research communications
N-Cyclohexyltryptamine: freebase, bromide and fumarate
aUniversity of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA, and bCaaMTech, Inc., 58 East Sunset Way, Suite 209, Issaquah, WA 98027, USA
*Correspondence e-mail: dmanke@umassd.edu
The solid-state structures of N-cyclohexyltryptamine (I) {systematic name: N-[2-(1H-indol-3-yl)ethyl]cyclohexanamine}, C16H22N2, and two of its salts, N-cyclohexyltryptammonium bromide (II) {systematic name: N-[2-(1H-indol-3-yl)ethyl]cyclohexanaminium bromide}, C16H23N2+·Br−, and N-cyclohexyltryptammonium fumarate (III) (systematic name: bis{N-[2-(1H-indol-3-yl)ethyl]cyclohexanaminium} (2E)-but-2-enedioate), 2C16H23N2+·C4H2O42−, were determined by single-crystal X-ray diffraction. The freebase compound forms infinite chains along [010] through N—H⋯N hydrogen bonds. The bromide salt is held together by N—H⋯Br interactions in two-dimensional sheets along (001). The fumarate salt is held together in infinite three-dimensional frameworks by N—H⋯O hydrogen bonds.
Keywords: crystal structure; tryptamines; indoles; hydrogen bonds.
1. Chemical context
Tryptamine, an indole with a 2-aminoethyl sidechain, is a metabolite of the essential amino acid tryptophan. Tryptamine and its derivatives are an important class of biologically active compounds that are found in almost all organisms on Earth. In humans these compounds play significant roles ranging from the function of the gastrointestinal tract to neurotransmission and control subjective phenomena like happiness. The most abundant of these compounds, occurring naturally in the body, are primary tryptamines like tryptamine itself and serotonin (5-hydroxytryptamine; 5-HT) (Palego et al., 2016).
There are many well-known tertiary (dialkyl) tryptamines, including the natural products N,N-dimethyltryptamine (DMT), 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and 4-hydroxy-N,N-dimethyltryptamine (psilocin) which are known agonists of the serotonin 2A (5-HT2A) receptor and elicit a psychedelic response in humans. These and similar compounds have attracted a great deal of interest due to their potential for treating conditions including depression (Mertens et al., 2020), end-of-life distress (Ross et al., 2021), post-traumatic stress disorder (Varker et al., 2021), pain (Ramaekers et al., 2021), and eating disorders (Spriggs et al., 2021). There are also many synthetic tertiary tryptamines used as pharmaceuticals including the triptans, which have long been used for the treatment of migraine headaches by activating the serotonin 1D (5-HT1D) receptor (Goadsby & Holland, 2018). The biological impact of primary and tertiary tryptamines has been recognized for a long time and continues to be studied in great detail today.
Much less studied are the secondary tryptamines, i.e. the monoalkyltryptamines; many of these compounds have been observed as natural products in plants. One study suggests that monoalkyltryptamines are generally less toxic than their dialkyltryptamine counterparts (Brimblecombe et al., 1964). For example, the LD50 values for N-methyltryptamine (NMT) and N,N-dimethyltryptamine (DMT) in mice were 78 and 43 mg kg−1, respectively. Recent studies have suggested that the psychedelic effects of compounds may not be necessary for the expression of therapeutic effects (Olson, 2021). Monoalkyl tryptamines like norpsilocin (4-hydroxy-N-methyltryptamine) are agonists of 5-HT2A but do not produce head-twitch response (HTR) in mice, which is characteristic of classic psychedelics such as psilocybin and LSD (Sherwood et al., 2020; Glatfelter et al., 2022a). Human studies have found that the compound 5-tert-butyl-N-methyltryptamine is a full agonist of 5-HT1D with a higher binding affinity (Ki = 0.45 nM) and selectivity five times more potent (EC50 = 0.22 nM) than the migraine drug naratriptan (EC50 = 1.6 nM) (Xu et al., 1999; Slassi et al., 2000). These and other data points suggest that monoalkyltryptamines possess characteristics that are conducive to the development of medicines.
Continuing our exploration of monoalkyltryptamines, we present here the first N-cyclohexyltryptamine. The compound was synthesized in 1971 via the condensation of tryptamine with cyclohexanone followed by reduction with Raney Nickel (Gerecs et al., 1971). Herein, we report three structures of N-cyclohexyltryptamine compounds, including freebase, bromide and fumarate salts, the later of which represents the first fumarate salt of a mono-cycloalkyltryptamine.
of a mono-cycloalkyltryptamine,2. Structural commentary
The molecular structure of the freebase of N-cyclohexyltryptamine (I) is shown in Fig. 1 (top left), as well as that of its bromide salt [(II), top right], and its fumarate salt [(III), bottom]. The of (I) contains one full tryptamine (C16H22N2) molecule. The of the bromide salt (II) contains one N-cyclohexyltryptammonium (C16H23N2+) cation and one bromide anion held together with an N2—H2A⋯Br1 hydrogen bond. The of the fumarate salt (III) contains one full N-cyclohexyltryptammonium (C16H23N2+) cation and one half of a fumarate (C4H2O42–) dianion, with the second half generated by inversion. The two ions are connected in the through a N2—H2⋯O2 hydrogen bond. The fumarate dianion is near planar, with an r.m.s. deviation from planarity of 0.011 Å. In all three structures, the cyclohexyl group is in a chair configuration. Table 1 lists selected parameters for the three structures.
|
3. Supramolecular features
In the freebase, the tryptamine molecules are held together in infinite chains along [010] by N1—H1⋯N2 hydrogen bonds (Table 2). In the bromide, the tryptammonium cations and bromide anions are held together in two-dimensional sheets along (001) through a series of N—H⋯Br hydrogen bonds (Table 3). In the fumarate salt, the tryptammonium cations and fumarate dianions are held together in an infinite three-dimensional framework through a series of N—H⋯O hydrogen bonds. The indole N—H and both ammonium N—H bonds hydrogen bond to oxygen atoms of the fumarate dianions (Table 4). The packing of N-cyclohexyltryptamine is shown in Fig. 2 for the freebase (left), the bromide (center) and the fumarate (right).
|
4. Database survey
There are only seven crystal structures of monoalkyltryptamine previously reported. This includes the zwitterionic natural product baeocystin (Naeem, Sherwood et al., 2022), its metabolite norpsilocin as both its freebase and fumarate (Chadeayne et al., 2020b), and its synthetic prodrug 4-acetoxy-N-methyltryptamine as a chloride salt (Glatfelter et al., 2022b). The remaining three are N-methylserotonin hydrogen oxalate (Naeem, Anas et al., 2023), 4-benzyloxy-N-isopropyltryptammonium chloride and 4-hydroxy-N-isopropyltryptamine (Laban et al., 2023)
There are only four structures of freebase tryptamines known without indole substitution: the natural products tryptamine (Nowell et al., 2002) and N,N-dimethyltryptamine (Falkenberg, 1972), as well as N-methyl-N-propyltryptamine (Chadeayne et al., 2019b), and 3-[2-(piperidin-1-yl)ethyl]-1H-indole (Sahoo et al., 2020), while many other tryptamine freebases have been reported including serotonin (Naeem, Chadeayne et al., 2022).
The N,N-dimethyltryptamine (Falkenberg, 1972), though numerous chloride salts have been reported (Pham, Belanger et al., 2021). By contrast, eight bis(tryptammonium) fumarate structures have been reported recently, including the salts of norpsilocin (Chadeayne et al., 2020b), 4-acetoxy-N,N-diallyltryptamine (Pham et al., 2021a), 5-methoxy-N,N-diallyltryptamine (Pham, Sammeta et al., 2021), 5-methoxy-N,N-di-n-propyltryptamine (Pham et al., 2021c), 4-hydroxy-N-methyl-N-isopropyltryptamine (Chadeayne et al., 2020a), 5-methoxy-2-methyl-N,N-dimethyltryptamine (Pham et al., 2021b), 4-hydroxy-N,N-di-n-propyltryptamine (Chadeayne, Pham et al., 2019), and 4-acetoxy-N,N-dimethyltryptamine (Chadeayne et al., 2019a).
of only one tryptammonium bromide salt has been presented, that of the natural product5. Synthesis and crystallization
Crystals of N-cyclohexyltryptammonium bromide (II) suitable for X-ray diffraction studies were grown by slow evaporation of an ethanol solution of a commercial sample (ChemBridge).
