­hexyl­tryptamine and fumaric acid were dissolved in methanol and heated at reflux for 12 h. The solvent was removed in vacuo to yield an off-white powder which was characterized by NMR. Single crystals of (III) suitable for X-ray diffraction studies were grown from the slow evaporation of a methanol/water solution. 1H NMR (400 MHz, DMSO-d6): δ 7.55 (d, J = 7.8 Hz, 1H, ArH), 7.35 (d, J = 8.1 Hz, 1H, ArH), 7.21 (s, 1H, ArH), 7.07 (t, J = 7.5 Hz, 1H, ArH), 6.99 (t, J = 7.4 Hz, 1H, ArH), 6.43 (s, 1H, CH), 3.08 (t, J = 8.3 Hz, 2H, CH2), 2.99 (t, J = 8.1 Hz, 2H, CH2), 2.89 (m, 1H, CH), 1.98 (m, 2H, CH2), 1.72 (m, 2H, CH2), 1.19 (m, 6H, CH2).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. Hydrogen atoms H1 and H2 in the freebase, H1, H2A and H2B in the bromide salt, and H1, H2A and H2B in the fumarate salt were found from difference-Fourier maps. These hydrogen atoms were refined isotropically, using DFIX restraints with N—H(indole) distances of 0.87 (1) Å and N—H(amine/ammonium) distances of 0.90 (1) Å. Isotropic displacement parameters were set to 1.2 Ueq of the parent nitro­gen atoms. All other hydrogen atoms were placed in calculated positions.

Table 5
Experimental details

  (II) (II) (III)
Crystal data
Chemical formula C16H22N2 C16H23N2+·Br C16H23N2+·C2HO2
Mr 242.35 323.27 300.39
Crystal system, space group Monoclinic, P21 Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 297 297 297
a, b, c (Å) 8.5446 (6), 10.3990 (7), 8.6149 (6) 10.5584 (6), 7.9266 (5), 19.4507 (13) 9.2231 (10), 16.1611 (16), 11.4595 (12)
β (°) 116.784 (2) 92.406 (2) 99.865 (4)
V3) 683.35 (8) 1626.44 (18) 1682.8 (3)
Z 2 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.07 2.52 0.08
Crystal size (mm) 0.35 × 0.24 × 0.2 0.3 × 0.13 × 0.03 0.32 × 0.22 × 0.2
 
Data collection
Diffractometer Bruker D8 Venture CMOS Bruker D8 Venture CMOS Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.645, 0.745 0.610, 0.745 0.694, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 18695, 2621, 2396 46579, 3320, 2978 20060, 3446, 2803
Rint 0.034 0.037 0.028
(sin θ/λ)max−1) 0.613 0.626 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.124, 1.04 0.045, 0.109, 1.22 0.043, 0.121, 1.03
No. of reflections 2621 3320 3446
No. of parameters 171 184 211
No. of restraints 3 3 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.16 0.58, −0.70 0.22, −0.17
Absolute structure Flack x determined using 1039 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.5 (7)
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: APEX4 (Bruker, 2021); cell refinement: SAINT (Bruker, 2021); data reduction: SAINT (Bruker, 2021); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

N-[2-(1H-Indol-3-yl)ethyl]cyclohexanamine (I) top
Crystal data top
C16H22N2F(000) = 264
Mr = 242.35Dx = 1.178 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.5446 (6) ÅCell parameters from 8705 reflections
b = 10.3990 (7) Åθ = 2.7–25.8°
c = 8.6149 (6) ŵ = 0.07 mm1
β = 116.784 (2)°T = 297 K
V = 683.35 (8) Å3Block, colourless
Z = 20.35 × 0.24 × 0.2 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
2396 reflections with I > 2σ(I)
φ and ω scansRint = 0.034
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 25.8°, θmin = 3.3°
Tmin = 0.645, Tmax = 0.745h = 1010
18695 measured reflectionsk = 1212
2621 independent reflectionsl = 1010
