research communications
Synthesis and crystal structures of three tert-butyl- and (S)-methylbenzylamine
derived from 3-formylacetylacetone and benzyl-,aMartin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät II, Institut für Chemie, D-06099 Halle, Germany
*Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de
Treatment of 3-formylacetylacetone with the tert-butylamine and (S)-methylbenzylamine led to the formation of the corresponding 3-[(benzylamino)methylidene]pentane-2,4-dione, C13H15NO2 (1), 3-[(tert-butylamino)methylidene]pentan-2,4-dione, C10H17NO2 (2) and 3-{[(S)-benzyl(methyl)amino]methylidene}pentane-2,4-dione, C14H17NO2 (3). The molecules of all three compounds exist as enamine tautomers that contain a nearly planar amino-methylene-pentane-2,4-dione core with a strong intramolecular N—H⋯O hydrogen bridge. The R group attached to the enamine N atom has no significant influence on the bond lengths and angles of the amino-methylene-pentane-2,4-dione core. The supramolecular structures in 1–3 are mainly based on weak C—H⋯O hydrogen bonds.
benzylamine,Keywords: crystal structure; enamine; 3-formylacetylacetone; Schiff base.
1. Chemical context
3-Formylacetylacetone reacts with primary RNH2 to give with an amino-methylene-pentane-2,4-dione core. The first reference to this type of Schiff base compound dates back to Claisen, who used ethoxylideneacetylacetone as synthetic alternative to 3-formylacetylacetone. 3-Aminomethylene-pentane-2,4-dione, which may be regarded as the parent compound, was reported as early as 1893 (Claisen, 1893), and its was reported in 2006 (Gróf et al., 2006a), almost simultaneously with that of the methylamino derivative (Gróf et al., 2006b). In 1966, Wolf & Jäger. successfully used the deprotonation of 3-aminomethylene-pentane-2,4-dione type to generate β-iminoenolate chelate ligands, with special focus on tetradentate salen-type ligands (Wolf & Jäger, 1966). In particular, these salen-type ligands have found broad application in the synthesis of FeII complexes exhibiting spin-crossover effects (Dürrmann et al., 2021). Moreover, the coordination properties of the iminoenolate ligands are conveniently modified by the introduction of additional donor groups. This is easily done by the reaction of 3-formylacetylacetone with a suitably functionalized amine, e.g. in form of α-amino acids (Hentsch et al., 2014) or o-diphenylphosphinoaniline (Halz et al., 2021).
In the current communication, we focus on some structural aspects of three derivatives, namely 3-[(benzylamino)methylene]pentane-2,4-dione (1), 3-[(tert-butylamino)methylen]pentan-2,4-dione (2) and 3-{[(S)-methylbenzylamino]methylen}pentane-2,4-dione (3). Formally, all three compounds can be derived from 3-[(methylamino)methylene]pentane-2,4-dione by partial or complete replacement of the methyl H atoms with other residues (Me, Ph). It can thus be expected that the main structural differences between compounds 1–3 will arise from conformational aspects regarding the orientation of the CH2Ph, CH(CH3)Ph and C(CH3)3 moieties with respect to the 3-aminomethylene-pentane-2,4-dione core. In order to get some insight into the differences between solid-state and (theoretical) gas phase structures, compounds 1–3 were also characterized by DFT calculations.
From the synthetic point of view it is worth mentioning that compounds 1 and 2 are also accessible by the ethoxylideneacetylacetone route (Zhou, 1997). Originally, compound 2 was obtained from a formimidoylation of acetylacetone with a substituted imidazole (Ito et al., 1974).
2. Structural commentary
Compounds 1 and 2 crystallize in the monoclinic system, P21/c with Z = 4. Compound 3 forms monoclinic crystals in P21 with Z = 4. Both independent molecules in the of 3 exhibit nearly identical bond lengths and angles.
Compounds 1–3 (Figs. 1–3) exist as enamine tautomers that contain nearly planar amino-methylene-pentane-2,4-dione cores. The largest deviation from the least-squares plane through the core atoms C1–C7, O1, O2 and N is found for C1 in compound 2 with 0.3252 (9) Å. The enamine double bonds C3=C6 vary from 1.399 (4) to 1.407 (2) Å and the enamine C6=N bonds are in the range 1.308 (2) to 1.321 (4) Å (Tables 1–3). These values are close to those found in the parent compound amino-methylene-pentane-2,4-dione (1.397 and 1.304 Å, respectively; Gróf et al., 2006a) and in the related NMe derivative (1.405 and 1.309 Å, respectively; Gróf et al., 2006b). The same holds for the corresponding derived from isomeric o-, m- and p-aminobenzoic acids (Halz et al., 2022), α-amino acids (Hentsch et al., 2014) or o-diphenylphosphinoaniline (Halz et al., 2021). In summary, these observations clearly indicate that the R group attached to the enamine N atom has no significant influence on the bond lengths and angles of the amino-methylene-pentane-2,4-dione moiety. This holds also for the characteristic S11(6) type intramolecular N—H8⋯O1 hydrogen bonds that change only marginally [D⋯A distances between 2.597 (4) and 2.6322 (16) Å; Tables 4–7].
|
|
|
|
|
Regarding the conformational aspects, 3-[(methylamino)methylene]pentane-2,4-dione may serve as a reference. In this case, the N-bound CH3 group exhibits H—C—N—Cenamine torsion angles of 1.5 (2), −118.4 (2) and 121.6 (2)° (Gróf et al., 2006a). This indicates a nearly ideal syn-periplanar orientation of one of the hydrogen atoms and anti-periplanar positions for the remaining hydrogen atoms. The formal replacement of one H atom by a phenyl group in the structure of 1 leads to an approximately 26° clockwise rotation of the CH2Ph unit along the N—C7 bond. As a result, the hydrogen atoms are now moved to syn-periplanar and anti-periplanar positions (H9—C7—N—C6 = 27.2°, H10—C7—N—C6 = 144.0°) and the phenyl carbon atom C8 is in an anti-clinal position [C8—C7—N—C6 = −94.4 (2)°]. In the case of the tBu derivative 2, the presence of three equivalent methyl groups leads to a conformation similar to that of the methyl derivative with syn-periplanar orientation of one methyl group [C8—C7—N—C6 = −4.03 (14)°] and an anti-clinal arrangement for the remaining methyl groups [C9—C7—N—C6 = −134.31 (11)°] C10—C7—N—C6 = 107.27 (11)°]. In the structure of 3, both the methyl and the phenyl carbon atoms are moved to anti-clinal positions [C14—C7—N1—C6 = 115.5 (4)°; 122.4 (3)° for the second molecule], C8—C7—N1—C6 = −119.2 (3)°; 112.8 (3)° for second molecule] and the hydrogen atom resides in a nearly ideal syn-periplanar position (H9—C7—N—C6 = −1.47°; 5.16° for the second molecule).
In order to get some insight into how the observed conformations are influenced by crystal packing, the gas phase molecular structures of 1–3 were optimized by DFT methods using the Gaussian 16 program package (Frisch et al., 2016) at the B3LYP/TZVP/GD3BJ level of theory (Becke, 1993) with the implemented def2-TZVP basis set (Weigand & Ahlrichs, 2005) and dispersion correction GD3BJ (Grimme et al., 2011).
Bond lengths and angles of the calculated structures are in good agreement with the experimetal data. In Fig. 4, an overlay of the experimetal (blue) and the calculated structures (red) is shown. Obviously, the planar amino-methylene-pentane-2,4-dione cores fit very well and most of the differences between experimental and theoretical structures are due to the conformations of the attached to the enamine nitrogen atom.
Table 7 represents a comparison of experimental and calculated torsion angles at the C7—N bond. In the case of compounds 1 and 2, there is only a moderate increase of the torsion angles with respect to the theoretical values. Additionally, compound 1 exhibits a small change in the orientation of the phenyl group (Fig. 4a). In the case of compound 3, the conformational effects are more pronounced and the torsion angles are increased by around 73°. Moreover, the orientation of the phenyl group is also affected (Fig. 4c).
|
3. Supramolecular features
In order to identify the most significant intermolecular interactions, Hirshfeld surface analyses (Spackman et al., 2009) for compounds 1–3 (Figs. 5–7) were carried out with CrystalExplorer (Spackman et al., 2021).
