research communications
E)-1-(2,4-dimethylfuran-3-yl)-3-phenylprop-2-en-1-one
and Hirshfeld surface analysis of (a"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, bDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, cPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St.6, Moscow, 117198, Russian Federation, dN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
The title compound, C15H14O2, adopts an E configuration about the C=C double bond. The furan ring is inclined to the phenyl ring by 12.03 (9)°. In the crystal, pairs of molecules are linked by C—H⋯O hydrogen bonds, forming dimers with R22(14) ring motifs. The molecules are connected via C—H⋯π interactions, forming a three dimensional network. No π–π interactions are observed.
Keywords: crystal structure; 2,4-dimethylfuran; chalcones; hydrogen bond; C—H⋯π interactions; Hirshfeld surface analysis.
CCDC reference: 2280559
1. Chemical context
Various C—C, C—N, C—S and C—O bond-formation reactions are keystones in organic synthesis. The application of such reactions has been expanded considerably, extending these approaches in different branches of chemistry, including green, medicinal, pharmaceutical and natural products chemistry, material science, supramolecular chemistry (Asadov et al., 2003; Çelik et al., 2023; Chalkha et al., 2023; Gurbanov et al., 2020; Zubkov et al., 2018). α,β-Unsaturated containing aryl–aryl or aryl–alkyl groups at both ends are known as or enones. There have been several important examples of enone derivatives used as target products and also as synthetic intermediates. Many natural compounds containing enone moieties, such as cyanthiwigin U, (+)-cepharamine, phorbol and grandisine G, have been the object of a total synthesis (Cuthbertson & Taylor, 2013; Kawamura et al., 2016). These compounds have been obtained by many solvent-assisted or solvent-free methods. The enone moiety is a widespread structural motif of various synthetic biologically active compounds, possessing enzyme inhibitory, anticancer and antimicrobial activity (Poustforoosh et al., 2022; Tapera et al., 2022; Sarkı et al., 2023).
In a continuation of our investigations in heterocyclic systems exhibiting biological activity and in the framework of ongoing structural studies (Maharramov et al., 2021, 2022), we report herein the and Hirshfeld surface analysis of the title compound, (E)-1-(2,4-dimethylfuran-3-yl)-3-phenylprop-2-en-1-one.
2. Structural commentary
As seen as Fig. 1, the title compound adopts an E configuration about the C=C double bond. The whole molecule is nearly planar. The furan ring (O1/C2–C5) is inclined to the phenyl ring (C9–C14) by 12.03 (9)°. The torsion angles are C2—C3—C6—O2 = 14.5 (2), C2—C3—C6—C7 = −164.79 (15), C3—C6—C7—C8 = −173.80 (15), C6—C7—C8—C9 = 179.30 (15) and C7—C8—C9—C10 = 172.52 (16)°. The geometrical parameter values of the the title compound are in agreement with those reported for similar compounds in the Database survey section.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, pairs of molecules are linked by C—H⋯O hydrogen bonds, forming dimers with (14) ring motifs (Bernstein et al., 1995; Table 1; Figs. 2 and 3). The molecules are connected via C—H⋯π interactions, forming a three-dimensional network (Table 1; Fig. 4). No π–π interactions are observed.
CrystalExplorer17.5 (Spackman et al., 2021) was used to compute Hirshfeld surfaces of the title molecule and two-dimensional fingerprints. The dnorm mappings for the title compound were performed in the range −0.1518 (red) to +1.1567 (blue) a.u. On the dnorm surfaces, bright-red spots indicate the locations of the C—H⋯O interactions and O⋯C/C⋯O contacts (Tables 1 and 2; Fig. 5a,b).