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.1584P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.124(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.26 e Å3
2621 reflectionsΔρmin = 0.16 e Å3
171 parametersAbsolute structure: Flack x determined using 1039 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraintsAbsolute structure parameter: 0.5 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6840 (4)0.3201 (3)0.7683 (3)0.0574 (6)
N20.4242 (4)0.5812 (3)0.0943 (3)0.0632 (7)
C10.6257 (4)0.3382 (4)0.5918 (4)0.0653 (9)
H1A0.5708840.2753620.5077900.078*
C20.7549 (4)0.4345 (3)0.8487 (4)0.0512 (7)
C30.8321 (4)0.4672 (3)1.0235 (4)0.0608 (8)
H30.8401700.4077441.1074390.073*
C40.8964 (5)0.5900 (4)1.0695 (5)0.0692 (9)
H40.9503200.6126451.1865090.083*
C50.8830 (5)0.6805 (4)0.9467 (5)0.0709 (9)
H50.9260880.7631210.9818030.085*
C60.8069 (4)0.6495 (3)0.7743 (5)0.0660 (9)
H60.7979580.7109520.6922940.079*
C70.7419 (4)0.5244 (3)0.7208 (4)0.0539 (7)
C80.6589 (4)0.4598 (4)0.5573 (4)0.0619 (8)
C90.6235 (5)0.5204 (5)0.3860 (4)0.0855 (13)
H9A0.6420610.6123330.4037850.103*
H9B0.7095780.4880380.3513640.103*
C100.4504 (5)0.4997 (4)0.2431 (4)0.0721 (11)
H10A0.3619470.5195460.2808220.086*
H10B0.4375570.4100280.2084520.086*
C110.2920 (4)0.5382 (3)0.0766 (3)0.0492 (6)
H110.1776800.5406570.0758960.059*
C120.3181 (4)0.4030 (3)0.1291 (4)0.0596 (8)
H12A0.4317960.3974300.1281560.072*
H12B0.3158750.3415790.0453370.072*
C130.1762 (6)0.3695 (4)0.3085 (5)0.0757 (10)
H13A0.1967780.2836910.3394410.091*
H13B0.0632340.3696080.3072340.091*
C140.1723 (5)0.4639 (5)0.4431 (5)0.0786 (11)
H14A0.2810490.4580990.4525370.094*
H14B0.0767030.4424570.5554350.094*
C150.1490 (5)0.5982 (4)0.3946 (4)0.0705 (9)
H15A0.0334730.6064360.4001880.085*
H15B0.1559150.6577860.4779590.085*
C160.2870 (5)0.6337 (3)0.2129 (4)0.0657 (9)
H16A0.2620240.7188930.1838130.079*
H16B0.4011060.6363670.2114420.079*
H20.524 (3)0.594 (5)0.083 (5)0.091 (14)*
H10.672 (5)0.249 (2)0.813 (4)0.067 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0606 (15)0.0598 (16)0.0454 (13)0.0075 (12)0.0183 (11)0.0039 (11)
N20.0709 (17)0.0612 (17)0.0445 (14)0.0103 (14)0.0146 (12)0.0061 (12)
C10.0541 (17)0.092 (3)0.0430 (16)0.0035 (17)0.0155 (13)0.0069 (17)
C20.0454 (14)0.0590 (19)0.0470 (15)0.0150 (12)0.0188 (12)0.0066 (12)
C30.0663 (19)0.064 (2)0.0512 (16)0.0055 (16)0.0256 (15)0.0008 (15)
C40.070 (2)0.074 (2)0.066 (2)0.0022 (18)0.0326 (17)0.0135 (19)
C50.069 (2)0.066 (2)0.085 (3)0.0005 (17)0.041 (2)0.0092 (19)
C60.0566 (17)0.061 (2)0.092 (3)0.0139 (15)0.0436 (18)0.0245 (18)
C70.0422 (14)0.0677 (19)0.0545 (16)0.0148 (14)0.0243 (13)0.0098 (15)
C80.0475 (16)0.087 (2)0.0490 (17)0.0113 (16)0.0200 (14)0.0142 (16)
C90.062 (2)0.136 (4)0.0550 (19)0.008 (2)0.0229 (16)0.027 (2)
C100.079 (2)0.073 (2)0.0464 (17)0.0146 (17)0.0123 (16)0.0137 (15)
C110.0474 (14)0.0523 (16)0.0432 (14)0.0020 (12)0.0162 (11)0.0029 (12)
C120.0606 (17)0.0540 (18)0.0619 (18)0.0051 (15)0.0255 (15)0.0053 (15)
C130.088 (3)0.064 (2)0.068 (2)0.0063 (18)0.0290 (19)0.0126 (17)
C140.085 (3)0.097 (3)0.0528 (19)0.001 (2)0.0302 (18)0.0077 (19)
C150.071 (2)0.088 (3)0.0477 (17)0.0130 (19)0.0224 (15)0.0168 (17)
C160.084 (2)0.0551 (19)0.0510 (18)0.0032 (16)0.0247 (17)0.0092 (14)
Geometric parameters (Å, º) top
N1—C11.383 (4)C9—H9B0.9700
N1—C21.372 (4)C9—C101.452 (5)
N1—H10.864 (14)C10—H10A0.9700
N2—C101.467 (4)C10—H10B0.9700
N2—C111.464 (4)C11—H110.9800
N2—H20.912 (14)C11—C121.523 (4)
C1—H1A0.9300C11—C161.524 (4)
C1—C81.357 (5)C12—H12A0.9700