In the case of compound 1 there is a C11 (5) type C—H⋯O hydrogen bridge between the enamine CH group (C6—H7) and the acetyl O atom (O2) of of a neighboring molecule (Table 4, Fig. 8). This leads to helical chains that propagate in the direction of the c axis. Moreover, the packing of the helices is supported by weak π–π interactions [3.8747 (12) Å between the centroids of the phenyl groups, 3.79 Å between C3 of the (amino)methylene-pentane-2,4-dione unit and the centroid of the phenyl ring and 3.42 Å between neighboring (amino)methylene-pentane-2,4-dione units]. As a result, ribbons extending parallel to [001] are formed, Figs. 9, 10.
The Hirshfeld plot of compound 2 reveals that each molecule is involved in four C—H⋯O hydrogen bridges between t-butyl groups and acetyl oxygen atoms of neighboring molecules (Fig. 6). Formally, this can be considered as a formation of dimers based on the complementary hydrogen bridges C8—H11⋯O2′ to give a R22(16) motif. Additionally, the dimers are catenated by C11(6) type hydrogen bridges along the a axis (Table 5, Fig. 11).
Compound 3 exhibits two major types of interactions that are based on C—H⋯O hydrogen bridges (Table 6) and C—H⋯π contacts with an H⋯Cg(phenyl) distance of 2.68 Å. The C—H⋯O hydrogen bridges are formed between methyl and phenyl groups of the methylbenzyl residue as donors and acetyl oxygen atoms of neighboring molecules as acceptors (Fig. 12). In the case of the C—H⋯π interaction, the benzyl CH fragment and a neighboring phenyl group are involved (Fig. 13, for molecule 1).
A comparison of the calculated gas phase structures and the experimentally determined structures reveals that the effect of crystal packing is only marginal for compounds 1 and 2, i.e. only minor adjustments of the molecular conformations are required for optimum intermolecular interactions. In contrast to these compounds, 3 requires a stronger molecular reorganization in the solid state and presumably this is in particular due to C—H⋯π interactions.
4. Database survey
Currently the Cambridge Structural Database (CSD, version 2020.3, Groom et al., 2016) contains 22 entries for with amino-methylene-pentane-2,4-dione cores. In all cases, enamine tautomers are observed.
5. Synthesis and crystallization
3-Formylacetylacetone (3.00 g, 23.4 mmol) and the corresponding amine [1.76 g of benzylamine for 1, 2.57 g of tert-butylamine for 2 and 2.91 g of (S)-methyl-benzylamine for 3, 24.0 mmol] were dissolved in methanol (50 ml) and heated under reflux for one h. After removal of the volatiles in vacuo, the residue was washed twice with cold n-pentane and afterwards dried in vacuo.
Yield: 2.5 g (77%) for 1, 2.7g (85%) for 2 and 4.3 g (77%) for 3 based on 3-formylacetylacetone. Compounds 1–3 were obtained as yellow air-stable powders that are soluble in polar solvents such as methanol or CHCl3 and less soluble in toluene or n-hexane.
Crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation of the solvent from solutions in methanol (compounds 1 and 3) or diethyl ether (compound 2).
Compound 1: m.p. = 368 K. Elemental Analysis for C13H15NO2: Calculated: C 77.72, H 7.36, N 6.06%. Found: C 77.22, H 7.22, N 5.90%.
IR: 2971 (m), 1618 (vs), 1570 (vs), 1494 (m), 1446 (w), 1390 (s), 1349 (m), 1308 (s), 1242 (s), 1201 (w), 1119 (m), 1070 (w), 1023 (m), 975 (s), 927 (m), 816 (s), 755 (s), 705 (s), 620 (s), 552 (m), 508 (m), 444 (w) cm−1.
1H-NMR (CDCl3, 400 MHz) δ = 2.22 (s, 3 H, CO—CH3), 2.47 (s, 3 H, CO—CH3), 4.51 (d 3J = 5.9 Hz, 2 H, CH2), 7.22–7.38 (m, 5 H, CHaromatic), 7.77 (d, 3J = 13,1 Hz, 1 H, CH), 11.28 (s, 1 H, NH) ppm,
13C-NMR (CDCl3, 100 MHz) δ = 27.2 (–CH3), 31.8 (–CH3), 53.7 (–CH2), 111.9 [C(O)—C—C(O)], 127.2 (CHaromatic), 128.3 (CHaromatic), 129.0 (CHaromatic), 135.9 (CHaromatic), 159.6, (CH—NH), 194.2 (CO), 200.3 (CO) ppm.
Compound 2: m.p. = 355 K. Elemental Analysis for C10H17NO2: Calculated: C 65.54, H 9.35, N 7.64%. Found: C 64.78, H 9.26, N 7.33%.
IR: 2970 (m), 1649 (w), 1608 (m), 1578 (vs), 1470 (w), 1400 (m), 1382 (m), 1321 (m), 1281 (s), 1240 (m), 1205 (m), 1025 (m), 990 (m), 975 (s), 944 (w), 928 (m), 827 (s), 646 (w), 626 (s), 567 (s), 500 (w), 474 (w), 413 (w), 333 (m), 305 (w), 272 (w) cm−1.
1H-NMR (CDCl3, 400 MHz) δ = 1.31 [s, 9 H, C(CH3)], 2.25 (s, 3 H, CH3), 2.45 (s, 3 H, CH3), 7.85 (d, 3J = 13.7 Hz, 1 H, CH), 11.39 (s, 1 H, NH) ppm.
13C-NMR (CDCl3, 100 MHz) δ = 27.4 (–CH3), 29.8 [–C(CH3)3], 31.8 (–CH3), 53.6 [–C(CH3)3], 111.2 [C(O)—C–-C(O)], 155.2, (CH—NH), 194.2 (CO), 199.8 (CO) ppm.
Compound 3: m.p. = 335 K. Elemental Analysis for C14H17NO2: Calculated: C 72.70, H 7.41, N 6.06%. Found: C 72.22, H 7.22, N 5.90%.
IR: 2971 (m), 1618 (vs), 1570 (vs), 1494 (m), 1446 (w), 1390 (s), 1349 (m), 1308 (s), 1242 (s), 1201 (w), 1119 (m), 1070 (w), 1023 (m), 975 (s), 927 (m), 816 (s), 755 (s), 705 (s), 620 (s), 552 (m), 508 (m), 444 (w) cm−1.
1H-NMR (CDCl3, 400 MHz) δ = 1.62 (d, 3 H, NCCH3), 2.15 (s, 3 H,CH3), 2.47 (s, 3 H, (CH3), 4.56 (dq, 3J = 6.9 Hz, 3J = 7.0 Hz, 1 H, CH), 7.25–7.37 (m, 5 H, CHaromatic), 7.72 (d, 3J = 6,9 Hz, 1 H, CH), 11.40 (s, 1 H, NH) ppm.
13C-NMR (CDCl3, 100 MHz) δ = 23.4 (NCCH3), 27.2 (–CH3),31.9 (–CH3), 59.1 (NCCH3), 111.7 [C(O)—C–-C(O)], 126.0 (CHaromatic), 128.2 (CHaromatic), 129.1 (CHaromatic), 141.7 (CHaromatic), 158.2 (CH—NH), 194.3 (CO,) 200.3 (CO) ppm.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were positioned geometrically (C—H = 0.95–0.98 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) for CH and NH hydrogen atoms and Uiso(H) = 1.5Ueq(C) for CH3 hydrogen atoms. The investigated crystal of 3 was twinned by non-merohedry and treated as a two-domain crystal with a refined BASF factor of 0.1151.