The bromide salt was converted to freebase N-cyclohexyltryptamine (I) by stirring it in a biphasic mixture of dichloroethane and aqueous sodium hydroxide. The organic layer was isolated, washed with brine and dried over sodium sulfate. The solvent was removed in vacuo to yield the freebase as a white powder. Crystals suitable for X-ray diffraction were grown by the slow evaporation of an acetone solution.
Freebase N-cyclohexyltryptamine and fumaric acid were dissolved in methanol and heated at reflux for 12 h. The solvent was removed in vacuo to yield an off-white powder which was characterized by NMR. Single crystals of (III) suitable for X-ray diffraction studies were grown from the slow evaporation of a methanol/water solution. 1H NMR (400 MHz, DMSO-d6): δ 7.55 (d, J = 7.8 Hz, 1H, ArH), 7.35 (d, J = 8.1 Hz, 1H, ArH), 7.21 (s, 1H, ArH), 7.07 (t, J = 7.5 Hz, 1H, ArH), 6.99 (t, J = 7.4 Hz, 1H, ArH), 6.43 (s, 1H, CH), 3.08 (t, J = 8.3 Hz, 2H, CH2), 2.99 (t, J = 8.1 Hz, 2H, CH2), 2.89 (m, 1H, CH), 1.98 (m, 2H, CH2), 1.72 (m, 2H, CH2), 1.19 (m, 6H, CH2).
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms H1 and H2 in the freebase, H1, H2A and H2B in the bromide salt, and H1, H2A and H2B in the fumarate salt were found from difference-Fourier maps. These hydrogen atoms were refined isotropically, using DFIX restraints with N—H(indole) distances of 0.87 (1) Å and N—H(amine/ammonium) distances of 0.90 (1) Å. Isotropic displacement parameters were set to 1.2 Ueq of the parent nitrogen atoms. All other hydrogen atoms were placed in calculated positions.
details are summarized in Table 5Supporting information
https://doi.org/10.1107/S2056989023006217/tx2070sup1.cif
contains datablocks I, II, III. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023006217/tx2070Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989023006217/tx2070IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989023006217/tx2070IIIsup4.hkl
For all structures, data collection: APEX4 (Bruker, 2021); cell
SAINT (Bruker, 2021); data reduction: SAINT (Bruker, 2021); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C16H22N2 | F(000) = 264 |
Mr = 242.35 | Dx = 1.178 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.5446 (6) Å | Cell parameters from 8705 reflections |
b = 10.3990 (7) Å | θ = 2.7–25.8° |
c = 8.6149 (6) Å | µ = 0.07 mm−1 |
β = 116.784 (2)° | T = 297 K |
V = 683.35 (8) Å3 | Block, colourless |
Z = 2 | 0.35 × 0.24 × 0.2 mm |
Bruker D8 Venture CMOS diffractometer | 2396 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.034 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 25.8°, θmin = 3.3° |
Tmin = 0.645, Tmax = 0.745 | h = −10→10 |
18695 measured reflections | k = −12→12 |
2621 independent reflections | l = −10→10 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.048 | w = 1/[σ2(Fo2) + (0.0573P)2 + 0.1584P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.124 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.26 e Å−3 |
2621 reflections | Δρmin = −0.16 e Å−3 |
171 parameters | Absolute structure: Flack x determined using 1039 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
3 restraints | Absolute structure parameter: 0.5 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.6840 (4) | 0.3201 (3) | 0.7683 (3) | 0.0574 (6) | |
N2 | 0.4242 (4) | 0.5812 (3) | 0.0943 (3) | 0.0632 (7) | |
C1 | 0.6257 (4) | 0.3382 (4) | 0.5918 (4) | 0.0653 (9) | |
H1A | 0.570884 | 0.275362 | 0.507790 | 0.078* | |
C2 | 0.7549 (4) | 0.4345 (3) | 0.8487 (4) | 0.0512 (7) | |
C3 | 0.8321 (4) | 0.4672 (3) | 1.0235 (4) | 0.0608 (8) | |
H3 | 0.840170 | 0.407744 | 1.107439 | 0.073* | |
C4 | 0.8964 (5) | 0.5900 (4) | 1.0695 (5) | 0.0692 (9) | |
H4 | 0.950320 | 0.612645 | 1.186509 | 0.083* | |
C5 | 0.8830 (5) | 0.6805 (4) | 0.9467 (5) | 0.0709 (9) | |
H5 | 0.926088 | 0.763121 | 0.981803 | 0.085* | |
C6 | 0.8069 (4) | 0.6495 (3) | 0.7743 (5) | 0.0660 (9) | |
H6 | 0.797958 | 0.710952 | 0.692294 | 0.079* | |
C7 | 0.7419 (4) | 0.5244 (3) | 0.7208 (4) | 0.0539 (7) | |
C8 | 0.6589 (4) | 0.4598 (4) | 0.5573 (4) | 0.0619 (8) | |
C9 | 0.6235 (5) | 0.5204 (5) | 0.3860 (4) | 0.0855 (13) | |
H9A | 0.642061 | 0.612333 | 0.403785 | 0.103* | |
H9B | 0.709578 | 0.488038 | 0.351364 | 0.103* | |
C10 | 0.4504 (5) | 0.4997 (4) | 0.2431 (4) | 0.0721 (11) | |
H10A | 0.361947 | 0.519546 | 0.280822 | 0.086* | |
H10B | 0.437557 | 0.410028 | 0.208452 | 0.086* | |
C11 | 0.2920 (4) | 0.5382 (3) | −0.0766 (3) | 0.0492 (6) | |
H11 | 0.177680 | 0.540657 | −0.075896 | 0.059* | |
C12 | 0.3181 (4) | 0.4030 (3) | −0.1291 (4) | 0.0596 (8) | |
H12A | 0.431796 | 0.397430 | −0.128156 | 0.072* | |
H12B | 0.315875 | 0.341579 | −0.045337 | 0.072* | |
C13 | 0.1762 (6) | 0.3695 (4) | −0.3085 (5) | 0.0757 (10) | |
H13A | 0.196778 | 0.283691 | −0.339441 | 0.091* | |
H13B | 0.063234 | 0.369608 | −0.307234 | 0.091* | |
C14 | 0.1723 (5) | 0.4639 (5) | −0.4431 (5) | 0.0786 (11) | |
H14A | 0.281049 | 0.458099 | −0.452537 | 0.094* | |
H14B | 0.076703 | 0.442457 | −0.555435 | 0.094* | |