C2—C31.388 (4)C12—H12B0.9700
C2—C71.410 (4)C12—C131.514 (5)
C3—H30.9300C13—H13A0.9700
C3—C41.375 (5)C13—H13B0.9700
C4—H40.9300C13—C141.508 (6)
C4—C51.382 (5)C14—H14A0.9700
C5—H50.9300C14—H14B0.9700
C5—C61.364 (5)C14—C151.497 (6)
C6—H60.9300C15—H15A0.9700
C6—C71.408 (5)C15—H15B0.9700
C7—C81.428 (5)C15—C161.521 (5)
C8—C91.505 (4)C16—H16A0.9700
C9—H9A0.9700C16—H16B0.9700
C1—N1—H1124 (3)C9—C10—H10A109.5
C2—N1—C1107.2 (3)C9—C10—H10B109.5
C2—N1—H1129 (2)H10A—C10—H10B108.1
C10—N2—H2113 (3)N2—C11—H11107.8
C11—N2—C10116.6 (3)N2—C11—C12115.5 (3)
C11—N2—H2106 (2)N2—C11—C16108.5 (2)
N1—C1—H1A124.5C12—C11—H11107.8
C8—C1—N1111.1 (3)C12—C11—C16109.3 (2)
C8—C1—H1A124.5C16—C11—H11107.8
N1—C2—C3130.3 (3)C11—C12—H12A109.4
N1—C2—C7108.6 (3)C11—C12—H12B109.4
C3—C2—C7121.1 (3)H12A—C12—H12B108.0
C2—C3—H3120.9C13—C12—C11111.0 (3)
C4—C3—C2118.3 (3)C13—C12—H12A109.4
C4—C3—H3120.9C13—C12—H12B109.4
C3—C4—H4119.1C12—C13—H13A109.3
C3—C4—C5121.8 (4)C12—C13—H13B109.3
C5—C4—H4119.1H13A—C13—H13B108.0
C4—C5—H5119.8C14—C13—C12111.4 (3)
C6—C5—C4120.5 (4)C14—C13—H13A109.3
C6—C5—H5119.8C14—C13—H13B109.3
C5—C6—H6120.0C13—C14—H14A109.5
C5—C6—C7119.9 (3)C13—C14—H14B109.5
C7—C6—H6120.0H14A—C14—H14B108.1
C2—C7—C8106.7 (3)C15—C14—C13110.6 (3)
C6—C7—C2118.4 (3)C15—C14—H14A109.5
C6—C7—C8134.9 (3)C15—C14—H14B109.5
C1—C8—C7106.4 (3)C14—C15—H15A109.2
C1—C8—C9129.4 (4)C14—C15—H15B109.2
C7—C8—C9124.1 (4)C14—C15—C16112.0 (3)
C8—C9—H9A108.2H15A—C15—H15B107.9
C8—C9—H9B108.2C16—C15—H15A109.2
H9A—C9—H9B107.3C16—C15—H15B109.2
C10—C9—C8116.5 (3)C11—C16—H16A109.2
C10—C9—H9A108.2C11—C16—H16B109.2
C10—C9—H9B108.2C15—C16—C11112.0 (3)
N2—C10—H10A109.5C15—C16—H16A109.2
N2—C10—H10B109.5C15—C16—H16B109.2
C9—C10—N2110.6 (3)H16A—C16—H16B107.9
N1—C1—C8—C70.6 (4)C4—C5—C6—C70.2 (5)
N1—C1—C8—C9178.0 (3)C5—C6—C7—C21.1 (4)
N1—C2—C3—C4178.7 (3)C5—C6—C7—C8179.2 (3)
N1—C2—C7—C6179.9 (3)C6—C7—C8—C1179.4 (3)
N1—C2—C7—C80.2 (3)C6—C7—C8—C91.9 (5)
N2—C11—C12—C13179.1 (3)C7—C2—C3—C40.2 (4)
N2—C11—C16—C15178.4 (3)C7—C8—C9—C10134.5 (4)
C1—N1—C2—C3179.5 (3)C8—C9—C10—N2170.4 (4)
C1—N1—C2—C70.5 (3)C10—N2—C11—C1256.0 (4)
C1—C8—C9—C1047.2 (6)C10—N2—C11—C16179.0 (3)
C2—N1—C1—C80.7 (4)C11—N2—C10—C9156.9 (4)
C2—C3—C4—C51.2 (5)C11—C12—C13—C1458.1 (4)
C2—C7—C8—C10.2 (3)C12—C11—C16—C1554.9 (4)
C2—C7—C8—C9178.4 (3)C12—C13—C14—C1556.4 (4)
C3—C2—C7—C61.0 (4)C13—C14—C15—C1654.5 (4)
C3—C2—C7—C8179.3 (3)C14—C15—C16—C1154.9 (4)
C3—C4—C5—C61.0 (5)C16—C11—C12—C1356.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.86 (1)2.22 (2)3.069 (4)167 (3)
Symmetry code: (i) x+1, y1/2, z+1.
N-[2-(1H-Indol-3-yl)ethyl]cyclohexanaminium bromide (II) top
Crystal data top
C16H23N2+·BrF(000) = 672
Mr = 323.27Dx = 1.320 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.5584 (6) ÅCell parameters from 9846 reflections
b = 7.9266 (5) Åθ = 2.8–26.3°
c = 19.4507 (13) ŵ = 2.52 mm1
β = 92.406 (2)°T = 297 K
V = 1626.44 (18) Å3Block, colourless
Z = 40.3 × 0.13 × 0.03 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
2978 reflections with I > 2σ(I)
φ and ω scansRint = 0.037
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.4°, θmin = 3.2°
Tmin = 0.610, Tmax = 0.745h = 1313
46579 measured reflectionsk = 99
3320 independent reflectionsl = 2424
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + 4.8013P]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max = 0.001
3320 reflectionsΔρmax = 0.58 e Å3