details are summarized in Table 8
|
Supporting information
https://doi.org/10.1107/S205698902300587X/wm5685sup1.cif
contains datablocks 1, 2, 3, global. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S205698902300587X/wm56851sup5.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902300587X/wm56851sup5.cml
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S205698902300587X/wm56852sup6.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902300587X/wm56852sup6.cml
Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S205698902300587X/wm56853sup7.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902300587X/wm56853sup7.cml
For all structures, data collection: X-AREA WinXpose (Stoe, 2016); cell
X-AREA Recipe (Stoe, 2015); data reduction: X-AREA (Stoe, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2019); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).C13H15NO2 | F(000) = 464 |
Mr = 217.26 | Dx = 1.270 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.7356 (14) Å | Cell parameters from 7396 reflections |
b = 9.2401 (8) Å | θ = 2.9–26.0° |
c = 11.3970 (14) Å | µ = 0.09 mm−1 |
β = 113.148 (14)° | T = 213 K |
V = 1136.4 (2) Å3 | Block, clear yellow |
Z = 4 | 0.33 × 0.15 × 0.12 mm |
STOE IPDS 2 diffractometer | Rint = 0.078 |
rotation scans | θmax = 26.0°, θmin = 2.9° |
7396 measured reflections | h = −13→13 |
2159 independent reflections | k = −11→11 |
1414 reflections with I > 2σ(I) | l = −13→13 |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.0469P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.94 | (Δ/σ)max < 0.001 |
2159 reflections | Δρmax = 0.18 e Å−3 |
147 parameters | Δρmin = −0.17 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.29032 (19) | 0.4837 (2) | 1.16212 (15) | 0.0391 (5) | |
H1 | 0.2334 | 0.4136 | 1.1724 | 0.059* | |
H2 | 0.2718 | 0.5790 | 1.1858 | 0.059* | |
H3 | 0.3747 | 0.4574 | 1.2165 | 0.059* | |
C2 | 0.27629 (16) | 0.48567 (19) | 1.02452 (14) | 0.0284 (4) | |
C3 | 0.34838 (15) | 0.58355 (17) | 0.98050 (14) | 0.0239 (4) | |
C4 | 0.43034 (16) | 0.69625 (18) | 1.06114 (14) | 0.0265 (4) | |
C5 | 0.4992 (2) | 0.7943 (2) | 1.00520 (17) | 0.0404 (5) | |
H4 | 0.4405 | 0.8413 | 0.9294 | 0.061* | |
H5 | 0.5571 | 0.7374 | 0.9827 | 0.061* | |
H6 | 0.5442 | 0.8670 | 1.0676 | 0.061* | |
C6 | 0.34363 (15) | 0.56658 (17) | 0.85623 (14) | 0.0244 (4) | |
H7 | 0.3949 | 0.6277 | 0.8324 | 0.029* | |
C7 | 0.27877 (17) | 0.45955 (19) | 0.64354 (14) | 0.0297 (4) | |
H9 | 0.2677 | 0.3573 | 0.6186 | 0.036* | |
H10 | 0.3610 | 0.4890 | 0.6492 | 0.036* | |
C8 | 0.18161 (16) | 0.54814 (17) | 0.53978 (14) | 0.0235 (4) | |
C9 | 0.15894 (17) | 0.51739 (19) | 0.41290 (15) | 0.0307 (4) | |
H11 | 0.2017 | 0.4412 | 0.3935 | 0.037* | |
C10 | 0.07407 (18) | 0.5979 (2) | 0.31512 (15) | 0.0353 (5) | |
H12 | 0.0588 | 0.5754 | 0.2298 | 0.042* | |
C11 | 0.01179 (18) | 0.7110 (2) | 0.34239 (16) | 0.0363 (5) | |
H13 | −0.0444 | 0.7670 | 0.2760 | 0.044* | |
C12 | 0.03245 (19) | 0.7418 (2) | 0.46829 (17) | 0.0394 (5) | |
H14 | −0.0108 | 0.8178 | 0.4873 | 0.047* | |
C13 | 0.11704 (17) | 0.66035 (19) | 0.56594 (16) | 0.0329 (4) | |
H15 | 0.1307 | 0.6816 | 0.6511 | 0.040* | |
N | 0.27486 (14) | 0.47394 (15) | 0.76962 (11) | 0.0290 (4) | |
H8 | 0.2245 | 0.4184 | 0.7884 | 0.035* | |
O1 | 0.20370 (13) | 0.39610 (15) | 0.95112 (11) | 0.0439 (4) | |
O2 | 0.44589 (13) | 0.71536 (15) | 1.17367 (10) | 0.0418 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0467 (13) | 0.0475 (12) | 0.0277 (9) | −0.0032 (10) | 0.0196 (9) | 0.0032 (8) |
C2 | 0.0266 (10) | 0.0345 (10) | 0.0231 (8) | 0.0034 (8) | 0.0087 (7) | 0.0020 (7) |
C3 | 0.0247 (10) | 0.0277 (9) | 0.0173 (7) | 0.0044 (7) | 0.0063 (7) | 0.0020 (6) |
C4 | 0.0271 (10) | 0.0277 (9) | 0.0220 (8) | 0.0066 (7) | 0.0068 (7) | −0.0002 (7) |
C5 | 0.0527 (14) | 0.0324 (10) | 0.0329 (9) | −0.0132 (9) | 0.0135 (9) | −0.0055 (8) |
C6 | 0.0246 (10) | 0.0226 (8) | 0.0234 (8) | 0.0020 (7) | 0.0066 (7) | 0.0039 (7) |
C7 | 0.0372 (11) | 0.0319 (9) | 0.0194 (8) | 0.0020 (8) | 0.0104 (7) | −0.0029 (7) |
C8 | 0.0253 (10) | 0.0253 (8) | 0.0197 (8) | −0.0045 (7) | 0.0087 (7) | −0.0024 (6) |
C9 | 0.0364 (11) | 0.0335 (10) | 0.0230 (8) | 0.0026 (8) | 0.0125 (7) | −0.0022 (7) |
C10 | 0.0423 (12) | 0.0435 (11) | 0.0186 (8) | −0.0020 (9) | 0.0105 (8) | 0.0006 (8) |
C11 | 0.0345 (12) | 0.0358 (11) | 0.0311 (9) | 0.0005 (8) | 0.0049 (8) | 0.0089 (8) |
C12 | 0.0378 (12) | 0.0376 (11) | 0.0389 (10) | 0.0106 (9) | 0.0107 (9) | −0.0035 (8) |
C13 | 0.0345 (11) | 0.0383 (10) | 0.0239 (8) | 0.0019 (8) | 0.0092 (8) | −0.0076 (7) |
N | 0.0351 (9) | 0.0317 (8) | 0.0184 (7) | −0.0059 (7) | 0.0087 (6) | −0.0007 (6) |
O1 | 0.0468 (9) | 0.0559 (9) | 0.0285 (7) | −0.0222 (7) | 0.0145 (6) | −0.0036 (6) |
O2 | 0.0464 (9) | 0.0535 (8) | 0.0232 (6) | −0.0082 (7) | 0.0111 (6) | −0.0115 (6) |
C1—C2 | 1.511 (2) | C7—C8 | 1.519 (2) |