C15 | 0.1490 (5) | 0.5982 (4) | −0.3946 (4) | 0.0705 (9) | |
H15A | 0.033473 | 0.606436 | −0.400188 | 0.085* | |
H15B | 0.155915 | 0.657786 | −0.477959 | 0.085* | |
C16 | 0.2870 (5) | 0.6337 (3) | −0.2129 (4) | 0.0657 (9) | |
H16A | 0.262024 | 0.718893 | −0.183813 | 0.079* | |
H16B | 0.401106 | 0.636367 | −0.211442 | 0.079* | |
H2 | 0.524 (3) | 0.594 (5) | 0.083 (5) | 0.091 (14)* | |
H1 | 0.672 (5) | 0.249 (2) | 0.813 (4) | 0.067 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0606 (15) | 0.0598 (16) | 0.0454 (13) | 0.0075 (12) | 0.0183 (11) | 0.0039 (11) |
N2 | 0.0709 (17) | 0.0612 (17) | 0.0445 (14) | −0.0103 (14) | 0.0146 (12) | 0.0061 (12) |
C1 | 0.0541 (17) | 0.092 (3) | 0.0430 (16) | 0.0035 (17) | 0.0155 (13) | −0.0069 (17) |
C2 | 0.0454 (14) | 0.0590 (19) | 0.0470 (15) | 0.0150 (12) | 0.0188 (12) | 0.0066 (12) |
C3 | 0.0663 (19) | 0.064 (2) | 0.0512 (16) | 0.0055 (16) | 0.0256 (15) | 0.0008 (15) |
C4 | 0.070 (2) | 0.074 (2) | 0.066 (2) | −0.0022 (18) | 0.0326 (17) | −0.0135 (19) |
C5 | 0.069 (2) | 0.066 (2) | 0.085 (3) | −0.0005 (17) | 0.041 (2) | −0.0092 (19) |
C6 | 0.0566 (17) | 0.061 (2) | 0.092 (3) | 0.0139 (15) | 0.0436 (18) | 0.0245 (18) |
C7 | 0.0422 (14) | 0.0677 (19) | 0.0545 (16) | 0.0148 (14) | 0.0243 (13) | 0.0098 (15) |
C8 | 0.0475 (16) | 0.087 (2) | 0.0490 (17) | 0.0113 (16) | 0.0200 (14) | 0.0142 (16) |
C9 | 0.062 (2) | 0.136 (4) | 0.0550 (19) | 0.008 (2) | 0.0229 (16) | 0.027 (2) |
C10 | 0.079 (2) | 0.073 (2) | 0.0464 (17) | −0.0146 (17) | 0.0123 (16) | 0.0137 (15) |
C11 | 0.0474 (14) | 0.0523 (16) | 0.0432 (14) | 0.0020 (12) | 0.0162 (11) | 0.0029 (12) |
C12 | 0.0606 (17) | 0.0540 (18) | 0.0619 (18) | 0.0051 (15) | 0.0255 (15) | 0.0053 (15) |
C13 | 0.088 (3) | 0.064 (2) | 0.068 (2) | −0.0063 (18) | 0.0290 (19) | −0.0126 (17) |
C14 | 0.085 (3) | 0.097 (3) | 0.0528 (19) | 0.001 (2) | 0.0302 (18) | −0.0077 (19) |
C15 | 0.071 (2) | 0.088 (3) | 0.0477 (17) | 0.0130 (19) | 0.0224 (15) | 0.0168 (17) |
C16 | 0.084 (2) | 0.0551 (19) | 0.0510 (18) | 0.0032 (16) | 0.0247 (17) | 0.0092 (14) |
N1—C1 | 1.383 (4) | C9—H9B | 0.9700 |
N1—C2 | 1.372 (4) | C9—C10 | 1.452 (5) |
N1—H1 | 0.864 (14) | C10—H10A | 0.9700 |
N2—C10 | 1.467 (4) | C10—H10B | 0.9700 |
N2—C11 | 1.464 (4) | C11—H11 | 0.9800 |
N2—H2 | 0.912 (14) | C11—C12 | 1.523 (4) |
C1—H1A | 0.9300 | C11—C16 | 1.524 (4) |
C1—C8 | 1.357 (5) | C12—H12A | 0.9700 |
C2—C3 | 1.388 (4) | C12—H12B | 0.9700 |
C2—C7 | 1.410 (4) | C12—C13 | 1.514 (5) |
C3—H3 | 0.9300 | C13—H13A | 0.9700 |
C3—C4 | 1.375 (5) | C13—H13B | 0.9700 |
C4—H4 | 0.9300 | C13—C14 | 1.508 (6) |
C4—C5 | 1.382 (5) | C14—H14A | 0.9700 |
C5—H5 | 0.9300 | C14—H14B | 0.9700 |
C5—C6 | 1.364 (5) | C14—C15 | 1.497 (6) |
C6—H6 | 0.9300 | C15—H15A | 0.9700 |
C6—C7 | 1.408 (5) | C15—H15B | 0.9700 |
C7—C8 | 1.428 (5) | C15—C16 | 1.521 (5) |
C8—C9 | 1.505 (4) | C16—H16A | 0.9700 |
C9—H9A | 0.9700 | C16—H16B | 0.9700 |
C1—N1—H1 | 124 (3) | C9—C10—H10A | 109.5 |
C2—N1—C1 | 107.2 (3) | C9—C10—H10B | 109.5 |
C2—N1—H1 | 129 (2) | H10A—C10—H10B | 108.1 |
C10—N2—H2 | 113 (3) | N2—C11—H11 | 107.8 |
C11—N2—C10 | 116.6 (3) | N2—C11—C12 | 115.5 (3) |
C11—N2—H2 | 106 (2) | N2—C11—C16 | 108.5 (2) |
N1—C1—H1A | 124.5 | C12—C11—H11 | 107.8 |
C8—C1—N1 | 111.1 (3) | C12—C11—C16 | 109.3 (2) |
C8—C1—H1A | 124.5 | C16—C11—H11 | 107.8 |
N1—C2—C3 | 130.3 (3) | C11—C12—H12A | 109.4 |
N1—C2—C7 | 108.6 (3) | C11—C12—H12B | 109.4 |
C3—C2—C7 | 121.1 (3) | H12A—C12—H12B | 108.0 |
C2—C3—H3 | 120.9 | C13—C12—C11 | 111.0 (3) |
C4—C3—C2 | 118.3 (3) | C13—C12—H12A | 109.4 |
C4—C3—H3 | 120.9 | C13—C12—H12B | 109.4 |
C3—C4—H4 | 119.1 | C12—C13—H13A | 109.3 |
C3—C4—C5 | 121.8 (4) | C12—C13—H13B | 109.3 |
C5—C4—H4 | 119.1 | H13A—C13—H13B | 108.0 |
C4—C5—H5 | 119.8 | C14—C13—C12 | 111.4 (3) |
C6—C5—C4 | 120.5 (4) | C14—C13—H13A | 109.3 |
C6—C5—H5 | 119.8 | C14—C13—H13B | 109.3 |
C5—C6—H6 | 120.0 | C13—C14—H14A | 109.5 |
C5—C6—C7 | 119.9 (3) | C13—C14—H14B | 109.5 |
C7—C6—H6 | 120.0 | H14A—C14—H14B | 108.1 |
C2—C7—C8 | 106.7 (3) | C15—C14—C13 | 110.6 (3) |
C6—C7—C2 | 118.4 (3) | C15—C14—H14A | 109.5 |
C6—C7—C8 | 134.9 (3) | C15—C14—H14B | 109.5 |
C1—C8—C7 | 106.4 (3) | C14—C15—H15A | 109.2 |
C1—C8—C9 | 129.4 (4) | C14—C15—H15B | 109.2 |
C7—C8—C9 | 124.1 (4) | C14—C15—C16 | 112.0 (3) |
C8—C9—H9A | 108.2 | H15A—C15—H15B | 107.9 |
C8—C9—H9B | 108.2 | C16—C15—H15A | 109.2 |
H9A—C9—H9B | 107.3 | C16—C15—H15B | 109.2 |
C10—C9—C8 | 116.5 (3) | C11—C16—H16A | 109.2 |
C10—C9—H9A | 108.2 | C11—C16—H16B | 109.2 |
C10—C9—H9B | 108.2 | C15—C16—C11 | 112.0 (3) |
N2—C10—H10A | 109.5 | C15—C16—H16A | 109.2 |
N2—C10—H10B | 109.5 | C15—C16—H16B | 109.2 |
C9—C10—N2 | 110.6 (3) | H16A—C16—H16B | 107.9 |
N1—C1—C8—C7 | −0.6 (4) | C4—C5—C6—C7 | −0.2 (5) |
N1—C1—C8—C9 | 178.0 (3) | C5—C6—C7—C2 | 1.1 (4) |
N1—C2—C3—C4 | 178.7 (3) | C5—C6—C7—C8 | −179.2 (3) |
N1—C2—C7—C6 | 179.9 (3) | C6—C7—C8—C1 | −179.4 (3) |
N1—C2—C7—C8 | 0.2 (3) | C6—C7—C8—C9 | 1.9 (5) |
N2—C11—C12—C13 | −179.1 (3) | C7—C2—C3—C4 | −0.2 (4) |
N2—C11—C16—C15 | −178.4 (3) | C7—C8—C9—C10 | −134.5 (4) |