|
The most important interatomic contact is H⋯H (51.1%; Fig. 6b) as it makes the highest contribution to the crystal packing. The C⋯H/H⋯C (Fig. 6c; 25.3%), O⋯H/H⋯O (Fig. 6d; 15.9%), C⋯C (5.1%) and O⋯C/C⋯O (2.5%) contacts have little directional influence on the molecular packing.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016) for the `1-(furan-3-yl)-3-phenylprop-2-en-1-one' skeleton of the title compound yielded one hit, 1-(3-furyl)-3-[3-(trifluoromethyl)phenyl]prop-2-en-1-one (CSD refcode KUDNAA; Bąkowicz et al., 2015). When the positions of the furan and phenyl rings are switched, 1-(3-chlorophenyl)-3-(3-furyl)prop-2-en-1-one (NUQFOW; Zingales et al. 2015), (E)-3-(2-furyl)-1-phenylprop-2-en-1-one (NOTCUW01; Vázquez-Vuelvas et al. 2015) are the most similar structures.
In KUDNAA, molecules are linked by intermolecular C—H⋯O interactions, forming zigzag chains with C(5) motifs along the b-axis direction. In addition, molecules are connected by face-to-face π–π stacking interactions [centroid–centroid distances = 3.926 (3) and 3.925 (2) Å] between the opposing benzene and furan rings of the molecules along the c-axis direction. In NUQFOW, the molecule exhibits a non-planar geometry, the furan ring being inclined to the benzene ring by 50.52 (16)°. In the crystal of NUQFOW, molecules stack along the a-axis; however, there are no significant intermolecular interactions present. In NOTCUW01, the molecule also adopts an E configuration about the C=C double bond and the furan and phenyl rings are inclined to one another by 24.07 (7)°. In the crystal of NOTCUW01, molecules are connected by weak C—H⋯O hydrogen bonds and C—H⋯π interactions, forming ribbons extending along the c-axis direction.
5. Synthesis and crystallization
To a solution of 1-(2,4-dimethylfuran-3-yl)ethan-1-one (2 g, 14.5 mmol) in ethanol (10 mL), were added 10 mL of aqueous solution of sodium hydroxide (0.65 g, 16.3 mmol) and the mixture was stirred at room temperature for 2 h. Then benzaldehyde (1.73 g, 16.3 mmol) was added to the vigorously stirred reaction mixture and it was left overnight. The precipitated crystals were separated by filtration and recrystallized from an ethanol/water (1:1) solution (yield 90%; m.p. 349–350 K).
1H NMR (300 MHz, DMSO-d6, ppm): 2.1 (s, 3H, CH3); 2.5 (s, 3H, CH3); 7.2 (d, 1H, =CH, 3JH–H = 15.8 Hz); 7.3 (s, 1H, fur.), 7.4 (m, 3H, arom.), 7.5 (d, 1H, =CH, 3JH–H = 15.8 Hz); 7.8 (m, 2H, arom.). 13C NMR (75 MHz, DMSO-d6, ppm): 10.3 (CH3), 15.0 (CH3), 120.4 (Cquat.), 122.9 (Cquat.), 126.3 (=CH), 128.9 (CH, arom.), 129.4 (CH, arom.), 130.9 (CH, arom.), 134.8 (Cquat.), 139.0 (CH, furan), 142.8 (=CH), 158.2 (Cquat.), 187.7 (CO).