C1—H1 | 0.9700 | C7—H9 | 0.9800 |
C1—H2 | 0.9700 | C7—H10 | 0.9800 |
C1—H3 | 0.9700 | C8—C13 | 1.384 (2) |
C2—O1 | 1.245 (2) | C8—C9 | 1.393 (2) |
C2—C3 | 1.456 (2) | C9—C10 | 1.384 (2) |
C3—C6 | 1.404 (2) | C9—H11 | 0.9400 |
C3—C4 | 1.469 (2) | C10—C11 | 1.379 (3) |
C4—O2 | 1.2350 (19) | C10—H12 | 0.9400 |
C4—C5 | 1.512 (3) | C11—C12 | 1.388 (3) |
C5—H4 | 0.9700 | C11—H13 | 0.9400 |
C5—H5 | 0.9700 | C12—C13 | 1.386 (2) |
C5—H6 | 0.9700 | C12—H14 | 0.9400 |
C6—N | 1.316 (2) | C13—H15 | 0.9400 |
C6—H7 | 0.9400 | N—H8 | 0.8700 |
C7—N | 1.462 (2) | ||
C2—C1—H1 | 109.5 | C8—C7—H9 | 108.7 |
C2—C1—H2 | 109.5 | N—C7—H10 | 108.7 |
H1—C1—H2 | 109.5 | C8—C7—H10 | 108.7 |
C2—C1—H3 | 109.5 | H9—C7—H10 | 107.6 |
H1—C1—H3 | 109.5 | C13—C8—C9 | 118.63 (16) |
H2—C1—H3 | 109.5 | C13—C8—C7 | 122.88 (14) |
O1—C2—C3 | 121.22 (14) | C9—C8—C7 | 118.47 (15) |
O1—C2—C1 | 117.12 (16) | C10—C9—C8 | 120.64 (17) |
C3—C2—C1 | 121.60 (15) | C10—C9—H11 | 119.7 |
C6—C3—C2 | 118.70 (15) | C8—C9—H11 | 119.7 |
C6—C3—C4 | 117.82 (15) | C11—C10—C9 | 120.23 (16) |
C2—C3—C4 | 123.44 (14) | C11—C10—H12 | 119.9 |
O2—C4—C3 | 122.95 (16) | C9—C10—H12 | 119.9 |
O2—C4—C5 | 117.85 (16) | C10—C11—C12 | 119.73 (17) |
C3—C4—C5 | 119.20 (14) | C10—C11—H13 | 120.1 |
C4—C5—H4 | 109.5 | C12—C11—H13 | 120.1 |
C4—C5—H5 | 109.5 | C13—C12—C11 | 119.84 (18) |
H4—C5—H5 | 109.5 | C13—C12—H14 | 120.1 |
C4—C5—H6 | 109.5 | C11—C12—H14 | 120.1 |
H4—C5—H6 | 109.5 | C8—C13—C12 | 120.91 (16) |
H5—C5—H6 | 109.5 | C8—C13—H15 | 119.5 |
N—C6—C3 | 126.77 (16) | C12—C13—H15 | 119.5 |
N—C6—H7 | 116.6 | C6—N—C7 | 123.33 (16) |
C3—C6—H7 | 116.6 | C6—N—H8 | 118.3 |
N—C7—C8 | 114.34 (15) | C7—N—H8 | 118.3 |
N—C7—H9 | 108.7 | ||
O1—C2—C3—C6 | −5.9 (2) | N—C7—C8—C9 | −165.58 (16) |
C1—C2—C3—C6 | 171.41 (17) | C13—C8—C9—C10 | 0.3 (3) |
O1—C2—C3—C4 | 176.69 (17) | C7—C8—C9—C10 | −178.03 (17) |
C1—C2—C3—C4 | −6.0 (3) | C8—C9—C10—C11 | 0.8 (3) |
C6—C3—C4—O2 | −176.37 (17) | C9—C10—C11—C12 | −1.5 (3) |
C2—C3—C4—O2 | 1.1 (3) | C10—C11—C12—C13 | 1.1 (3) |
C6—C3—C4—C5 | 3.8 (2) | C9—C8—C13—C12 | −0.7 (3) |
C2—C3—C4—C5 | −178.77 (16) | C7—C8—C13—C12 | 177.57 (18) |
C2—C3—C6—N | 3.6 (3) | C11—C12—C13—C8 | 0.0 (3) |
C4—C3—C6—N | −178.82 (15) | C3—C6—N—C7 | −177.67 (16) |
N—C7—C8—C13 | 16.1 (2) | C8—C7—N—C6 | −94.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N—H8···O1 | 0.87 | 1.97 | 2.6177 (18) | 130 |
C6—H7···O2i | 0.94 | 2.57 | 3.434 (2) | 154 |
Symmetry code: (i) x, −y+3/2, z−1/2. |
C10H17NO2 | F(000) = 400 |
Mr = 183.24 | Dx = 1.177 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.8226 (7) Å | Cell parameters from 2011 reflections |
b = 9.8323 (6) Å | θ = 3.7–29.5° |
c = 11.2700 (8) Å | µ = 0.08 mm−1 |
β = 108.171 (5)° | T = 170 K |
V = 1034.16 (12) Å3 | Block, colourless |
Z = 4 | 0.32 × 0.28 × 0.21 mm |
STOE IPDS 2 diffractometer | Rint = 0.033 |
rotation scans | θmax = 29.1°, θmin = 2.8° |
7337 measured reflections | h = −13→13 |
2774 independent reflections | k = −13→13 |
2126 reflections with I > 2σ(I) | l = −11→15 |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.104 | w = 1/[σ2(Fo2) + (0.0562P)2 + 0.1178P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2774 reflections | Δρmax = 0.30 e Å−3 |
123 parameters | Δρmin = −0.14 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.83575 (10) | 0.46662 (12) | 0.88153 (11) | 0.0344 (2) | |
H1 | 0.8632 | 0.4892 | 0.9706 | 0.052* | |
H2 | 0.8823 | 0.5299 | 0.8392 | 0.052* | |
H3 | 0.8660 | 0.3735 | 0.8715 | 0.052* | |
C2 | 0.67575 (9) | 0.47771 (10) | 0.82522 (10) | 0.0268 (2) | |
C3 | 0.60104 (9) | 0.41294 (10) | 0.70726 (9) | 0.0247 (2) | |
C4 | 0.67422 (10) | 0.36658 (10) | 0.62027 (10) | 0.0274 (2) | |
C5 | 0.59161 (12) | 0.28835 (12) | 0.50456 (10) | 0.0351 (2) | |
H4 | 0.5154 | 0.3460 | 0.4516 | 0.053* | |
H5 | 0.5493 | 0.2070 | 0.5290 | 0.053* | |
H6 | 0.6567 | 0.2614 | 0.4582 | 0.053* | |
C6 | 0.45217 (10) | 0.39420 (10) | 0.67456 (9) | 0.0245 (2) | |
H7 | 0.4075 | 0.3445 | 0.6003 | 0.029* | |
C7 | 0.21415 (9) | 0.41512 (10) | 0.71095 (9) | 0.0242 (2) | |
C8 | 0.14674 (10) | 0.35776 (12) | 0.58053 (9) | 0.0305 (2) | |
H9 | 0.1901 | 0.2694 | 0.5740 | 0.046* | |
H10 | 0.1632 | 0.4206 | 0.5189 | 0.046* | |
H11 | 0.0435 | 0.3463 | 0.5647 | 0.046* | |
C9 | 0.14777 (11) | 0.55234 (11) | 0.72323 (12) | 0.0355 (2) | |
H12 | 0.0449 | 0.5409 | 0.7097 | 0.053* | |
H13 | 0.1622 | 0.6154 | 0.6609 | 0.053* | |
H14 | 0.1935 | 0.5891 | 0.8071 | 0.053* | |
C10 | 0.19622 (11) | 0.31624 (12) | 0.80911 (10) | 0.0324 (2) | |
H15 | 0.0940 | 0.3027 | 0.7973 | 0.049* | |
H16 | 0.2428 | 0.3535 | 0.8926 | 0.049* | |
H17 | 0.2403 | 0.2289 | 0.8006 | 0.049* | |
N | 0.36968 (8) | 0.43920 (9) | 0.73734 (8) | 0.02652 (19) | |
H8 | 0.4115 | 0.4898 | 0.8030 | 0.032* | |
O1 | 0.60963 (7) | 0.53863 (9) | 0.88675 (8) | 0.0377 (2) | |