184 parametersΔρmin = 0.70 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.81840 (4)0.64728 (5)0.83341 (2)0.04595 (14)
N10.1405 (3)0.7180 (5)0.8197 (2)0.0510 (9)
N20.6414 (3)0.7350 (4)0.69368 (18)0.0362 (7)
C10.2277 (4)0.7985 (6)0.7822 (2)0.0514 (11)
H1A0.2084680.8778810.7481240.062*
C20.2018 (4)0.6091 (5)0.8650 (2)0.0397 (9)
C30.1549 (5)0.5037 (6)0.9141 (2)0.0542 (12)
H30.0682950.4959650.9205280.065*
C40.2401 (6)0.4109 (7)0.9529 (3)0.0680 (15)
H40.2111620.3397250.9869100.082*
C50.3704 (6)0.4212 (7)0.9425 (3)0.0709 (15)
H50.4259590.3543680.9689790.085*
C60.4180 (5)0.5268 (6)0.8944 (2)0.0544 (11)
H60.5048050.5342070.8887920.065*
C70.3330 (4)0.6233 (5)0.85403 (19)0.0364 (8)
C80.3467 (4)0.7472 (5)0.8011 (2)0.0391 (9)
C90.4690 (4)0.8051 (6)0.7726 (2)0.0461 (10)
H9A0.5338830.8094650.8094000.055*
H9B0.4582860.9180330.7541130.055*
C100.5116 (4)0.6891 (6)0.7169 (2)0.0443 (10)
H10A0.4513750.6947000.6778960.053*
H10B0.5128200.5740230.7338480.053*
C110.6844 (4)0.6344 (5)0.6336 (2)0.0398 (9)
H110.6665380.5151020.6420990.048*
C120.6154 (4)0.6853 (6)0.5674 (2)0.0481 (11)
H12A0.6305620.8038420.5584420.058*
H12B0.5249850.6693920.5715930.058*
C130.6611 (5)0.5796 (7)0.5079 (3)0.0591 (13)
H13A0.6390960.4622490.5150030.071*
H13B0.6188630.6167910.4652730.071*
C140.8031 (5)0.5951 (7)0.5020 (2)0.0616 (14)
H14A0.8305640.5214210.4657550.074*
H14B0.8241460.7101240.4898620.074*
C150.8720 (5)0.5486 (8)0.5691 (3)0.0676 (15)
H15A0.9623630.5654370.5648580.081*
H15B0.8579310.4302260.5788630.081*
C160.8262 (4)0.6553 (7)0.6284 (2)0.0559 (12)
H16A0.8689980.6201550.6711090.067*
H16B0.8462490.7729860.6206160.067*
H2A0.692 (3)0.722 (6)0.7316 (13)0.045 (12)*
H10.0593 (14)0.738 (6)0.815 (2)0.058 (14)*
H2B0.636 (4)0.844 (2)0.681 (2)0.045 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0447 (2)0.0384 (2)0.0545 (3)0.00711 (19)0.00029 (17)0.0026 (2)
N10.0337 (18)0.062 (2)0.058 (2)0.0049 (18)0.0068 (17)0.014 (2)
N20.0331 (17)0.0334 (18)0.0425 (19)0.0013 (14)0.0062 (14)0.0008 (15)
C10.048 (2)0.057 (3)0.050 (3)0.008 (2)0.009 (2)0.015 (2)
C20.043 (2)0.037 (2)0.039 (2)0.0032 (17)0.0058 (17)0.0037 (17)
C30.058 (3)0.051 (3)0.055 (3)0.017 (2)0.012 (2)0.000 (2)
C40.091 (4)0.053 (3)0.061 (3)0.016 (3)0.007 (3)0.019 (3)
C50.081 (4)0.059 (3)0.071 (4)0.007 (3)0.013 (3)0.019 (3)
C60.053 (3)0.052 (3)0.058 (3)0.003 (2)0.003 (2)0.003 (2)
C70.039 (2)0.034 (2)0.037 (2)0.0008 (16)0.0027 (16)0.0057 (16)
C80.039 (2)0.041 (2)0.039 (2)0.0003 (17)0.0087 (16)0.0034 (17)
C90.046 (2)0.044 (2)0.050 (2)0.0042 (19)0.0143 (19)0.004 (2)
C100.037 (2)0.051 (3)0.047 (2)0.0087 (19)0.0136 (18)0.004 (2)
C110.045 (2)0.0282 (19)0.047 (2)0.0044 (17)0.0153 (17)0.0061 (17)
C120.044 (2)0.052 (3)0.049 (2)0.007 (2)0.0075 (19)0.006 (2)
C130.064 (3)0.059 (3)0.054 (3)0.004 (3)0.009 (2)0.011 (2)
C140.064 (3)0.073 (4)0.050 (3)0.011 (3)0.026 (2)0.001 (2)
C150.051 (3)0.084 (4)0.070 (3)0.021 (3)0.029 (2)0.005 (3)
C160.040 (2)0.068 (3)0.060 (3)0.011 (2)0.012 (2)0.010 (3)
Geometric parameters (Å, º) top
N1—C11.358 (6)C9—H9B0.9700
N1—C21.375 (5)C9—C101.504 (6)
N1—H10.873 (10)C10—H10A0.9700
N2—C101.506 (5)C10—H10B0.9700
N2—C111.501 (5)C11—H110.9800
N2—H2A0.898 (10)C11—C121.506 (6)
N2—H2B0.900 (10)C11—C161.515 (6)
C1—H1A0.9300C12—H12A0.9700
C1—C81.357 (6)C12—H12B0.9700
C2—C31.376 (6)C12—C131.525 (6)
C2—C71.415 (5)C13—H13A0.9700
C3—H30.9300C13—H13B0.9700
C3—C41.366 (7)C13—C141.513 (7)
C4—H40.9300C14—H14A0.9700
C4—C51.402 (8)C14—H14B0.9700
C5—H50.9300C14—C151.513 (7)