C1—N1—C2—C3 | −179.5 (3) | C8—C9—C10—N2 | 170.4 (4) |
C1—N1—C2—C7 | −0.5 (3) | C10—N2—C11—C12 | −56.0 (4) |
C1—C8—C9—C10 | 47.2 (6) | C10—N2—C11—C16 | −179.0 (3) |
C2—N1—C1—C8 | 0.7 (4) | C11—N2—C10—C9 | 156.9 (4) |
C2—C3—C4—C5 | 1.2 (5) | C11—C12—C13—C14 | 58.1 (4) |
C2—C7—C8—C1 | 0.2 (3) | C12—C11—C16—C15 | 54.9 (4) |
C2—C7—C8—C9 | −178.4 (3) | C12—C13—C14—C15 | −56.4 (4) |
C3—C2—C7—C6 | −1.0 (4) | C13—C14—C15—C16 | 54.5 (4) |
C3—C2—C7—C8 | 179.3 (3) | C14—C15—C16—C11 | −54.9 (4) |
C3—C4—C5—C6 | −1.0 (5) | C16—C11—C12—C13 | −56.5 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N2i | 0.86 (1) | 2.22 (2) | 3.069 (4) | 167 (3) |
Symmetry code: (i) −x+1, y−1/2, −z+1. |
C16H23N2+·Br− | F(000) = 672 |
Mr = 323.27 | Dx = 1.320 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.5584 (6) Å | Cell parameters from 9846 reflections |
b = 7.9266 (5) Å | θ = 2.8–26.3° |
c = 19.4507 (13) Å | µ = 2.52 mm−1 |
β = 92.406 (2)° | T = 297 K |
V = 1626.44 (18) Å3 | Block, colourless |
Z = 4 | 0.3 × 0.13 × 0.03 mm |
Bruker D8 Venture CMOS diffractometer | 2978 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.037 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 26.4°, θmin = 3.2° |
Tmin = 0.610, Tmax = 0.745 | h = −13→13 |
46579 measured reflections | k = −9→9 |
3320 independent reflections | l = −24→24 |
Refinement on F2 | 3 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.045 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + 4.8013P] where P = (Fo2 + 2Fc2)/3 |
S = 1.22 | (Δ/σ)max = 0.001 |
3320 reflections | Δρmax = 0.58 e Å−3 |
184 parameters | Δρmin = −0.70 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.81840 (4) | 0.64728 (5) | 0.83341 (2) | 0.04595 (14) | |
N1 | 0.1405 (3) | 0.7180 (5) | 0.8197 (2) | 0.0510 (9) | |
N2 | 0.6414 (3) | 0.7350 (4) | 0.69368 (18) | 0.0362 (7) | |
C1 | 0.2277 (4) | 0.7985 (6) | 0.7822 (2) | 0.0514 (11) | |
H1A | 0.208468 | 0.877881 | 0.748124 | 0.062* | |
C2 | 0.2018 (4) | 0.6091 (5) | 0.8650 (2) | 0.0397 (9) | |
C3 | 0.1549 (5) | 0.5037 (6) | 0.9141 (2) | 0.0542 (12) | |
H3 | 0.068295 | 0.495965 | 0.920528 | 0.065* | |
C4 | 0.2401 (6) | 0.4109 (7) | 0.9529 (3) | 0.0680 (15) | |
H4 | 0.211162 | 0.339725 | 0.986910 | 0.082* | |
C5 | 0.3704 (6) | 0.4212 (7) | 0.9425 (3) | 0.0709 (15) | |
H5 | 0.425959 | 0.354368 | 0.968979 | 0.085* | |
C6 | 0.4180 (5) | 0.5268 (6) | 0.8944 (2) | 0.0544 (11) | |
H6 | 0.504805 | 0.534207 | 0.888792 | 0.065* | |
C7 | 0.3330 (4) | 0.6233 (5) | 0.85403 (19) | 0.0364 (8) | |
C8 | 0.3467 (4) | 0.7472 (5) | 0.8011 (2) | 0.0391 (9) | |
C9 | 0.4690 (4) | 0.8051 (6) | 0.7726 (2) | 0.0461 (10) | |
H9A | 0.533883 | 0.809465 | 0.809400 | 0.055* | |
H9B | 0.458286 | 0.918033 | 0.754113 | 0.055* | |
C10 | 0.5116 (4) | 0.6891 (6) | 0.7169 (2) | 0.0443 (10) | |
H10A | 0.451375 | 0.694700 | 0.677896 | 0.053* | |
H10B | 0.512820 | 0.574023 | 0.733848 | 0.053* | |
C11 | 0.6844 (4) | 0.6344 (5) | 0.6336 (2) | 0.0398 (9) | |
H11 | 0.666538 | 0.515102 | 0.642099 | 0.048* | |
C12 | 0.6154 (4) | 0.6853 (6) | 0.5674 (2) | 0.0481 (11) | |
H12A | 0.630562 | 0.803842 | 0.558442 | 0.058* | |
H12B | 0.524985 | 0.669392 | 0.571593 | 0.058* | |
C13 | 0.6611 (5) | 0.5796 (7) | 0.5079 (3) | 0.0591 (13) | |
H13A | 0.639096 | 0.462249 | 0.515003 | 0.071* | |
H13B | 0.618863 | 0.616791 | 0.465273 | 0.071* | |
C14 | 0.8031 (5) | 0.5951 (7) | 0.5020 (2) | 0.0616 (14) | |
H14A | 0.830564 | 0.521421 | 0.465755 | 0.074* | |
H14B | 0.824146 | 0.710124 | 0.489862 | 0.074* | |
C15 | 0.8720 (5) | 0.5486 (8) | 0.5691 (3) | 0.0676 (15) | |
H15A | 0.962363 | 0.565437 | 0.564858 | 0.081* | |
H15B | 0.857931 | 0.430226 | 0.578863 | 0.081* | |
C16 | 0.8262 (4) | 0.6553 (7) | 0.6284 (2) | 0.0559 (12) | |
H16A | 0.868998 | 0.620155 | 0.671109 | 0.067* | |
H16B | 0.846249 | 0.772986 | 0.620616 | 0.067* | |
H2A | 0.692 (3) | 0.722 (6) | 0.7316 (13) | 0.045 (12)* | |
H1 | 0.0593 (14) | 0.738 (6) | 0.815 (2) | 0.058 (14)* | |
H2B | 0.636 (4) | 0.844 (2) | 0.681 (2) | 0.045 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0447 (2) | 0.0384 (2) | 0.0545 (3) | 0.00711 (19) | −0.00029 (17) | −0.0026 (2) |
N1 | 0.0337 (18) | 0.062 (2) | 0.058 (2) | 0.0049 (18) | 0.0068 (17) | 0.014 (2) |
N2 | 0.0331 (17) | 0.0334 (18) | 0.0425 (19) | −0.0013 (14) | 0.0062 (14) | 0.0008 (15) |
C1 | 0.048 (2) | 0.057 (3) | 0.050 (3) | 0.008 (2) | 0.009 (2) | 0.015 (2) |
C2 | 0.043 (2) | 0.037 (2) | 0.039 (2) | −0.0032 (17) | 0.0058 (17) | −0.0037 (17) |
C3 | 0.058 (3) | 0.051 (3) | 0.055 (3) | −0.017 (2) | 0.012 (2) | 0.000 (2) |
C4 | 0.091 (4) | 0.053 (3) | 0.061 (3) | −0.016 (3) | 0.007 (3) | 0.019 (3) |
C5 | 0.081 (4) | 0.059 (3) | 0.071 (4) | 0.007 (3) | −0.013 (3) | 0.019 (3) |
C6 | 0.053 (3) | 0.052 (3) | 0.058 (3) | 0.003 (2) | −0.003 (2) | 0.003 (2) |
C7 | 0.039 (2) | 0.034 (2) | 0.037 (2) | −0.0008 (16) | 0.0027 (16) | −0.0057 (16) |
C8 | 0.039 (2) | 0.041 (2) | 0.039 (2) | 0.0003 (17) | 0.0087 (16) | −0.0034 (17) |
C9 | 0.046 (2) | 0.044 (2) | 0.050 (2) | −0.0042 (19) | 0.0143 (19) | −0.004 (2) |