O2 | 0.80125 (8) | 0.39082 (10) | 0.63547 (8) | 0.0414 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0207 (4) | 0.0420 (6) | 0.0379 (6) | −0.0005 (4) | 0.0056 (4) | −0.0040 (5) |
C2 | 0.0207 (4) | 0.0270 (5) | 0.0328 (5) | −0.0015 (3) | 0.0084 (4) | −0.0005 (4) |
C3 | 0.0202 (4) | 0.0253 (4) | 0.0296 (5) | −0.0003 (3) | 0.0092 (3) | 0.0014 (4) |
C4 | 0.0250 (4) | 0.0272 (5) | 0.0326 (5) | 0.0005 (4) | 0.0126 (4) | 0.0039 (4) |
C5 | 0.0353 (5) | 0.0404 (6) | 0.0342 (6) | −0.0024 (4) | 0.0174 (4) | −0.0044 (4) |
C6 | 0.0217 (4) | 0.0265 (4) | 0.0255 (4) | −0.0005 (3) | 0.0078 (3) | 0.0008 (4) |
C7 | 0.0172 (4) | 0.0296 (4) | 0.0259 (5) | −0.0008 (3) | 0.0068 (3) | −0.0009 (4) |
C8 | 0.0230 (4) | 0.0421 (6) | 0.0250 (5) | −0.0027 (4) | 0.0056 (4) | −0.0015 (4) |
C9 | 0.0263 (5) | 0.0335 (5) | 0.0477 (7) | 0.0026 (4) | 0.0131 (4) | −0.0034 (5) |
C10 | 0.0310 (5) | 0.0387 (6) | 0.0288 (5) | −0.0018 (4) | 0.0109 (4) | 0.0020 (4) |
N | 0.0177 (3) | 0.0336 (4) | 0.0279 (4) | −0.0015 (3) | 0.0065 (3) | −0.0055 (3) |
O1 | 0.0239 (3) | 0.0462 (5) | 0.0420 (5) | −0.0017 (3) | 0.0089 (3) | −0.0172 (4) |
O2 | 0.0270 (4) | 0.0555 (5) | 0.0479 (5) | −0.0069 (3) | 0.0207 (3) | −0.0060 (4) |
C1—C2 | 1.5042 (13) | C7—N | 1.4815 (11) |
C1—H1 | 0.9800 | C7—C8 | 1.5197 (14) |
C1—H2 | 0.9800 | C7—C9 | 1.5235 (14) |
C1—H3 | 0.9800 | C7—C10 | 1.5237 (14) |
C2—O1 | 1.2419 (12) | C8—H9 | 0.9800 |
C2—C3 | 1.4502 (14) | C8—H10 | 0.9800 |
C3—C6 | 1.4043 (12) | C8—H11 | 0.9800 |
C3—C4 | 1.4578 (13) | C9—H12 | 0.9800 |
C4—O2 | 1.2287 (12) | C9—H13 | 0.9800 |
C4—C5 | 1.5135 (15) | C9—H14 | 0.9800 |
C5—H4 | 0.9800 | C10—H15 | 0.9800 |
C5—H5 | 0.9800 | C10—H16 | 0.9800 |
C5—H6 | 0.9800 | C10—H17 | 0.9800 |
C6—N | 1.3079 (12) | N—H8 | 0.8800 |
C6—H7 | 0.9500 | ||
C2—C1—H1 | 109.5 | C8—C7—C9 | 110.29 (8) |
C2—C1—H2 | 109.5 | N—C7—C10 | 107.56 (8) |
H1—C1—H2 | 109.5 | C8—C7—C10 | 110.56 (8) |
C2—C1—H3 | 109.5 | C9—C7—C10 | 110.45 (8) |
H1—C1—H3 | 109.5 | C7—C8—H9 | 109.5 |
H2—C1—H3 | 109.5 | C7—C8—H10 | 109.5 |
O1—C2—C3 | 121.36 (8) | H9—C8—H10 | 109.5 |
O1—C2—C1 | 117.32 (9) | C7—C8—H11 | 109.5 |
C3—C2—C1 | 121.22 (8) | H9—C8—H11 | 109.5 |
C6—C3—C2 | 119.08 (8) | H10—C8—H11 | 109.5 |
C6—C3—C4 | 118.29 (9) | C7—C9—H12 | 109.5 |
C2—C3—C4 | 122.63 (8) | C7—C9—H13 | 109.5 |
O2—C4—C3 | 122.54 (10) | H12—C9—H13 | 109.5 |
O2—C4—C5 | 117.84 (9) | C7—C9—H14 | 109.5 |
C3—C4—C5 | 119.61 (8) | H12—C9—H14 | 109.5 |
C4—C5—H4 | 109.5 | H13—C9—H14 | 109.5 |
C4—C5—H5 | 109.5 | C7—C10—H15 | 109.5 |
H4—C5—H5 | 109.5 | C7—C10—H16 | 109.5 |
C4—C5—H6 | 109.5 | H15—C10—H16 | 109.5 |
H4—C5—H6 | 109.5 | C7—C10—H17 | 109.5 |
H5—C5—H6 | 109.5 | H15—C10—H17 | 109.5 |
N—C6—C3 | 125.72 (9) | H16—C10—H17 | 109.5 |
N—C6—H7 | 117.1 | C6—N—C7 | 127.69 (8) |
C3—C6—H7 | 117.1 | C6—N—H8 | 116.2 |
N—C7—C8 | 111.38 (8) | C7—N—H8 | 116.2 |
N—C7—C9 | 106.50 (8) | ||
O1—C2—C3—C6 | −13.30 (15) | C2—C3—C4—C5 | 174.41 (9) |
C1—C2—C3—C6 | 163.02 (9) | C2—C3—C6—N | 5.34 (15) |
O1—C2—C3—C4 | 166.44 (10) | C4—C3—C6—N | −174.40 (9) |
C1—C2—C3—C4 | −17.25 (15) | C3—C6—N—C7 | −175.98 (9) |
C6—C3—C4—O2 | 172.63 (10) | C8—C7—N—C6 | −14.03 (14) |
C2—C3—C4—O2 | −7.11 (15) | C9—C7—N—C6 | −134.31 (11) |
C6—C3—C4—C5 | −5.85 (14) | C10—C7—N—C6 | 107.27 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N—H8···O1 | 0.90 (2) | 1.90 (2) | 2.6322 (16) | 136 (2) |
C5—H4···O1i | 0.97 (2) | 2.69 (2) | 3.630 (2) | 163 (2) |
C8—H11···O2ii | 0.98 (2) | 2.67 (2) | 3.642 (2) | 174 (1) |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+1, −y, −z+1. |
C14H17NO2 | F(000) = 496 |
Mr = 231.28 | Dx = 1.235 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.0459 (9) Å | Cell parameters from 17500 reflections |
b = 8.1011 (5) Å | θ = 2.5–29.7° |
c = 15.7052 (13) Å | µ = 0.08 mm−1 |
β = 103.372 (7)° | T = 170 K |
V = 1243.48 (17) Å3 | Block, colourless |
Z = 4 | 0.44 × 0.21 × 0.14 mm |
STOE IPDS 2T diffractometer | Rint = 0.042 |
rotation scans | θmax = 29.3°, θmin = 2.7° |
11343 measured reflections | h = −13→13 |
11343 independent reflections | k = −11→11 |
9181 reflections with I > 2σ(I) | l = −21→21 |
Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.059P)2 + 0.3675P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.048 | (Δ/σ)max < 0.001 |
wR(F2) = 0.131 | Δρmax = 0.27 e Å−3 |
S = 1.05 | Δρmin = −0.28 e Å−3 |
11343 reflections | Extinction correction: SHELXL-2018/3 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
315 parameters | Extinction coefficient: 0.044 (6) |
1 restraint | Absolute structure: Classical Flack method preferred over Parsons because s.u. lower. |
Primary atom site location: iterative | Absolute structure parameter: 2.9 (7) |
Hydrogen site location: inferred from neighbouring sites |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.1723 (4) | 0.7494 (5) | 0.1031 (3) | 0.0494 (10) | |
H1 | 1.2297 | 0.7243 | 0.1610 | 0.074* | |