6. Refinement
Crystal data, data collection and structure . All C-bound H atoms were placed at calculated positions and refined using a riding model, with C—H = 0.95 and 0.98 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2280559
https://doi.org/10.1107/S2056989023006084/vm2287sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023006084/vm2287Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989023006084/vm2287Isup3.cml
Data collection: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); cell
CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); data reduction: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C15H14O2 | Dx = 1.299 Mg m−3 |
Mr = 226.26 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 10780 reflections |
a = 5.84787 (5) Å | θ = 4.5–77.7° |
b = 12.18109 (9) Å | µ = 0.68 mm−1 |
c = 16.24568 (15) Å | T = 100 K |
V = 1157.24 (2) Å3 | Prism, colourless |
Z = 4 | 0.24 × 0.20 × 0.18 mm |
F(000) = 480 |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 2382 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube | Rint = 0.031 |
φ and ω scans | θmax = 77.8°, θmin = 4.5° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | h = −7→6 |
Tmin = 0.579, Tmax = 1.000 | k = −15→15 |
12000 measured reflections | l = −20→20 |
2410 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.030 | w = 1/[σ2(Fo2) + (0.0426P)2 + 0.3199P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.081 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.18 e Å−3 |
2410 reflections | Δρmin = −0.24 e Å−3 |
157 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0046 (4) |
Primary atom site location: difference Fourier map | Absolute structure: Flack x determined using 940 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.16 (7) |
Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.1250 (2) | 0.42159 (10) | 0.52334 (8) | 0.0225 (3) | |
O2 | 0.4218 (2) | 0.63977 (10) | 0.51486 (7) | 0.0208 (3) | |
C1 | −0.0327 (3) | 0.59606 (14) | 0.58548 (11) | 0.0211 (4) | |
H1A | −0.1936 | 0.5903 | 0.6018 | 0.032* | |
H1B | −0.0064 | 0.6672 | 0.5590 | 0.032* | |
H1C | 0.0647 | 0.5898 | 0.6343 | 0.032* | |
C2 | 0.0234 (3) | 0.50662 (13) | 0.52698 (10) | 0.0174 (3) | |
C3 | 0.1991 (3) | 0.49066 (13) | 0.47138 (10) | 0.0162 (3) | |
C4 | 0.1518 (3) | 0.38801 (13) | 0.43028 (10) | 0.0183 (4) | |
C5 | −0.0431 (3) | 0.34981 (13) | 0.46379 (11) | 0.0197 (3) | |
H5 | −0.1150 | 0.2828 | 0.4488 | 0.024* | |
C6 | 0.3897 (3) | 0.56901 (13) | 0.46209 (10) | 0.0165 (3) | |
C7 | 0.5382 (3) | 0.56193 (14) | 0.38864 (10) | 0.0184 (3) | |
H7 | 0.5012 | 0.5122 | 0.3456 | 0.022* | |
C8 | 0.7247 (3) | 0.62533 (13) | 0.38247 (10) | 0.0169 (3) | |