C10 | 0.037 (2) | 0.051 (3) | 0.047 (2) | −0.0087 (19) | 0.0136 (18) | −0.004 (2) |
C11 | 0.045 (2) | 0.0282 (19) | 0.047 (2) | 0.0044 (17) | 0.0153 (17) | 0.0061 (17) |
C12 | 0.044 (2) | 0.052 (3) | 0.049 (2) | 0.007 (2) | 0.0075 (19) | −0.006 (2) |
C13 | 0.064 (3) | 0.059 (3) | 0.054 (3) | 0.004 (3) | 0.009 (2) | −0.011 (2) |
C14 | 0.064 (3) | 0.073 (4) | 0.050 (3) | 0.011 (3) | 0.026 (2) | 0.001 (2) |
C15 | 0.051 (3) | 0.084 (4) | 0.070 (3) | 0.021 (3) | 0.029 (2) | 0.005 (3) |
C16 | 0.040 (2) | 0.068 (3) | 0.060 (3) | 0.011 (2) | 0.012 (2) | 0.010 (3) |
N1—C1 | 1.358 (6) | C9—H9B | 0.9700 |
N1—C2 | 1.375 (5) | C9—C10 | 1.504 (6) |
N1—H1 | 0.873 (10) | C10—H10A | 0.9700 |
N2—C10 | 1.506 (5) | C10—H10B | 0.9700 |
N2—C11 | 1.501 (5) | C11—H11 | 0.9800 |
N2—H2A | 0.898 (10) | C11—C12 | 1.506 (6) |
N2—H2B | 0.900 (10) | C11—C16 | 1.515 (6) |
C1—H1A | 0.9300 | C12—H12A | 0.9700 |
C1—C8 | 1.357 (6) | C12—H12B | 0.9700 |
C2—C3 | 1.376 (6) | C12—C13 | 1.525 (6) |
C2—C7 | 1.415 (5) | C13—H13A | 0.9700 |
C3—H3 | 0.9300 | C13—H13B | 0.9700 |
C3—C4 | 1.366 (7) | C13—C14 | 1.513 (7) |
C4—H4 | 0.9300 | C14—H14A | 0.9700 |
C4—C5 | 1.402 (8) | C14—H14B | 0.9700 |
C5—H5 | 0.9300 | C14—C15 | 1.513 (7) |
C5—C6 | 1.366 (7) | C15—H15A | 0.9700 |
C6—H6 | 0.9300 | C15—H15B | 0.9700 |
C6—C7 | 1.396 (6) | C15—C16 | 1.525 (7) |
C7—C8 | 1.434 (6) | C16—H16A | 0.9700 |
C8—C9 | 1.499 (5) | C16—H16B | 0.9700 |
C9—H9A | 0.9700 | ||
C1—N1—C2 | 109.2 (4) | C9—C10—N2 | 111.8 (3) |
C1—N1—H1 | 123 (3) | C9—C10—H10A | 109.3 |
C2—N1—H1 | 128 (3) | C9—C10—H10B | 109.3 |
C10—N2—H2A | 104 (3) | H10A—C10—H10B | 107.9 |
C10—N2—H2B | 105 (3) | N2—C11—H11 | 108.3 |
C11—N2—C10 | 114.5 (3) | N2—C11—C12 | 111.9 (3) |
C11—N2—H2A | 113 (3) | N2—C11—C16 | 109.0 (4) |
C11—N2—H2B | 109 (3) | C12—C11—H11 | 108.3 |
H2A—N2—H2B | 111 (4) | C12—C11—C16 | 111.0 (3) |
N1—C1—H1A | 124.6 | C16—C11—H11 | 108.3 |
C8—C1—N1 | 110.7 (4) | C11—C12—H12A | 109.6 |
C8—C1—H1A | 124.6 | C11—C12—H12B | 109.6 |
N1—C2—C3 | 130.7 (4) | C11—C12—C13 | 110.2 (4) |
N1—C2—C7 | 106.9 (3) | H12A—C12—H12B | 108.1 |
C3—C2—C7 | 122.4 (4) | C13—C12—H12A | 109.6 |
C2—C3—H3 | 121.2 | C13—C12—H12B | 109.6 |
C4—C3—C2 | 117.6 (5) | C12—C13—H13A | 109.4 |
C4—C3—H3 | 121.2 | C12—C13—H13B | 109.4 |
C3—C4—H4 | 119.5 | H13A—C13—H13B | 108.0 |
C3—C4—C5 | 121.1 (5) | C14—C13—C12 | 111.0 (4) |
C5—C4—H4 | 119.5 | C14—C13—H13A | 109.4 |
C4—C5—H5 | 119.1 | C14—C13—H13B | 109.4 |
C6—C5—C4 | 121.8 (5) | C13—C14—H14A | 109.4 |
C6—C5—H5 | 119.1 | C13—C14—H14B | 109.4 |
C5—C6—H6 | 120.8 | H14A—C14—H14B | 108.0 |
C5—C6—C7 | 118.4 (5) | C15—C14—C13 | 111.0 (4) |
C7—C6—H6 | 120.8 | C15—C14—H14A | 109.4 |
C2—C7—C8 | 106.9 (3) | C15—C14—H14B | 109.4 |
C6—C7—C2 | 118.8 (4) | C14—C15—H15A | 109.4 |
C6—C7—C8 | 134.2 (4) | C14—C15—H15B | 109.4 |
C1—C8—C7 | 106.3 (4) | C14—C15—C16 | 111.1 (4) |
C1—C8—C9 | 127.6 (4) | H15A—C15—H15B | 108.0 |
C7—C8—C9 | 126.1 (4) | C16—C15—H15A | 109.4 |
C8—C9—H9A | 109.3 | C16—C15—H15B | 109.4 |
C8—C9—H9B | 109.3 | C11—C16—C15 | 109.6 (4) |
C8—C9—C10 | 111.6 (3) | C11—C16—H16A | 109.7 |
H9A—C9—H9B | 108.0 | C11—C16—H16B | 109.7 |
C10—C9—H9A | 109.3 | C15—C16—H16A | 109.7 |
C10—C9—H9B | 109.3 | C15—C16—H16B | 109.7 |
N2—C10—H10A | 109.3 | H16A—C16—H16B | 108.2 |
N2—C10—H10B | 109.3 | ||
N1—C1—C8—C7 | 0.8 (5) | C4—C5—C6—C7 | −1.5 (8) |
N1—C1—C8—C9 | −179.9 (4) | C5—C6—C7—C2 | 0.6 (7) |
N1—C2—C3—C4 | −178.8 (5) | C5—C6—C7—C8 | 178.3 (5) |
N1—C2—C7—C6 | 179.1 (4) | C6—C7—C8—C1 | −178.9 (5) |
N1—C2—C7—C8 | 0.9 (4) | C6—C7—C8—C9 | 1.8 (8) |
N2—C11—C12—C13 | −179.6 (4) | C7—C2—C3—C4 | 0.0 (7) |
N2—C11—C16—C15 | 177.9 (4) | C7—C8—C9—C10 | 84.2 (5) |
C1—N1—C2—C3 | 178.5 (5) | C8—C9—C10—N2 | −173.5 (4) |
C1—N1—C2—C7 | −0.4 (5) | C10—N2—C11—C12 | 73.0 (4) |
C1—C8—C9—C10 | −95.0 (6) | C10—N2—C11—C16 | −163.9 (4) |
C2—N1—C1—C8 | −0.3 (6) | C11—N2—C10—C9 | −174.5 (3) |
C2—C3—C4—C5 | −0.8 (8) | C11—C12—C13—C14 | −56.6 (5) |
C2—C7—C8—C1 | −1.0 (5) | C12—C11—C16—C15 | −58.5 (5) |
C2—C7—C8—C9 | 179.6 (4) | C12—C13—C14—C15 | 55.5 (6) |
C3—C2—C7—C6 | 0.1 (6) | C13—C14—C15—C16 | −56.0 (6) |
C3—C2—C7—C8 | −178.2 (4) | C14—C15—C16—C11 | 57.0 (6) |
C3—C4—C5—C6 | 1.6 (9) | C16—C11—C12—C13 | 58.4 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···Br1 | 0.90 (1) | 2.41 (1) | 3.307 (4) | 172 (4) |
N1—H1···Br1i | 0.87 (1) | 2.68 (3) | 3.468 (4) | 151 (4) |
N2—H2B···Br1ii | 0.90 (1) | 2.47 (2) | 3.340 (3) | 163 (4) |
Symmetry codes: (i) x−1, y, z; (ii) −x+3/2, y+1/2, −z+3/2. |
C16H23N2+·C2HO2− | F(000) = 648 |
Mr = 300.39 | Dx = 1.186 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.2231 (10) Å | Cell parameters from 7849 reflections |
b = 16.1611 (16) Å | θ = 2.6–26.3° |
c = 11.4595 (12) Å | µ = 0.08 mm−1 |
β = 99.865 (4)° | T = 297 K |
V = 1682.8 (3) Å3 | Block, bronze |
Z = 4 | 0.32 × 0.22 × 0.2 mm |
Bruker D8 Venture CMOS diffractometer | 2803 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.028 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 26.4°, θmin = 2.6° |