H2 | 1.1712 | 0.8689 | 0.0932 | 0.074* | |
H3 | 1.2093 | 0.6937 | 0.0581 | 0.074* | |
C2 | 1.0289 (3) | 0.6899 (4) | 0.0981 (2) | 0.0307 (6) | |
C3 | 0.9990 (3) | 0.5183 (4) | 0.1133 (2) | 0.0300 (6) | |
C4 | 1.1060 (4) | 0.3913 (4) | 0.1369 (2) | 0.0364 (7) | |
C5 | 1.0664 (4) | 0.2163 (5) | 0.1548 (3) | 0.0455 (9) | |
H4 | 1.1492 | 0.1519 | 0.1788 | 0.068* | |
H5 | 1.0161 | 0.1655 | 0.1002 | 0.068* | |
H6 | 1.0083 | 0.2183 | 0.1971 | 0.068* | |
C6 | 0.8627 (3) | 0.4704 (4) | 0.1047 (2) | 0.0309 (6) | |
H7 | 0.8465 | 0.3569 | 0.1137 | 0.037* | |
C7 | 0.6134 (3) | 0.5100 (4) | 0.0761 (2) | 0.0315 (6) | |
H9 | 0.6158 | 0.3879 | 0.0856 | 0.038* | |
C8 | 0.5280 (3) | 0.5433 (4) | −0.0157 (2) | 0.0289 (6) | |
C9 | 0.5840 (3) | 0.6073 (4) | −0.0821 (2) | 0.0335 (7) | |
H10 | 0.6787 | 0.6336 | −0.0698 | 0.040* | |
C10 | 0.5044 (4) | 0.6331 (5) | −0.1654 (2) | 0.0373 (7) | |
H11 | 0.5446 | 0.6774 | −0.2096 | 0.045* | |
C11 | 0.3657 (4) | 0.5946 (5) | −0.1849 (2) | 0.0379 (7) | |
H12 | 0.3109 | 0.6116 | −0.2421 | 0.045* | |
C12 | 0.3084 (3) | 0.5308 (4) | −0.1193 (2) | 0.0349 (7) | |
H13 | 0.2138 | 0.5040 | −0.1319 | 0.042* | |
C13 | 0.3882 (3) | 0.5062 (4) | −0.0357 (2) | 0.0310 (6) | |
H14 | 0.3475 | 0.4635 | 0.0085 | 0.037* | |
C14 | 0.5532 (4) | 0.5888 (5) | 0.1472 (2) | 0.0408 (8) | |
H15 | 0.4605 | 0.5463 | 0.1429 | 0.061* | |
H16 | 0.5496 | 0.7089 | 0.1394 | 0.061* | |
H17 | 0.6108 | 0.5619 | 0.2049 | 0.061* | |
N1 | 0.7550 (3) | 0.5668 (3) | 0.08533 (19) | 0.0329 (6) | |
H8 | 0.7684 | 0.6724 | 0.0773 | 0.039* | |
O1 | 0.9351 (3) | 0.7936 (3) | 0.07897 (18) | 0.0389 (6) | |
O2 | 1.2273 (3) | 0.4204 (4) | 0.1427 (2) | 0.0560 (8) | |
C15 | 0.5900 (4) | 0.2575 (5) | 0.4013 (3) | 0.0407 (8) | |
H18 | 0.5956 | 0.1369 | 0.4063 | 0.061* | |
H19 | 0.6539 | 0.3075 | 0.4513 | 0.061* | |
H20 | 0.6138 | 0.2921 | 0.3469 | 0.061* | |
C16 | 0.4461 (3) | 0.3127 (4) | 0.4004 (2) | 0.0326 (7) | |
C17 | 0.4062 (3) | 0.4854 (4) | 0.3894 (2) | 0.0297 (6) | |
C18 | 0.4988 (3) | 0.6153 (4) | 0.3729 (2) | 0.0327 (7) | |
C19 | 0.4459 (4) | 0.7895 (5) | 0.3518 (3) | 0.0454 (9) | |
H21 | 0.4351 | 0.8439 | 0.4055 | 0.068* | |
H22 | 0.3572 | 0.7854 | 0.3096 | 0.068* | |
H23 | 0.5111 | 0.8518 | 0.3266 | 0.068* | |
C20 | 0.2753 (3) | 0.5311 (4) | 0.3967 (2) | 0.0302 (6) | |
H24 | 0.2535 | 0.6452 | 0.3909 | 0.036* | |
C21 | 0.0473 (3) | 0.4873 (4) | 0.4252 (2) | 0.0316 (6) | |
H26 | 0.0424 | 0.6097 | 0.4168 | 0.038* | |
C22 | 0.0360 (3) | 0.4507 (4) | 0.5191 (2) | 0.0280 (6) | |
C23 | 0.1422 (3) | 0.3812 (4) | 0.5812 (2) | 0.0323 (6) | |
H27 | 0.2249 | 0.3525 | 0.5654 | 0.039* | |
C24 | 0.1294 (4) | 0.3531 (4) | 0.6661 (2) | 0.0367 (7) | |
H28 | 0.2027 | 0.3040 | 0.7076 | 0.044* | |
C25 | 0.0096 (4) | 0.3967 (4) | 0.6906 (2) | 0.0364 (7) | |
H29 | 0.0011 | 0.3790 | 0.7489 | 0.044* | |
C26 | −0.0973 (3) | 0.4662 (4) | 0.6291 (2) | 0.0332 (7) | |
H30 | −0.1796 | 0.4955 | 0.6453 | 0.040* | |
C27 | −0.0847 (3) | 0.4932 (4) | 0.5438 (2) | 0.0297 (6) | |
H31 | −0.1586 | 0.5408 | 0.5021 | 0.036* | |
C28 | −0.0694 (4) | 0.4104 (5) | 0.3571 (2) | 0.0371 (7) | |
H32 | −0.1570 | 0.4518 | 0.3656 | 0.056* | |
H33 | −0.0663 | 0.2901 | 0.3635 | 0.056* | |
H34 | −0.0597 | 0.4400 | 0.2983 | 0.056* | |
N2 | 0.1787 (3) | 0.4311 (3) | 0.4108 (2) | 0.0341 (6) | |
H25 | 0.1944 | 0.3242 | 0.4115 | 0.041* | |
O3 | 0.3635 (3) | 0.2058 (3) | 0.4110 (2) | 0.0472 (7) | |
O4 | 0.6200 (2) | 0.5899 (3) | 0.37485 (18) | 0.0418 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.032 (2) | 0.0401 (19) | 0.080 (3) | −0.0035 (15) | 0.0196 (19) | −0.002 (2) |
C2 | 0.0263 (15) | 0.0337 (16) | 0.0336 (15) | −0.0006 (12) | 0.0100 (12) | −0.0033 (13) |
C3 | 0.0267 (15) | 0.0322 (15) | 0.0324 (14) | 0.0005 (12) | 0.0096 (11) | −0.0028 (13) |
C4 | 0.0285 (16) | 0.0407 (18) | 0.0424 (17) | 0.0043 (14) | 0.0132 (13) | 0.0039 (15) |
C5 | 0.039 (2) | 0.0408 (19) | 0.061 (2) | 0.0109 (16) | 0.0206 (18) | 0.0113 (18) |
C6 | 0.0273 (15) | 0.0323 (15) | 0.0336 (15) | 0.0007 (12) | 0.0077 (12) | 0.0000 (13) |
C7 | 0.0221 (14) | 0.0322 (15) | 0.0404 (16) | −0.0024 (12) | 0.0074 (12) | 0.0036 (14) |
C8 | 0.0240 (14) | 0.0258 (13) | 0.0380 (15) | −0.0005 (11) | 0.0093 (12) | −0.0014 (12) |
C9 | 0.0254 (15) | 0.0369 (16) | 0.0394 (16) | −0.0027 (13) | 0.0103 (12) | 0.0002 (14) |
C10 | 0.0348 (18) | 0.0418 (18) | 0.0366 (16) | −0.0046 (14) | 0.0112 (14) | 0.0006 (15) |
C11 | 0.0349 (17) | 0.0395 (17) | 0.0367 (16) | −0.0039 (15) | 0.0032 (13) | 0.0003 (15) |
C12 | 0.0267 (15) | 0.0312 (15) | 0.0459 (17) | −0.0056 (13) | 0.0064 (13) | −0.0012 (14) |
C13 | 0.0250 (14) | 0.0281 (14) | 0.0417 (16) | −0.0025 (12) | 0.0113 (12) | −0.0009 (13) |
C14 | 0.0330 (17) | 0.053 (2) | 0.0373 (16) | −0.0049 (16) | 0.0109 (14) | −0.0009 (16) |
N1 | 0.0231 (13) | 0.0320 (13) | 0.0425 (14) | −0.0017 (10) | 0.0056 (11) | 0.0029 (11) |