H8 | 0.7528 | 0.6742 | 0.4269 | 0.020* | |
C9 | 0.8896 (3) | 0.62758 (13) | 0.31489 (10) | 0.0162 (3) | |
C10 | 1.0585 (3) | 0.70888 (13) | 0.31532 (11) | 0.0193 (3) | |
H10 | 1.0611 | 0.7615 | 0.3584 | 0.023* | |
C11 | 1.2225 (3) | 0.71374 (14) | 0.25365 (11) | 0.0217 (4) | |
H11 | 1.3360 | 0.7695 | 0.2547 | 0.026* | |
C12 | 1.2207 (3) | 0.63690 (14) | 0.19019 (11) | 0.0206 (4) | |
H12 | 1.3331 | 0.6400 | 0.1480 | 0.025* | |
C13 | 1.0538 (3) | 0.55571 (14) | 0.18888 (11) | 0.0214 (4) | |
H13 | 1.0518 | 0.5033 | 0.1456 | 0.026* | |
C14 | 0.8901 (3) | 0.55079 (14) | 0.25044 (11) | 0.0207 (3) | |
H14 | 0.7771 | 0.4948 | 0.2490 | 0.025* | |
C15 | 0.2820 (3) | 0.32838 (14) | 0.36480 (11) | 0.0222 (4) | |
H15A | 0.2637 | 0.3667 | 0.3122 | 0.033* | |
H15B | 0.2231 | 0.2534 | 0.3598 | 0.033* | |
H15C | 0.4444 | 0.3260 | 0.3796 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0189 (6) | 0.0244 (6) | 0.0242 (6) | −0.0017 (5) | 0.0021 (5) | 0.0025 (5) |
O2 | 0.0195 (6) | 0.0223 (6) | 0.0207 (6) | −0.0032 (5) | 0.0029 (5) | −0.0048 (5) |
C1 | 0.0186 (7) | 0.0235 (8) | 0.0211 (8) | 0.0027 (7) | 0.0039 (7) | 0.0001 (6) |
C2 | 0.0161 (7) | 0.0175 (7) | 0.0187 (8) | 0.0009 (6) | −0.0019 (6) | 0.0034 (6) |
C3 | 0.0155 (7) | 0.0171 (7) | 0.0161 (7) | 0.0005 (6) | −0.0013 (6) | 0.0017 (6) |
C4 | 0.0190 (8) | 0.0175 (8) | 0.0184 (7) | 0.0015 (6) | −0.0016 (6) | 0.0009 (6) |
C5 | 0.0190 (7) | 0.0160 (7) | 0.0241 (8) | −0.0030 (6) | −0.0008 (7) | −0.0005 (6) |
C6 | 0.0155 (7) | 0.0167 (7) | 0.0172 (7) | 0.0020 (6) | −0.0014 (6) | 0.0011 (6) |
C7 | 0.0189 (7) | 0.0185 (7) | 0.0177 (7) | −0.0006 (6) | 0.0009 (6) | −0.0025 (6) |
C8 | 0.0181 (7) | 0.0154 (7) | 0.0172 (7) | 0.0021 (6) | −0.0007 (6) | −0.0011 (6) |
C9 | 0.0155 (7) | 0.0170 (7) | 0.0160 (7) | 0.0009 (6) | 0.0002 (6) | 0.0010 (6) |
C10 | 0.0192 (8) | 0.0182 (7) | 0.0204 (8) | −0.0017 (7) | 0.0003 (7) | −0.0035 (6) |
C11 | 0.0192 (8) | 0.0208 (8) | 0.0250 (8) | −0.0056 (7) | 0.0037 (7) | −0.0011 (7) |
C12 | 0.0193 (8) | 0.0224 (8) | 0.0200 (8) | 0.0008 (7) | 0.0044 (7) | 0.0006 (7) |
C13 | 0.0225 (8) | 0.0218 (8) | 0.0199 (8) | −0.0018 (7) | 0.0024 (7) | −0.0047 (7) |
C14 | 0.0193 (7) | 0.0201 (8) | 0.0226 (8) | −0.0055 (7) | 0.0023 (7) | −0.0042 (6) |
C15 | 0.0222 (8) | 0.0187 (8) | 0.0258 (9) | −0.0009 (7) | 0.0014 (7) | −0.0060 (7) |
O1—C2 | 1.352 (2) | C8—C9 | 1.461 (2) |
O1—C5 | 1.389 (2) | C8—H8 | 0.9500 |
O2—C6 | 1.230 (2) | C9—C10 | 1.399 (2) |
C1—C2 | 1.482 (2) | C9—C14 | 1.404 (2) |
C1—H1A | 0.9800 | C10—C11 | 1.388 (2) |
C1—H1B | 0.9800 | C10—H10 | 0.9500 |
C1—H1C | 0.9800 | C11—C12 | 1.392 (2) |
C2—C3 | 1.382 (2) | C11—H11 | 0.9500 |
C3—C4 | 1.444 (2) | C12—C13 | 1.390 (2) |
C3—C6 | 1.475 (2) | C12—H12 | 0.9500 |