C5—C61.366 (7)C15—H15A0.9700
C6—H60.9300C15—H15B0.9700
C6—C71.396 (6)C15—C161.525 (7)
C7—C81.434 (6)C16—H16A0.9700
C8—C91.499 (5)C16—H16B0.9700
C9—H9A0.9700
C1—N1—C2109.2 (4)C9—C10—N2111.8 (3)
C1—N1—H1123 (3)C9—C10—H10A109.3
C2—N1—H1128 (3)C9—C10—H10B109.3
C10—N2—H2A104 (3)H10A—C10—H10B107.9
C10—N2—H2B105 (3)N2—C11—H11108.3
C11—N2—C10114.5 (3)N2—C11—C12111.9 (3)
C11—N2—H2A113 (3)N2—C11—C16109.0 (4)
C11—N2—H2B109 (3)C12—C11—H11108.3
H2A—N2—H2B111 (4)C12—C11—C16111.0 (3)
N1—C1—H1A124.6C16—C11—H11108.3
C8—C1—N1110.7 (4)C11—C12—H12A109.6
C8—C1—H1A124.6C11—C12—H12B109.6
N1—C2—C3130.7 (4)C11—C12—C13110.2 (4)
N1—C2—C7106.9 (3)H12A—C12—H12B108.1
C3—C2—C7122.4 (4)C13—C12—H12A109.6
C2—C3—H3121.2C13—C12—H12B109.6
C4—C3—C2117.6 (5)C12—C13—H13A109.4
C4—C3—H3121.2C12—C13—H13B109.4
C3—C4—H4119.5H13A—C13—H13B108.0
C3—C4—C5121.1 (5)C14—C13—C12111.0 (4)
C5—C4—H4119.5C14—C13—H13A109.4
C4—C5—H5119.1C14—C13—H13B109.4
C6—C5—C4121.8 (5)C13—C14—H14A109.4
C6—C5—H5119.1C13—C14—H14B109.4
C5—C6—H6120.8H14A—C14—H14B108.0
C5—C6—C7118.4 (5)C15—C14—C13111.0 (4)
C7—C6—H6120.8C15—C14—H14A109.4
C2—C7—C8106.9 (3)C15—C14—H14B109.4
C6—C7—C2118.8 (4)C14—C15—H15A109.4
C6—C7—C8134.2 (4)C14—C15—H15B109.4
C1—C8—C7106.3 (4)C14—C15—C16111.1 (4)
C1—C8—C9127.6 (4)H15A—C15—H15B108.0
C7—C8—C9126.1 (4)C16—C15—H15A109.4
C8—C9—H9A109.3C16—C15—H15B109.4
C8—C9—H9B109.3C11—C16—C15109.6 (4)
C8—C9—C10111.6 (3)C11—C16—H16A109.7
H9A—C9—H9B108.0C11—C16—H16B109.7
C10—C9—H9A109.3C15—C16—H16A109.7
C10—C9—H9B109.3C15—C16—H16B109.7
N2—C10—H10A109.3H16A—C16—H16B108.2
N2—C10—H10B109.3
N1—C1—C8—C70.8 (5)C4—C5—C6—C71.5 (8)
N1—C1—C8—C9179.9 (4)C5—C6—C7—C20.6 (7)
N1—C2—C3—C4178.8 (5)C5—C6—C7—C8178.3 (5)
N1—C2—C7—C6179.1 (4)C6—C7—C8—C1178.9 (5)
N1—C2—C7—C80.9 (4)C6—C7—C8—C91.8 (8)
N2—C11—C12—C13179.6 (4)C7—C2—C3—C40.0 (7)
N2—C11—C16—C15177.9 (4)C7—C8—C9—C1084.2 (5)
C1—N1—C2—C3178.5 (5)C8—C9—C10—N2173.5 (4)
C1—N1—C2—C70.4 (5)C10—N2—C11—C1273.0 (4)
C1—C8—C9—C1095.0 (6)C10—N2—C11—C16163.9 (4)
C2—N1—C1—C80.3 (6)C11—N2—C10—C9174.5 (3)
C2—C3—C4—C50.8 (8)C11—C12—C13—C1456.6 (5)
C2—C7—C8—C11.0 (5)C12—C11—C16—C1558.5 (5)
C2—C7—C8—C9179.6 (4)C12—C13—C14—C1555.5 (6)
C3—C2—C7—C60.1 (6)C13—C14—C15—C1656.0 (6)
C3—C2—C7—C8178.2 (4)C14—C15—C16—C1157.0 (6)
C3—C4—C5—C61.6 (9)C16—C11—C12—C1358.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Br10.90 (1)2.41 (1)3.307 (4)172 (4)
N1—H1···Br1i0.87 (1)2.68 (3)3.468 (4)151 (4)
N2—H2B···Br1ii0.90 (1)2.47 (2)3.340 (3)163 (4)
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y+1/2, z+3/2.
Bis{N-[2-(1H-indol-3-yl)ethyl]cyclohexanaminium} (2E)-but-2-enedioate (III) top
Crystal data top
C16H23N2+·C2HO2F(000) = 648
Mr = 300.39Dx = 1.186 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.2231 (10) ÅCell parameters from 7849 reflections
b = 16.1611 (16) Åθ = 2.6–26.3°
c = 11.4595 (12) ŵ = 0.08 mm1
β = 99.865 (4)°T = 297 K
V = 1682.8 (3) Å3Block, bronze
Z = 40.32 × 0.22 × 0.2 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
2803 reflections with I > 2σ(I)
φ and ω scansRint = 0.028
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.4°, θmin = 2.6°
Tmin = 0.694, Tmax = 0.745h = 1111
20060 measured reflectionsk = 2020
3446 independent reflectionsl = 1414
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.057P)2 + 0.4152P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3446 reflectionsΔρmax = 0.22 e Å3
211 parametersΔρmin = 0.17 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.72753 (11)0.47420 (7)0.97368 (12)0.0632 (3)