O1 | 0.0307 (13) | 0.0320 (12) | 0.0555 (15) | 0.0020 (10) | 0.0129 (11) | 0.0031 (11) |
O2 | 0.0260 (13) | 0.0546 (16) | 0.089 (2) | 0.0059 (12) | 0.0179 (14) | 0.0152 (16) |
C15 | 0.0285 (17) | 0.0375 (17) | 0.059 (2) | 0.0022 (14) | 0.0153 (16) | −0.0033 (16) |
C16 | 0.0283 (16) | 0.0312 (15) | 0.0410 (17) | −0.0016 (12) | 0.0134 (13) | −0.0043 (14) |
C17 | 0.0245 (14) | 0.0317 (15) | 0.0339 (14) | −0.0030 (12) | 0.0091 (11) | −0.0019 (13) |
C18 | 0.0267 (15) | 0.0382 (16) | 0.0345 (15) | −0.0058 (13) | 0.0098 (12) | −0.0018 (14) |
C19 | 0.0350 (19) | 0.0384 (18) | 0.067 (2) | −0.0026 (15) | 0.0194 (17) | 0.0120 (18) |
C20 | 0.0262 (14) | 0.0303 (14) | 0.0357 (14) | −0.0023 (12) | 0.0107 (12) | 0.0010 (12) |
C21 | 0.0227 (14) | 0.0301 (15) | 0.0442 (16) | 0.0031 (12) | 0.0123 (12) | 0.0020 (14) |
C22 | 0.0217 (13) | 0.0239 (13) | 0.0385 (15) | −0.0015 (10) | 0.0075 (11) | −0.0019 (12) |
C23 | 0.0242 (14) | 0.0308 (15) | 0.0409 (16) | 0.0016 (12) | 0.0055 (12) | −0.0029 (13) |
C24 | 0.0342 (17) | 0.0321 (15) | 0.0389 (16) | 0.0004 (13) | −0.0016 (14) | −0.0023 (14) |
C25 | 0.0420 (19) | 0.0315 (15) | 0.0354 (15) | −0.0029 (14) | 0.0085 (14) | −0.0047 (14) |
C26 | 0.0314 (16) | 0.0313 (15) | 0.0400 (16) | −0.0008 (13) | 0.0147 (13) | −0.0022 (14) |
C27 | 0.0243 (14) | 0.0277 (13) | 0.0379 (15) | 0.0013 (11) | 0.0088 (11) | 0.0005 (13) |
C28 | 0.0285 (16) | 0.0476 (19) | 0.0355 (16) | 0.0029 (14) | 0.0079 (13) | −0.0009 (15) |
N2 | 0.0254 (13) | 0.0303 (13) | 0.0510 (16) | 0.0010 (10) | 0.0175 (12) | 0.0009 (12) |
O3 | 0.0349 (14) | 0.0309 (12) | 0.082 (2) | −0.0018 (10) | 0.0256 (14) | −0.0005 (13) |
O4 | 0.0253 (11) | 0.0447 (13) | 0.0583 (15) | −0.0045 (10) | 0.0152 (11) | 0.0020 (13) |
C1—C2 | 1.504 (5) | C15—C16 | 1.510 (5) |
C1—H1 | 0.9800 | C15—H18 | 0.9800 |
C1—H2 | 0.9800 | C15—H19 | 0.9800 |
C1—H3 | 0.9800 | C15—H20 | 0.9800 |
C2—O1 | 1.246 (4) | C16—O3 | 1.236 (4) |
C2—C3 | 1.453 (4) | C16—C17 | 1.455 (4) |
C3—C6 | 1.399 (4) | C17—C20 | 1.396 (4) |
C3—C4 | 1.472 (5) | C17—C18 | 1.468 (4) |
C4—O2 | 1.224 (4) | C18—O4 | 1.228 (4) |
C4—C5 | 1.517 (5) | C18—C19 | 1.518 (5) |
C5—H4 | 0.9800 | C19—H21 | 0.9800 |
C5—H5 | 0.9800 | C19—H22 | 0.9800 |
C5—H6 | 0.9800 | C19—H23 | 0.9800 |
C6—N1 | 1.311 (4) | C20—N2 | 1.321 (4) |
C6—H7 | 0.9500 | C20—H24 | 0.9500 |
C7—N1 | 1.470 (4) | C21—N2 | 1.463 (4) |
C7—C8 | 1.522 (4) | C21—C28 | 1.524 (5) |
C7—C14 | 1.527 (5) | C21—C22 | 1.534 (4) |
C7—H9 | 1.0000 | C21—H26 | 1.0000 |
C8—C9 | 1.394 (4) | C22—C23 | 1.387 (4) |
C8—C13 | 1.399 (4) | C22—C27 | 1.400 (4) |
C9—C10 | 1.383 (5) | C23—C24 | 1.388 (5) |
C9—H10 | 0.9500 | C23—H27 | 0.9500 |
C10—C11 | 1.392 (5) | C24—C25 | 1.392 (5) |
C10—H11 | 0.9500 | C24—H28 | 0.9500 |
C11—C12 | 1.390 (5) | C25—C26 | 1.387 (5) |
C11—H12 | 0.9500 | C25—H29 | 0.9500 |
C12—C13 | 1.385 (5) | C26—C27 | 1.392 (4) |
C12—H13 | 0.9500 | C26—H30 | 0.9500 |
C13—H14 | 0.9500 | C27—H31 | 0.9500 |
C14—H15 | 0.9800 | C28—H32 | 0.9800 |
C14—H16 | 0.9800 | C28—H33 | 0.9800 |
C14—H17 | 0.9800 | C28—H34 | 0.9800 |
N1—H8 | 0.8800 | N2—H25 | 0.8800 |
C2—C1—H1 | 109.5 | C16—C15—H18 | 109.5 |
C2—C1—H2 | 109.5 | C16—C15—H19 | 109.5 |
H1—C1—H2 | 109.5 | H18—C15—H19 | 109.5 |
C2—C1—H3 | 109.5 | C16—C15—H20 | 109.5 |
H1—C1—H3 | 109.5 | H18—C15—H20 | 109.5 |
H2—C1—H3 | 109.5 | H19—C15—H20 | 109.5 |
O1—C2—C3 | 120.7 (3) | O3—C16—C17 | 121.0 (3) |
O1—C2—C1 | 117.3 (3) | O3—C16—C15 | 117.5 (3) |
C3—C2—C1 | 122.0 (3) | C17—C16—C15 | 121.5 (3) |
C6—C3—C2 | 119.0 (3) | C20—C17—C16 | 119.0 (3) |
C6—C3—C4 | 118.1 (3) | C20—C17—C18 | 118.2 (3) |
C2—C3—C4 | 122.9 (3) | C16—C17—C18 | 122.8 (3) |
O2—C4—C3 | 122.7 (3) | O4—C18—C17 | 122.8 (3) |
O2—C4—C5 | 117.7 (3) | O4—C18—C19 | 117.2 (3) |
C3—C4—C5 | 119.5 (3) | C17—C18—C19 | 120.1 (3) |
C4—C5—H4 | 109.5 | C18—C19—H21 | 109.5 |
C4—C5—H5 | 109.5 | C18—C19—H22 | 109.5 |
H4—C5—H5 | 109.5 | H21—C19—H22 | 109.5 |
C4—C5—H6 | 109.5 | C18—C19—H23 | 109.5 |
H4—C5—H6 | 109.5 | H21—C19—H23 | 109.5 |
H5—C5—H6 | 109.5 | H22—C19—H23 | 109.5 |
N1—C6—C3 | 126.4 (3) | N2—C20—C17 | 126.4 (3) |
N1—C6—H7 | 116.8 | N2—C20—H24 | 116.8 |
C3—C6—H7 | 116.8 | C17—C20—H24 | 116.8 |
N1—C7—C8 | 111.0 (3) | N2—C21—C28 | 109.8 (3) |
N1—C7—C14 | 109.6 (3) | N2—C21—C22 | 111.0 (3) |
C8—C7—C14 | 112.8 (3) | C28—C21—C22 | 112.3 (3) |
N1—C7—H9 | 107.8 | N2—C21—H26 | 107.8 |
C8—C7—H9 | 107.8 | C28—C21—H26 | 107.8 |
C14—C7—H9 | 107.8 | C22—C21—H26 | 107.8 |
C9—C8—C13 | 118.0 (3) | C23—C22—C27 | 118.6 (3) |
C9—C8—C7 | 122.6 (3) | C23—C22—C21 | 122.6 (3) |
C13—C8—C7 | 119.4 (3) | C27—C22—C21 | 118.7 (3) |
C10—C9—C8 | 121.3 (3) | C22—C23—C24 | 121.0 (3) |
C10—C9—H10 | 119.4 | C22—C23—H27 | 119.5 |
C8—C9—H10 | 119.4 | C24—C23—H27 | 119.5 |
C9—C10—C11 | 120.3 (3) | C23—C24—C25 | 120.1 (3) |
C9—C10—H11 | 119.9 | C23—C24—H28 | 119.9 |
C11—C10—H11 | 119.9 | C25—C24—H28 | 119.9 |
C12—C11—C10 | 119.1 (3) | C26—C25—C24 | 119.4 (3) |