Tmin = 0.694, Tmax = 0.745 | h = −11→11 |
20060 measured reflections | k = −20→20 |
3446 independent reflections | l = −14→14 |
Refinement on F2 | 3 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.043 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.121 | w = 1/[σ2(Fo2) + (0.057P)2 + 0.4152P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
3446 reflections | Δρmax = 0.22 e Å−3 |
211 parameters | Δρmin = −0.17 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O2 | 0.72753 (11) | 0.47420 (7) | 0.97368 (12) | 0.0632 (3) | |
O4 | 0.74997 (12) | 0.60453 (6) | 1.03308 (11) | 0.0600 (3) | |
N1 | 0.33759 (16) | 0.73002 (8) | 0.54717 (12) | 0.0530 (3) | |
N2 | 0.46996 (12) | 0.42877 (7) | 0.83748 (10) | 0.0402 (3) | |
C1 | 0.43744 (18) | 0.68408 (10) | 0.62215 (13) | 0.0522 (4) | |
H1A | 0.513836 | 0.706133 | 0.676833 | 0.063* | |
C2 | 0.24236 (16) | 0.67738 (9) | 0.48012 (12) | 0.0444 (3) | |
C3 | 0.12270 (18) | 0.69461 (11) | 0.39157 (14) | 0.0589 (4) | |
H3 | 0.095302 | 0.748764 | 0.371017 | 0.071* | |
C4 | 0.0471 (2) | 0.62879 (15) | 0.33603 (17) | 0.0753 (5) | |
H4 | −0.032377 | 0.638517 | 0.275820 | 0.090* | |
C5 | 0.0863 (2) | 0.54759 (14) | 0.36747 (19) | 0.0780 (6) | |
H5 | 0.032566 | 0.504233 | 0.327913 | 0.094* | |
C6 | 0.20302 (19) | 0.53036 (10) | 0.45603 (16) | 0.0609 (4) | |
H6 | 0.227496 | 0.475901 | 0.477033 | 0.073* | |
C7 | 0.28409 (15) | 0.59569 (8) | 0.51382 (12) | 0.0426 (3) | |
C8 | 0.41022 (16) | 0.60185 (9) | 0.60614 (12) | 0.0452 (3) | |
C9 | 0.48890 (17) | 0.53145 (10) | 0.67518 (14) | 0.0523 (4) | |
H9A | 0.584225 | 0.550063 | 0.715932 | 0.063* | |
H9B | 0.504732 | 0.487268 | 0.621464 | 0.063* | |
C10 | 0.39908 (16) | 0.49921 (9) | 0.76478 (13) | 0.0475 (3) | |
H10A | 0.382929 | 0.544073 | 0.817299 | 0.057* | |
H10B | 0.303662 | 0.481452 | 0.723096 | 0.057* | |
C11 | 0.50069 (15) | 0.35126 (8) | 0.77365 (12) | 0.0423 (3) | |
H11 | 0.565930 | 0.364743 | 0.717251 | 0.051* | |
C12 | 0.57867 (19) | 0.29119 (10) | 0.86470 (15) | 0.0577 (4) | |
H12A | 0.519809 | 0.282701 | 0.926173 | 0.069* | |
H12B | 0.672434 | 0.314467 | 0.901290 | 0.069* | |
C13 | 0.6045 (2) | 0.20810 (11) | 0.80791 (19) | 0.0785 (6) | |
H13A | 0.671411 | 0.215725 | 0.752071 | 0.094* | |
H13B | 0.649859 | 0.169933 | 0.868687 | 0.094* | |
C14 | 0.4613 (3) | 0.17171 (11) | 0.74422 (18) | 0.0784 (6) | |
H14A | 0.480951 | 0.120240 | 0.706292 | 0.094* | |
H14B | 0.397404 | 0.159654 | 0.801073 | 0.094* | |
C15 | 0.3856 (3) | 0.23094 (13) | 0.65269 (16) | 0.0783 (6) | |
H15A | 0.291923 | 0.207658 | 0.615817 | 0.094* | |
H15B | 0.445353 | 0.238438 | 0.591619 | 0.094* | |
C16 | 0.35933 (18) | 0.31489 (11) | 0.70660 (14) | 0.0584 (4) | |
H16A | 0.317379 | 0.352639 | 0.644040 | 0.070* | |
H16B | 0.289125 | 0.308535 | 0.760051 | 0.070* | |
C17 | 0.80163 (14) | 0.53717 (8) | 1.00368 (12) | 0.0397 (3) | |
C18 | 0.96469 (14) | 0.53303 (8) | 1.01170 (12) | 0.0401 (3) | |
H18 | 1.019151 | 0.580476 | 1.034817 | 0.048* | |
H2A | 0.5558 (13) | 0.4470 (10) | 0.8805 (13) | 0.061 (5)* | |
H1 | 0.330 (2) | 0.7840 (6) | 0.5455 (17) | 0.075 (6)* | |
H2B | 0.4089 (16) | 0.4143 (10) | 0.8881 (12) | 0.057 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O2 | 0.0387 (6) | 0.0534 (6) | 0.0948 (9) | −0.0079 (5) | 0.0038 (5) | −0.0168 (6) |
O4 | 0.0520 (6) | 0.0374 (5) | 0.0972 (9) | 0.0050 (4) | 0.0316 (6) | −0.0031 (5) |
N1 | 0.0706 (9) | 0.0364 (6) | 0.0517 (7) | 0.0033 (6) | 0.0096 (6) | 0.0033 (5) |
N2 | 0.0349 (6) | 0.0417 (6) | 0.0432 (6) | 0.0028 (5) | 0.0045 (5) | 0.0042 (5) |
C1 | 0.0589 (9) | 0.0501 (8) | 0.0457 (8) | −0.0022 (7) | 0.0033 (7) | 0.0005 (7) |
C2 | 0.0508 (8) | 0.0445 (7) | 0.0403 (7) | 0.0063 (6) | 0.0143 (6) | 0.0038 (6) |
C3 | 0.0601 (10) | 0.0671 (10) | 0.0496 (8) | 0.0182 (8) | 0.0094 (7) | 0.0116 (8) |
C4 | 0.0550 (10) | 0.1013 (15) | 0.0642 (11) | 0.0070 (10) | −0.0047 (8) | 0.0026 (11) |
C5 | 0.0691 (12) | 0.0806 (14) | 0.0785 (13) | −0.0142 (10) | −0.0037 (10) | −0.0156 (11) |
C6 | 0.0632 (10) | 0.0485 (9) | 0.0706 (10) | −0.0031 (7) | 0.0106 (8) | −0.0066 (8) |
C7 | 0.0462 (7) | 0.0408 (7) | 0.0430 (7) | 0.0046 (6) | 0.0140 (6) | 0.0013 (6) |
C8 | 0.0489 (8) | 0.0438 (7) | 0.0443 (7) | 0.0069 (6) | 0.0118 (6) | 0.0055 (6) |
C9 | 0.0489 (8) | 0.0535 (9) | 0.0556 (8) | 0.0119 (7) | 0.0125 (7) | 0.0126 (7) |
C10 | 0.0447 (8) | 0.0459 (8) | 0.0528 (8) | 0.0134 (6) | 0.0107 (6) | 0.0094 (6) |
C11 | 0.0401 (7) | 0.0426 (7) | 0.0452 (7) | 0.0052 (6) | 0.0100 (6) | 0.0034 (6) |
C12 | 0.0577 (9) | 0.0463 (8) | 0.0640 (9) | 0.0070 (7) | −0.0046 (7) | 0.0086 (7) |
C13 | 0.0968 (15) | 0.0521 (10) | 0.0886 (13) | 0.0254 (10) | 0.0213 (12) | 0.0133 (10) |
C14 | 0.1227 (18) | 0.0475 (10) | 0.0713 (12) | −0.0069 (10) | 0.0346 (12) | −0.0107 (9) |
C15 | 0.1055 (16) | 0.0739 (13) | 0.0546 (10) | −0.0116 (11) | 0.0112 (10) | −0.0191 (9) |
C16 | 0.0568 (9) | 0.0642 (10) | 0.0499 (8) | 0.0003 (8) | −0.0026 (7) | −0.0062 (7) |
C17 | 0.0356 (6) | 0.0357 (7) | 0.0482 (7) | 0.0013 (5) | 0.0082 (5) | 0.0001 (5) |