O40.74997 (12)0.60453 (6)1.03308 (11)0.0600 (3)
N10.33759 (16)0.73002 (8)0.54717 (12)0.0530 (3)
N20.46996 (12)0.42877 (7)0.83748 (10)0.0402 (3)
C10.43744 (18)0.68408 (10)0.62215 (13)0.0522 (4)
H1A0.5138360.7061330.6768330.063*
C20.24236 (16)0.67738 (9)0.48012 (12)0.0444 (3)
C30.12270 (18)0.69461 (11)0.39157 (14)0.0589 (4)
H30.0953020.7487640.3710170.071*
C40.0471 (2)0.62879 (15)0.33603 (17)0.0753 (5)
H40.0323770.6385170.2758200.090*
C50.0863 (2)0.54759 (14)0.36747 (19)0.0780 (6)
H50.0325660.5042330.3279130.094*
C60.20302 (19)0.53036 (10)0.45603 (16)0.0609 (4)
H60.2274960.4759010.4770330.073*
C70.28409 (15)0.59569 (8)0.51382 (12)0.0426 (3)
C80.41022 (16)0.60185 (9)0.60614 (12)0.0452 (3)
C90.48890 (17)0.53145 (10)0.67518 (14)0.0523 (4)
H9A0.5842250.5500630.7159320.063*
H9B0.5047320.4872680.6214640.063*
C100.39908 (16)0.49921 (9)0.76478 (13)0.0475 (3)
H10A0.3829290.5440730.8172990.057*
H10B0.3036620.4814520.7230960.057*
C110.50069 (15)0.35126 (8)0.77365 (12)0.0423 (3)
H110.5659300.3647430.7172510.051*
C120.57867 (19)0.29119 (10)0.86470 (15)0.0577 (4)
H12A0.5198090.2827010.9261730.069*
H12B0.6724340.3144670.9012900.069*
C130.6045 (2)0.20810 (11)0.80791 (19)0.0785 (6)
H13A0.6714110.2157250.7520710.094*
H13B0.6498590.1699330.8686870.094*
C140.4613 (3)0.17171 (11)0.74422 (18)0.0784 (6)
H14A0.4809510.1202400.7062920.094*
H14B0.3974040.1596540.8010730.094*
C150.3856 (3)0.23094 (13)0.65269 (16)0.0783 (6)
H15A0.2919230.2076580.6158170.094*
H15B0.4453530.2384380.5916190.094*
C160.35933 (18)0.31489 (11)0.70660 (14)0.0584 (4)
H16A0.3173790.3526390.6440400.070*
H16B0.2891250.3085350.7600510.070*
C170.80163 (14)0.53717 (8)1.00368 (12)0.0397 (3)
C180.96469 (14)0.53303 (8)1.01170 (12)0.0401 (3)
H181.0191510.5804761.0348170.048*
H2A0.5558 (13)0.4470 (10)0.8805 (13)0.061 (5)*
H10.330 (2)0.7840 (6)0.5455 (17)0.075 (6)*
H2B0.4089 (16)0.4143 (10)0.8881 (12)0.057 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0387 (6)0.0534 (6)0.0948 (9)0.0079 (5)0.0038 (5)0.0168 (6)
O40.0520 (6)0.0374 (5)0.0972 (9)0.0050 (4)0.0316 (6)0.0031 (5)
N10.0706 (9)0.0364 (6)0.0517 (7)0.0033 (6)0.0096 (6)0.0033 (5)
N20.0349 (6)0.0417 (6)0.0432 (6)0.0028 (5)0.0045 (5)0.0042 (5)
C10.0589 (9)0.0501 (8)0.0457 (8)0.0022 (7)0.0033 (7)0.0005 (7)
C20.0508 (8)0.0445 (7)0.0403 (7)0.0063 (6)0.0143 (6)0.0038 (6)
C30.0601 (10)0.0671 (10)0.0496 (8)0.0182 (8)0.0094 (7)0.0116 (8)
C40.0550 (10)0.1013 (15)0.0642 (11)0.0070 (10)0.0047 (8)0.0026 (11)
C50.0691 (12)0.0806 (14)0.0785 (13)0.0142 (10)0.0037 (10)0.0156 (11)
C60.0632 (10)0.0485 (9)0.0706 (10)0.0031 (7)0.0106 (8)0.0066 (8)
C70.0462 (7)0.0408 (7)0.0430 (7)0.0046 (6)0.0140 (6)0.0013 (6)
C80.0489 (8)0.0438 (7)0.0443 (7)0.0069 (6)0.0118 (6)0.0055 (6)
C90.0489 (8)0.0535 (9)0.0556 (8)0.0119 (7)0.0125 (7)0.0126 (7)
C100.0447 (8)0.0459 (8)0.0528 (8)0.0134 (6)0.0107 (6)0.0094 (6)
C110.0401 (7)0.0426 (7)0.0452 (7)0.0052 (6)0.0100 (6)0.0034 (6)
C120.0577 (9)0.0463 (8)0.0640 (9)0.0070 (7)0.0046 (7)0.0086 (7)
C130.0968 (15)0.0521 (10)0.0886 (13)0.0254 (10)0.0213 (12)0.0133 (10)
C140.1227 (18)0.0475 (10)0.0713 (12)0.0069 (10)0.0346 (12)0.0107 (9)
C150.1055 (16)0.0739 (13)0.0546 (10)0.0116 (11)0.0112 (10)0.0191 (9)
C160.0568 (9)0.0642 (10)0.0499 (8)0.0003 (8)0.0026 (7)0.0062 (7)
C170.0356 (6)0.0357 (7)0.0482 (7)0.0013 (5)0.0082 (5)0.0001 (5)
C180.0363 (7)0.0346 (6)0.0493 (7)0.0039 (5)0.0070 (5)0.0044 (5)