C12—C11—H12 | 120.5 | C26—C25—H29 | 120.3 |
C10—C11—H12 | 120.5 | C24—C25—H29 | 120.3 |
C13—C12—C11 | 120.5 (3) | C25—C26—C27 | 120.4 (3) |
C13—C12—H13 | 119.8 | C25—C26—H30 | 119.8 |
C11—C12—H13 | 119.8 | C27—C26—H30 | 119.8 |
C12—C13—C8 | 120.9 (3) | C26—C27—C22 | 120.4 (3) |
C12—C13—H14 | 119.6 | C26—C27—H31 | 119.8 |
C8—C13—H14 | 119.6 | C22—C27—H31 | 119.8 |
C7—C14—H15 | 109.5 | C21—C28—H32 | 109.5 |
C7—C14—H16 | 109.5 | C21—C28—H33 | 109.5 |
H15—C14—H16 | 109.5 | H32—C28—H33 | 109.5 |
C7—C14—H17 | 109.5 | C21—C28—H34 | 109.5 |
H15—C14—H17 | 109.5 | H32—C28—H34 | 109.5 |
H16—C14—H17 | 109.5 | H33—C28—H34 | 109.5 |
C6—N1—C7 | 124.4 (3) | C20—N2—C21 | 124.0 (3) |
C6—N1—H8 | 117.8 | C20—N2—H25 | 118.0 |
C7—N1—H8 | 117.8 | C21—N2—H25 | 118.0 |
O1—C2—C3—C6 | 1.2 (5) | O3—C16—C17—C20 | 4.2 (5) |
C1—C2—C3—C6 | −177.8 (3) | C15—C16—C17—C20 | −174.5 (3) |
O1—C2—C3—C4 | −179.4 (3) | O3—C16—C17—C18 | −177.2 (3) |
C1—C2—C3—C4 | 1.6 (5) | C15—C16—C17—C18 | 4.1 (5) |
C6—C3—C4—O2 | 177.2 (4) | C20—C17—C18—O4 | 172.0 (3) |
C2—C3—C4—O2 | −2.2 (5) | C16—C17—C18—O4 | −6.7 (5) |
C6—C3—C4—C5 | −2.7 (5) | C20—C17—C18—C19 | −8.3 (5) |
C2—C3—C4—C5 | 177.8 (3) | C16—C17—C18—C19 | 173.1 (3) |
C2—C3—C6—N1 | −1.5 (5) | C16—C17—C20—N2 | −1.8 (5) |
C4—C3—C6—N1 | 179.0 (3) | C18—C17—C20—N2 | 179.5 (3) |
N1—C7—C8—C9 | 4.7 (4) | N2—C21—C22—C23 | 3.2 (4) |
C14—C7—C8—C9 | 128.1 (3) | C28—C21—C22—C23 | 126.6 (3) |
N1—C7—C8—C13 | −176.5 (3) | N2—C21—C22—C27 | −178.7 (3) |
C14—C7—C8—C13 | −53.1 (4) | C28—C21—C22—C27 | −55.3 (4) |
C13—C8—C9—C10 | −0.2 (5) | C27—C22—C23—C24 | 0.4 (5) |
C7—C8—C9—C10 | 178.7 (3) | C21—C22—C23—C24 | 178.6 (3) |
C8—C9—C10—C11 | −0.3 (6) | C22—C23—C24—C25 | −0.9 (5) |
C9—C10—C11—C12 | 0.4 (6) | C23—C24—C25—C26 | 0.9 (5) |
C10—C11—C12—C13 | 0.1 (5) | C24—C25—C26—C27 | −0.4 (5) |
C11—C12—C13—C8 | −0.6 (5) | C25—C26—C27—C22 | 0.0 (5) |
C9—C8—C13—C12 | 0.6 (5) | C23—C22—C27—C26 | 0.1 (5) |
C7—C8—C13—C12 | −178.3 (3) | C21—C22—C27—C26 | −178.2 (3) |
C3—C6—N1—C7 | 179.4 (3) | C17—C20—N2—C21 | 174.6 (3) |
C8—C7—N1—C6 | −119.2 (3) | C22—C21—N2—C20 | −112.8 (3) |
C14—C7—N1—C6 | 115.5 (4) | C28—C21—N2—C20 | 122.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H8···O1 | 0.88 | 1.94 | 2.597 (4) | 131 |
N2—H25···O3 | 0.88 | 1.95 | 2.603 (4) | 130 |
C14—H15···O2i | 0.98 | 2.55 | 3.532 (5) | 175 |
C14—H17···O4 | 0.98 | 2.66 | 3.482 (5) | 142 |
C28—H32···O4i | 0.98 | 2.54 | 3.512 (5) | 173 |
Symmetry code: (i) x−1, y, z. |
Compound | Torsion angle | Crystal structure determination | DFT calculation |
1 | C8—C7—N—C6 | –94.4 (1) | –107.8 |
2 | C8—C7—N—C6 | -14.03 (14) | 0.0 |
C9—C7—N—C6 | –134.31 (11) | –120.8 | |
C10—C7—N—C6 | 107.27 (11) | 120.8 | |
3 | C14—C7—N1—C6 | 115.5 (4); 122.4 (3)* | –167.3 |
C8—C7—N1—C6 | –119.2 (4); –112.8 (3)* | –43.3 |
*Values for the comparable bond in the second molecule. |
Funding information
We acknowledge the financial support of the Open Access Publication Fund of the Martin-Luther-University Halle-Wittenberg.
References
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Claisen, L. R. (1893). Ber. Dtsch. Chem. Ges. 26, 2729–2735. CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dürrmann, A., Hörner, G., Wagner, S., Breuning, M. & Weber, B. (2021). Z. Anorg. Allg. Chem. 647, 2088–2097. Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 16. Gaussian Inc. Wallingford CT. Google Scholar
Grimme, S., Ehrlich, S. & Goerigk, L. (2011). J. Comput. Chem. 32, 1456–1465. Web of Science CrossRef CAS PubMed Google Scholar
Gróf, M., Milata, V. & Kožíšek, J. (2006a). Acta Cryst. E62, o4464–o4465. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gróf, M., Milata, V., Kožíšek, J. & Tokarčík, M. (2006b). Acta Cryst. E62, o4060–o4061. Web of Science CSD CrossRef IUCr Journals Google Scholar
Halz, J. H., Hentsch, A., Wagner, C. & Merzweiler, K. (2021). Z. Anorg. Allg. Chem. 647, 922–930. Web of Science CSD CrossRef CAS Google Scholar
Halz, J. H., Hentsch, A., Wagner, C. & Merzweiler, K. (2022). Acta Cryst. E78, 54–59. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hentsch, A., Wagner, C. & Merzweiler, K. (2014). Z. Anorg. Allg. Chem. 640, 339–346. Web of Science CSD CrossRef CAS Google Scholar
Ito, Y., Inubushi, Y. & Saegusa, T. (1974). Tetrahedron Lett. 15, 1283–1286. CrossRef Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe (2015). X-AREA Recipe. Stoe & Cie, Darmstadt, Germany. Google Scholar
Stoe (2016). X-AREA and X-AREA WinXpose. Stoe & Cie, Darmstadt, Germany. Google Scholar
Weigend, F. & Ahlrichs, R. (2005). Phys. Chem. Chem. Phys. 7, 3297–3305. Web of Science CrossRef PubMed CAS Google Scholar
Wolf, L. & Jäger, E.-G. (1966). Z. Anorg. Allg. Chem. 346, 76–91. CrossRef CAS Web of Science Google Scholar
Zhou, J.-C. (1997). Magn. Reson. Chem. 35, 432–440. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.