C4—C5 | 1.346 (2) | C13—C14 | 1.385 (2) |
C4—C15 | 1.496 (2) | C13—H13 | 0.9500 |
C5—H5 | 0.9500 | C14—H14 | 0.9500 |
C6—C7 | 1.478 (2) | C15—H15A | 0.9800 |
C7—C8 | 1.340 (2) | C15—H15B | 0.9800 |
C7—H7 | 0.9500 | C15—H15C | 0.9800 |
C2—O1—C5 | 106.96 (13) | C7—C8—H8 | 116.4 |
C2—C1—H1A | 109.5 | C9—C8—H8 | 116.4 |
C2—C1—H1B | 109.5 | C10—C9—C14 | 118.27 (15) |
H1A—C1—H1B | 109.5 | C10—C9—C8 | 118.39 (14) |
C2—C1—H1C | 109.5 | C14—C9—C8 | 123.32 (15) |
H1A—C1—H1C | 109.5 | C11—C10—C9 | 120.97 (15) |
H1B—C1—H1C | 109.5 | C11—C10—H10 | 119.5 |
O1—C2—C3 | 109.92 (14) | C9—C10—H10 | 119.5 |
O1—C2—C1 | 116.68 (14) | C10—C11—C12 | 120.04 (16) |
C3—C2—C1 | 133.39 (16) | C10—C11—H11 | 120.0 |
C2—C3—C4 | 106.33 (14) | C12—C11—H11 | 120.0 |
C2—C3—C6 | 122.53 (15) | C13—C12—C11 | 119.66 (16) |
C4—C3—C6 | 131.14 (15) | C13—C12—H12 | 120.2 |
C5—C4—C3 | 105.95 (15) | C11—C12—H12 | 120.2 |
C5—C4—C15 | 123.41 (16) | C14—C13—C12 | 120.33 (15) |
C3—C4—C15 | 130.63 (15) | C14—C13—H13 | 119.8 |
C4—C5—O1 | 110.84 (14) | C12—C13—H13 | 119.8 |
C4—C5—H5 | 124.6 | C13—C14—C9 | 120.75 (16) |
O1—C5—H5 | 124.6 | C13—C14—H14 | 119.6 |
O2—C6—C3 | 119.83 (15) | C9—C14—H14 | 119.6 |
O2—C6—C7 | 120.92 (15) | C4—C15—H15A | 109.5 |
C3—C6—C7 | 119.25 (14) | C4—C15—H15B | 109.5 |
C8—C7—C6 | 120.31 (15) | H15A—C15—H15B | 109.5 |
C8—C7—H7 | 119.8 | C4—C15—H15C | 109.5 |
C6—C7—H7 | 119.8 | H15A—C15—H15C | 109.5 |
C7—C8—C9 | 127.15 (15) | H15B—C15—H15C | 109.5 |
C5—O1—C2—C3 | −0.31 (17) | C2—C3—C6—C7 | −164.79 (15) |
C5—O1—C2—C1 | 178.43 (14) | C4—C3—C6—C7 | 15.8 (3) |
O1—C2—C3—C4 | 0.56 (18) | O2—C6—C7—C8 | 6.9 (2) |
C1—C2—C3—C4 | −177.90 (17) | C3—C6—C7—C8 | −173.80 (15) |
O1—C2—C3—C6 | −179.00 (14) | C6—C7—C8—C9 | 179.30 (15) |
C1—C2—C3—C6 | 2.5 (3) | C7—C8—C9—C10 | 172.52 (16) |
C2—C3—C4—C5 | −0.59 (18) | C7—C8—C9—C14 | −8.9 (3) |
C6—C3—C4—C5 | 178.92 (17) | C14—C9—C10—C11 | 0.1 (3) |
C2—C3—C4—C15 | −179.55 (17) | C8—C9—C10—C11 | 178.70 (16) |
C6—C3—C4—C15 | 0.0 (3) | C9—C10—C11—C12 | −0.1 (3) |
C3—C4—C5—O1 | 0.42 (18) | C10—C11—C12—C13 | 0.2 (3) |
C15—C4—C5—O1 | 179.47 (15) | C11—C12—C13—C14 | −0.2 (3) |
C2—O1—C5—C4 | −0.08 (18) | C12—C13—C14—C9 | 0.2 (3) |
C2—C3—C6—O2 | 14.5 (2) | C10—C9—C14—C13 | −0.1 (3) |
C4—C3—C6—O2 | −164.92 (16) | C8—C9—C14—C13 | −178.66 (16) |
Cg1 and Cg2 are the centroids of the furan (O1/C2–C5) and phenyl (C9–C14) rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O2 | 0.95 | 2.44 | 2.792 (2) | 102 |
C10—H10···O2i | 0.95 | 2.52 | 3.413 (2) | 157 |
C12—H12···Cg1ii | 0.95 | 2.91 | 3.7339 (19) | 146 |
C15—H15B···Cg2iii | 0.98 | 2.85 | 3.6366 (19) | 137 |
Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) −x+3/2, −y+1, z−1/2; (iii) −x+1, y−1/2, −z+1/2. |