Geometric parameters (Å, º) top
O2—C171.2411 (16)C9—H9B0.9700
O4—C171.2572 (16)C9—C101.518 (2)
N1—C11.366 (2)C10—H10A0.9700
N1—C21.362 (2)C10—H10B0.9700
N1—H10.876 (9)C11—H110.9800
N2—C101.4935 (17)C11—C121.514 (2)
N2—C111.5018 (18)C11—C161.514 (2)
N2—H2A0.907 (9)C12—H12A0.9700
N2—H2B0.905 (9)C12—H12B0.9700
C1—H1A0.9300C12—C131.529 (2)
C1—C81.359 (2)C13—H13A0.9700
C2—C31.393 (2)C13—H13B0.9700
C2—C71.4105 (19)C13—C141.514 (3)
C3—H30.9300C14—H14A0.9700
C3—C41.368 (3)C14—H14B0.9700
C4—H40.9300C14—C151.501 (3)
C4—C51.392 (3)C15—H15A0.9700
C5—H50.9300C15—H15B0.9700
C5—C61.376 (3)C15—C161.527 (2)
C6—H60.9300C16—H16A0.9700
C6—C71.394 (2)C16—H16B0.9700
C7—C81.436 (2)C17—C181.4924 (18)
C8—C91.5000 (19)C18—C18i1.302 (3)
C9—H9A0.9700C18—H180.9300
C1—N1—H1126.9 (13)H10A—C10—H10B107.7
C2—N1—C1108.39 (12)N2—C11—H11108.9
C2—N1—H1124.6 (13)N2—C11—C12107.83 (12)
C10—N2—C11117.72 (11)N2—C11—C16110.67 (11)
C10—N2—H2A108.3 (11)C12—C11—H11108.9
C10—N2—H2B107.1 (11)C12—C11—C16111.52 (13)
C11—N2—H2A108.4 (11)C16—C11—H11108.9
C11—N2—H2B106.6 (11)C11—C12—H12A109.4
H2A—N2—H2B108.5 (15)C11—C12—H12B109.4
N1—C1—H1A124.5C11—C12—C13111.11 (14)
C8—C1—N1110.95 (14)H12A—C12—H12B108.0
C8—C1—H1A124.5C13—C12—H12A109.4
N1—C2—C3129.78 (14)C13—C12—H12B109.4
N1—C2—C7108.12 (12)C12—C13—H13A109.4
C3—C2—C7122.10 (15)C12—C13—H13B109.4
C2—C3—H3121.3H13A—C13—H13B108.0
C4—C3—C2117.42 (16)C14—C13—C12111.08 (16)
C4—C3—H3121.3C14—C13—H13A109.4
C3—C4—H4119.2C14—C13—H13B109.4
C3—C4—C5121.59 (16)C13—C14—H14A109.5
C5—C4—H4119.2C13—C14—H14B109.5
C4—C5—H5119.4H14A—C14—H14B108.1
C6—C5—C4121.16 (18)C15—C14—C13110.62 (16)
C6—C5—H5119.4C15—C14—H14A109.5
C5—C6—H6120.5C15—C14—H14B109.5
C5—C6—C7119.05 (16)C14—C15—H15A109.3
C7—C6—H6120.5C14—C15—H15B109.3
C2—C7—C8106.59 (12)C14—C15—C16111.77 (14)
C6—C7—C2118.68 (14)H15A—C15—H15B107.9
C6—C7—C8134.73 (14)C16—C15—H15A109.3
C1—C8—C7105.96 (12)C16—C15—H15B109.3
C1—C8—C9127.52 (14)C11—C16—C15111.59 (15)
C7—C8—C9126.43 (13)C11—C16—H16A109.3
C8—C9—H9A109.6C11—C16—H16B109.3
C8—C9—H9B109.6C15—C16—H16A109.3
C8—C9—C10110.27 (12)C15—C16—H16B109.3
H9A—C9—H9B108.1H16A—C16—H16B108.0
C10—C9—H9A109.6O2—C17—O4124.62 (13)
C10—C9—H9B109.6O2—C17—C18118.79 (12)
N2—C10—C9113.68 (11)O4—C17—C18116.52 (12)
N2—C10—H10A108.8C17—C18—H18118.0
N2—C10—H10B108.8C18i—C18—C17123.95 (16)
C9—C10—H10A108.8C18i—C18—H18118.0
C9—C10—H10B108.8
O2—C17—C18—C18i0.5 (3)C3—C4—C5—C60.0 (3)
O4—C17—C18—C18i177.60 (18)C4—C5—C6—C70.8 (3)
N1—C1—C8—C70.23 (17)C5—C6—C7—C20.7 (2)
N1—C1—C8—C9176.30 (14)C5—C6—C7—C8178.90 (17)
N1—C2—C3—C4178.46 (16)C6—C7—C8—C1179.25 (17)
N1—C2—C7—C6179.33 (14)C6—C7—C8—C94.2 (3)
N1—C2—C7—C80.35 (16)C7—C2—C3—C41.0 (2)
N2—C11—C12—C13176.04 (14)C7—C8—C9—C1074.77 (19)
N2—C11—C16—C15173.47 (13)C8—C9—C10—N2180.00 (12)
C1—N1—C2—C3179.77 (15)C10—N2—C11—C12177.27 (12)
C1—N1—C2—C70.21 (16)C10—N2—C11—C1660.50 (16)
C1—C8—C9—C10101.09 (19)C11—N2—C10—C960.41 (17)
C2—N1—C1—C80.02 (18)C11—C12—C13—C1456.1 (2)
C2—C3—C4—C50.9 (3)C12—C11—C16—C1553.43 (19)
C2—C7—C8—C10.35 (16)C12—C13—C14—C1556.9 (2)
C2—C7—C8—C9176.23 (13)C13—C14—C15—C1656.1 (2)
C3—C2—C7—C60.3 (2)C14—C15—C16—C1154.6 (2)
C3—C2—C7—C8179.95 (13)C16—C11—C12—C1354.34 (19)
Symmetry code: (i) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.91 (1)1.81 (1)2.7107 (15)175 (2)
N1—H1···O4ii0.88 (1)1.94 (1)2.7899 (16)163 (2)
N2—H2B···O4iii0.91 (1)1.87 (1)2.7632 (16)167 (2)
Symmetry codes: (ii) x1/2, y+3/2, z1/2; (iii) x+1, y+1, z+2.