C18 | 0.0363 (7) | 0.0346 (6) | 0.0493 (7) | −0.0039 (5) | 0.0070 (5) | −0.0044 (5) |
O2—C17 | 1.2411 (16) | C9—H9B | 0.9700 |
O4—C17 | 1.2572 (16) | C9—C10 | 1.518 (2) |
N1—C1 | 1.366 (2) | C10—H10A | 0.9700 |
N1—C2 | 1.362 (2) | C10—H10B | 0.9700 |
N1—H1 | 0.876 (9) | C11—H11 | 0.9800 |
N2—C10 | 1.4935 (17) | C11—C12 | 1.514 (2) |
N2—C11 | 1.5018 (18) | C11—C16 | 1.514 (2) |
N2—H2A | 0.907 (9) | C12—H12A | 0.9700 |
N2—H2B | 0.905 (9) | C12—H12B | 0.9700 |
C1—H1A | 0.9300 | C12—C13 | 1.529 (2) |
C1—C8 | 1.359 (2) | C13—H13A | 0.9700 |
C2—C3 | 1.393 (2) | C13—H13B | 0.9700 |
C2—C7 | 1.4105 (19) | C13—C14 | 1.514 (3) |
C3—H3 | 0.9300 | C14—H14A | 0.9700 |
C3—C4 | 1.368 (3) | C14—H14B | 0.9700 |
C4—H4 | 0.9300 | C14—C15 | 1.501 (3) |
C4—C5 | 1.392 (3) | C15—H15A | 0.9700 |
C5—H5 | 0.9300 | C15—H15B | 0.9700 |
C5—C6 | 1.376 (3) | C15—C16 | 1.527 (2) |
C6—H6 | 0.9300 | C16—H16A | 0.9700 |
C6—C7 | 1.394 (2) | C16—H16B | 0.9700 |
C7—C8 | 1.436 (2) | C17—C18 | 1.4924 (18) |
C8—C9 | 1.5000 (19) | C18—C18i | 1.302 (3) |
C9—H9A | 0.9700 | C18—H18 | 0.9300 |
C1—N1—H1 | 126.9 (13) | H10A—C10—H10B | 107.7 |
C2—N1—C1 | 108.39 (12) | N2—C11—H11 | 108.9 |
C2—N1—H1 | 124.6 (13) | N2—C11—C12 | 107.83 (12) |
C10—N2—C11 | 117.72 (11) | N2—C11—C16 | 110.67 (11) |
C10—N2—H2A | 108.3 (11) | C12—C11—H11 | 108.9 |
C10—N2—H2B | 107.1 (11) | C12—C11—C16 | 111.52 (13) |
C11—N2—H2A | 108.4 (11) | C16—C11—H11 | 108.9 |
C11—N2—H2B | 106.6 (11) | C11—C12—H12A | 109.4 |
H2A—N2—H2B | 108.5 (15) | C11—C12—H12B | 109.4 |
N1—C1—H1A | 124.5 | C11—C12—C13 | 111.11 (14) |
C8—C1—N1 | 110.95 (14) | H12A—C12—H12B | 108.0 |
C8—C1—H1A | 124.5 | C13—C12—H12A | 109.4 |
N1—C2—C3 | 129.78 (14) | C13—C12—H12B | 109.4 |
N1—C2—C7 | 108.12 (12) | C12—C13—H13A | 109.4 |
C3—C2—C7 | 122.10 (15) | C12—C13—H13B | 109.4 |
C2—C3—H3 | 121.3 | H13A—C13—H13B | 108.0 |
C4—C3—C2 | 117.42 (16) | C14—C13—C12 | 111.08 (16) |
C4—C3—H3 | 121.3 | C14—C13—H13A | 109.4 |
C3—C4—H4 | 119.2 | C14—C13—H13B | 109.4 |
C3—C4—C5 | 121.59 (16) | C13—C14—H14A | 109.5 |
C5—C4—H4 | 119.2 | C13—C14—H14B | 109.5 |
C4—C5—H5 | 119.4 | H14A—C14—H14B | 108.1 |
C6—C5—C4 | 121.16 (18) | C15—C14—C13 | 110.62 (16) |
C6—C5—H5 | 119.4 | C15—C14—H14A | 109.5 |
C5—C6—H6 | 120.5 | C15—C14—H14B | 109.5 |
C5—C6—C7 | 119.05 (16) | C14—C15—H15A | 109.3 |
C7—C6—H6 | 120.5 | C14—C15—H15B | 109.3 |
C2—C7—C8 | 106.59 (12) | C14—C15—C16 | 111.77 (14) |
C6—C7—C2 | 118.68 (14) | H15A—C15—H15B | 107.9 |
C6—C7—C8 | 134.73 (14) | C16—C15—H15A | 109.3 |
C1—C8—C7 | 105.96 (12) | C16—C15—H15B | 109.3 |
C1—C8—C9 | 127.52 (14) | C11—C16—C15 | 111.59 (15) |
C7—C8—C9 | 126.43 (13) | C11—C16—H16A | 109.3 |
C8—C9—H9A | 109.6 | C11—C16—H16B | 109.3 |
C8—C9—H9B | 109.6 | C15—C16—H16A | 109.3 |
C8—C9—C10 | 110.27 (12) | C15—C16—H16B | 109.3 |
H9A—C9—H9B | 108.1 | H16A—C16—H16B | 108.0 |
C10—C9—H9A | 109.6 | O2—C17—O4 | 124.62 (13) |
C10—C9—H9B | 109.6 | O2—C17—C18 | 118.79 (12) |
N2—C10—C9 | 113.68 (11) | O4—C17—C18 | 116.52 (12) |
N2—C10—H10A | 108.8 | C17—C18—H18 | 118.0 |
N2—C10—H10B | 108.8 | C18i—C18—C17 | 123.95 (16) |
C9—C10—H10A | 108.8 | C18i—C18—H18 | 118.0 |
C9—C10—H10B | 108.8 | ||
O2—C17—C18—C18i | 0.5 (3) | C3—C4—C5—C6 | 0.0 (3) |
O4—C17—C18—C18i | 177.60 (18) | C4—C5—C6—C7 | −0.8 (3) |
N1—C1—C8—C7 | 0.23 (17) | C5—C6—C7—C2 | 0.7 (2) |
N1—C1—C8—C9 | −176.30 (14) | C5—C6—C7—C8 | −178.90 (17) |
N1—C2—C3—C4 | 178.46 (16) | C6—C7—C8—C1 | 179.25 (17) |
N1—C2—C7—C6 | −179.33 (14) | C6—C7—C8—C9 | −4.2 (3) |
N1—C2—C7—C8 | 0.35 (16) | C7—C2—C3—C4 | −1.0 (2) |
N2—C11—C12—C13 | 176.04 (14) | C7—C8—C9—C10 | −74.77 (19) |
N2—C11—C16—C15 | −173.47 (13) | C8—C9—C10—N2 | 180.00 (12) |
C1—N1—C2—C3 | −179.77 (15) | C10—N2—C11—C12 | 177.27 (12) |
C1—N1—C2—C7 | −0.21 (16) | C10—N2—C11—C16 | −60.50 (16) |
C1—C8—C9—C10 | 101.09 (19) | C11—N2—C10—C9 | −60.41 (17) |
C2—N1—C1—C8 | −0.02 (18) | C11—C12—C13—C14 | −56.1 (2) |
C2—C3—C4—C5 | 0.9 (3) | C12—C11—C16—C15 | −53.43 (19) |
C2—C7—C8—C1 | −0.35 (16) | C12—C13—C14—C15 | 56.9 (2) |
C2—C7—C8—C9 | 176.23 (13) | C13—C14—C15—C16 | −56.1 (2) |
C3—C2—C7—C6 | 0.3 (2) | C14—C15—C16—C11 | 54.6 (2) |
C3—C2—C7—C8 | 179.95 (13) | C16—C11—C12—C13 | 54.34 (19) |
Symmetry code: (i) −x+2, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O2 | 0.91 (1) | 1.81 (1) | 2.7107 (15) | 175 (2) |
N1—H1···O4ii | 0.88 (1) | 1.94 (1) | 2.7899 (16) | 163 (2) |
N2—H2B···O4iii | 0.91 (1) | 1.87 (1) | 2.7632 (16) | 167 (2) |
Symmetry codes: (ii) x−1/2, −y+3/2, z−1/2; (iii) −x+1, −y+1, −z+2. |
Compound | indole r.m.s. deviation from planarity | C7—C8—C9—C10 | C10—N2—C11 |
(I) | 0.007 | 45.5 (4) | 116.6 (3) |
(II) | 0.010 | 84.2 (5) | 114.5 (3) |
(III) | 0.008 | -74.77 (19) | 117.72 (11) |
Acknowledgements
Financial statements and conflict of interest: This study was funded by CaaMTech, Inc. ARC reports an ownership interest in CaaMTech, Inc., which owns US and worldwide patent applications, covering new tryptamine compounds, compositions, formulations, novel crystalline forms, and methods of making and using the same.
Funding information
Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1429086).
References
Brimblecombe, R. W., Downing, D. F., Green, D. M. & Hunt, R. R. (1964). Br. J. Pharmacol. Chemother. 23, 43–54. CrossRef PubMed CAS Google Scholar
Bruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 900–902. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019b). IUCrData, 4, x190962. Google Scholar
Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019). IUCrData, 4, x191469. Google Scholar
Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020a). Acta Cryst. E76, 514–517. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020b). Acta Cryst. E76, 589–593. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Falkenberg, G. (1972). Acta Cryst. B28, 3075–3083. CSD CrossRef IUCr Journals Web of Science Google Scholar
Gerecs, Á., Barta, K. & Duda, E. (1971). Magy. Kem. Foly. 77, 531–533. CAS Google Scholar
Glatfelter, G., Chojnacki, M. R., McGriff, S. A., Wang, T. & Baumann, M. H. (2022a). ACS Pharmacol. Transl. Sci. 5, 321–330. CrossRef CAS PubMed Google Scholar
Glatfelter, G., Pottie, E., Partilla, J. S., Sherwood, A. M., Kaylo, K., Pham, D. N. K., Naeem, M., Sammeta, V. R., DeBoer, S., Golen, J. A., Hulley, E. B., Stove, C. P., Chadeayne, A. R., Manke, D. R. & Baumann, M. H. (2022b). ACS Pharmacol. Transl. Sci. 5, 1181–1196. CrossRef CAS PubMed Google Scholar
Goadsby, P. J. & Holland, P. R. (2018). Neurotherapeutics, 15, 271–273. CrossRef PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Laban, U., Naeem, M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2023). Acta Cryst. E79, 280–286. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mertens, L. J., Wall, M. B., Roseman, L., Demetriou, L., Nutt, D. J. & Carhart-Harris, R. L. (2020). J. Psychopharmacol. 34, 167–180. CrossRef CAS PubMed Google Scholar
Naeem, M., Anas, N. A., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2023). IUCrData, 8, x230378. Google Scholar
Naeem, M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2022). Acta Cryst. E78, 365–368. CrossRef IUCr Journals Google Scholar
Naeem, M., Sherwood, A. M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2022). Acta Cryst. E78, 550–553. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nowell, H., Attfield, J. P. & Cole, J. C. (2002). Acta Cryst. B58, 835–840. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Olson, D. E. (2021). ACS Pharmacol. Transl. Sci, 4, 563–567. CrossRef CAS PubMed Google Scholar
Palego, L., Betti, L., Rossi, A. & Giannaccini, G. (2016). J. Amino Acids, Article ID 8952520. https://doi.org/10.1155/2016/8952520 Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pham, D. N. K., Belanger, Z. S., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). Acta Cryst. C77, 615–620. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pham, D. N. K., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021a). Acta Cryst. E77, 101–106. CrossRef IUCr Journals Google Scholar
Pham, D. N. K., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021b). Acta Cryst. E77, 190–194. CrossRef IUCr Journals Google Scholar
Pham, D. N. K., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021c). Acta Cryst. E77, 522–526. CrossRef IUCr Journals Google Scholar
Pham, D. N. K., Sammeta, V. R., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). Acta Cryst. E77, 416–419. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ramaekers, J. G., Hutten, N., Mason, N. L., Dolder, P., Theunissen, E. L., Holze, F., Liechti, M. E., Feilding, A. & Kuypers, K. P. C. (2021). J. Psychopharmacol. 35, 398–405. CrossRef CAS PubMed Google Scholar
Ross, S., Agin-Liebes, G., Lo, S., Zeifman, R. J., Ghazal, L., Benville, J., Franco Corso, S., Bjerre Real, C., Guss, J., Bossis, A. & Mennenga, S. E. (2021). ACS Pharmacol. Transl. Sci. 4, 553–562. CrossRef CAS PubMed Google Scholar
Sahoo, A. R., Lalitha, G., Murugesh, V., Bruneau, C., Sharma, G. V. M., Suresh, S. & Achard, M. (2020). Asia. J. Org. Chem. 9, 910–913. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sherwood, A. M., Halberstadt, A. L., Klein, A. K., McCorvy, J. D., Kaylo, K. W., Kargbo, R. B. & Meisenheimer, P. (2020). J. Nat. Prod. 83, 461–467. Web of Science CrossRef CAS PubMed Google Scholar
Slassi, A., Edwards, L., O'Brien, A., Meng, C. Q., Xin, T., Seto, C., Lee, D. K. H., MacLean, N., Hynd, D., Chen, C., Wang, H., Kamboj, R. & Rakhit, S. (2000). Bioorg. Med. Chem. Lett. 10, 1707–1709. Web of Science CrossRef PubMed CAS Google Scholar
Spriggs, M. J., Kettner, H. & Carhart-Harris, R. L. (2021). Eat. Weight Disord. 26, 1265–1270. CrossRef CAS PubMed Google Scholar
Varker, T., Watson, L., Gibson, K., Forbes, D. & O'Donnell, M. L. (2021). J. Psychoactive Drugs, 53, 85–95. CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, Y. C., Schaus, J. M., Walker, C., Krushinski, J., Adham, N., Zgombick, J. M., Liang, S. X., Kohlman, D. T. & Audia, J. E. (1999). J. Med. Chem. 42, 526–531. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.