H1B···H8 | 2.57 | -1 + x, y, z |
H1C···H13 | 2.52 | 3/2 - x, 1 - y, 1/2 + z |
H1B···H8 | 2.47 | -1/2 + x, 3/2 - y, 1 - z |
H1A···H10 | 2.39 | -3/2 + x, 3/2 - y, 1 - z |
C12···H5 | 2.94 | 1 - x, 1/2 + y, 1/2 - z |
H13···H1A | 2.49 | 1/2 - x, 1 - y, -1/2 + z |
C15···H11 | 3.05 | 2 - x, -1/2 + y, 1/2 - z |
Acknowledgements
Authors' contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK, FNN and IGM; investigation, ANK, MA and AİS; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, AB and ANK; resources, AB, VNK and RMR; supervision, ANK and MA.
Funding information
This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.
References
Asadov, K. A., Gurevich, P. A., Egorova, E. A., Burangulova, R. N. & Guseinov, F. N. (2003). Chem. Heterocycl. Compd. 39, 1521–1522. CrossRef CAS Google Scholar
Bąkowicz, J., Galica, T. & Turowska-Tyrk, I. (2015). Z. Kristallogr. 230, 131–137. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Çelik, M. S., Çetinus, A., Yenidünya, A. F., Çetinkaya, S. & Tüzün, B. (2023). J. Mol. Struct. 1272, 134158. Google Scholar
Chalkha, M., Ameziane el Hassani, A., Nakkabi, A., Tüzün, B., Bakhouch, M., Benjelloun, A. T., Sfaira, M., Saadi, M., Ammari, L. E. & Yazidi, M. E. (2023). J. Mol. Struct. 1273, 134255. Web of Science CSD CrossRef Google Scholar
Cuthbertson, J. D. & Taylor, R. J. K. (2013). Angew. Chem. Int. Ed. 52, 1490–1493. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kawamura, S., Chu, H., Felding, J. & Baran, P. S. (2016). Nature, 532, 90–93. Web of Science CSD CrossRef CAS PubMed Google Scholar
Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5–11. Google Scholar
Maharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64–73. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Poustforoosh, A., Hashemipour, H., Tüzün, B., Azadpour, M., Faramarz, S., Pardakhty, A., Mehrabani, M. & Nematollahi, M. H. (2022). Curr. Microbiol. 79, 241. Web of Science CrossRef PubMed Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sarkı, G., Tüzün, B., Ünlüer, D. & Kantekin, H. (2023). Inorg. Chim. Acta, 545, 121113. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tapera, M., Kekeçmuhammed, H., Tüzün, B., Sarıpınar, E., Koçyiğit, M., Yıldırım, E., Doğan, M. & Zorlu, Y. (2022). J. Mol. Struct. 1269, 133816. Web of Science CSD CrossRef Google Scholar
Vázquez-Vuelvas, O. F., Enríquez-Figueroa, R. A., García-Ortega, H., Flores-Alamo, M. & Pineda-Contreras, A. (2015). Acta Cryst. E71, 161–164. CSD CrossRef IUCr Journals Google Scholar
Zingales, S. K., Wallace, M. Z. & Padgett, C. W. (2015). Acta Cryst. E71, o707. CSD CrossRef IUCr Journals Google Scholar
Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.