Selected metrical parameters (Å, °) for (I)—(III) top
Compoundindole r.m.s. deviation from planarityC7—C8—C9—C10C10—N2—C11
(I)0.00745.5 (4)116.6 (3)
(II)0.01084.2 (5)114.5 (3)
(III)0.008-74.77 (19)117.72 (11)
 

Acknowledgements

Financial statements and conflict of inter­est: This study was funded by CaaMTech, Inc. ARC reports an ownership inter­est in CaaMTech, Inc., which owns US and worldwide patent applications, covering new tryptamine compounds, compositions, formulations, novel crystalline forms, and methods of making and using the same.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1429086).

References

First citationBrimblecombe, R. W., Downing, D. F., Green, D. M. & Hunt, R. R. (1964). Br. J. Pharmacol. Chemother. 23, 43–54.  CrossRef PubMed CAS Google Scholar
First citationBruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChadeayne, A. R., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 900–902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Golen, J. A. & Manke, D. R. (2019b). IUCrData, 4, x190962.  Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019). IUCrData, 4, x191469.  Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020a). Acta Cryst. E76, 514–517.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020b). Acta Cryst. E76, 589–593.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFalkenberg, G. (1972). Acta Cryst. B28, 3075–3083.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationGerecs, Á., Barta, K. & Duda, E. (1971). Magy. Kem. Foly. 77, 531–533.  CAS Google Scholar
First citationGlatfelter, G., Chojnacki, M. R., McGriff, S. A., Wang, T. & Baumann, M. H. (2022a). ACS Pharmacol. Transl. Sci. 5, 321–330.  CrossRef CAS PubMed Google Scholar
First citationGlatfelter, G., Pottie, E., Partilla, J. S., Sherwood, A. M., Kaylo, K., Pham, D. N. K., Naeem, M., Sammeta, V. R., DeBoer, S., Golen, J. A., Hulley, E. B., Stove, C. P., Chadeayne, A. R., Manke, D. R. & Baumann, M. H. (2022b). ACS Pharmacol. Transl. Sci. 5, 1181–1196.  CrossRef CAS PubMed Google Scholar
First citationGoadsby, P. J. & Holland, P. R. (2018). Neurotherapeutics, 15, 271–273.  CrossRef PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLaban, U., Naeem, M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2023). Acta Cryst. E79, 280–286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMertens, L. J., Wall, M. B., Roseman, L., Demetriou, L., Nutt, D. J. & Carhart-Harris, R. L. (2020). J. Psychopharmacol. 34, 167–180.  CrossRef CAS PubMed Google Scholar
First citationNaeem, M., Anas, N. A., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2023). IUCrData, 8, x230378.  Google Scholar
First citationNaeem, M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2022). Acta Cryst. E78, 365–368.  CrossRef IUCr Journals Google Scholar
First citationNaeem, M., Sherwood, A. M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2022). Acta Cryst. E78, 550–553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNowell, H., Attfield, J. P. & Cole, J. C. (2002). Acta Cryst. B58, 835–840.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOlson, D. E. (2021). ACS Pharmacol. Transl. Sci, 4, 563–567.  CrossRef CAS PubMed Google Scholar
First citationPalego, L., Betti, L., Rossi, A. & Giannaccini, G. (2016). J. Amino Acids, Article ID 8952520. https://doi.org/10.1155/2016/8952520  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPham, D. N. K., Belanger, Z. S., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). Acta Cryst. C77, 615–620.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPham, D. N. K., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021a). Acta Cryst. E77, 101–106.  CrossRef IUCr Journals Google Scholar
First citationPham, D. N. K., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021b). Acta Cryst. E77, 190–194.  CrossRef IUCr Journals Google Scholar
First citationPham, D. N. K., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021c). Acta Cryst. E77, 522–526.  CrossRef IUCr Journals Google Scholar
First citationPham, D. N. K., Sammeta, V. R., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). Acta Cryst. E77, 416–419.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamaekers, J. G., Hutten, N., Mason, N. L., Dolder, P., Theunissen, E. L., Holze, F., Liechti, M. E., Feilding, A. & Kuypers, K. P. C. (2021). J. Psychopharmacol. 35, 398–405.  CrossRef CAS PubMed Google Scholar
First citationRoss, S., Agin-Liebes, G., Lo, S., Zeifman, R. J., Ghazal, L., Benville, J., Franco Corso, S., Bjerre Real, C., Guss, J., Bossis, A. & Mennenga, S. E. (2021). ACS Pharmacol. Transl. Sci. 4, 553–562.  CrossRef CAS PubMed Google Scholar
First citationSahoo, A. R., Lalitha, G., Murugesh, V., Bruneau, C., Sharma, G. V. M., Suresh, S. & Achard, M. (2020). Asia. J. Org. Chem. 9, 910–913.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSherwood, A. M., Halberstadt, A. L., Klein, A. K., McCorvy, J. D., Kaylo, K. W., Kargbo, R. B. & Meisenheimer, P. (2020). J. Nat. Prod. 83, 461–467.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSlassi, A., Edwards, L., O'Brien, A., Meng, C. Q., Xin, T., Seto, C., Lee, D. K. H., MacLean, N., Hynd, D., Chen, C., Wang, H., Kamboj, R. & Rakhit, S. (2000). Bioorg. Med. Chem. Lett. 10, 1707–1709.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpriggs, M. J., Kettner, H. & Carhart-Harris, R. L. (2021). Eat. Weight Disord. 26, 1265–1270.  CrossRef CAS PubMed Google Scholar
First citationVarker, T., Watson, L., Gibson, K., Forbes, D. & O'Donnell, M. L. (2021). J. Psychoactive Drugs, 53, 85–95.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y. C., Schaus, J. M., Walker, C., Krushinski, J., Adham, N., Zgombick, J. M., Liang, S. X., Kohlman, D. T. & Audia, J. E. (1999). J. Med. Chem. 42, 526–531.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds