research communications
Crystal structures and Hirshfeld surface analyses of N,N-dimethylacetamide–1-(dimethyl-λ4-azanylidene)ethan-1-ol tribromide (1/1), N,N-dimethylacetamide–1-(dimethyl-λ4-azanylidene)ethan-1-ol dibromidoiodate (1/1) and N,N-dimethylacetamide–1-(dimethyl-λ4-azanylidene)ethan-1-ol dichloridoiodate (1/1)
aOrganic Chemistry Department, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, cFrumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31, bld. 4, Moscow 119071, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, eDepartment of Physics, Faculty of Science, Eskisehir Technical University, Yunus Emre Campus, 26470 Eskisehir, Türkiye, and fDepartment of Chemistry, M.M.A.M.C., Tribhuvan University, Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
In the title compounds, N,N-dimethylacetamide–1-(dimethyl-λ4-azanylidene)ethan-1-ol tribromide (1/1), C4H9NO·C4H10NO+·Br3− or [(C4H9NO)·(C4H10NO)](Br3), (I), N,N-dimethylacetamide–1-(dimethyl-λ4-azanylidene)ethan-1-ol dibromidoiodate (1/1), C4H9NO·C4H10NO+·Br2I− or [(C4H9NO)·(C4H10NO)](Br2I), (II), and N,N-dimethylacetamide–1-(dimethyl-λ4-azanylidene)ethan-1-ol dichloridoiodate (1/1), C4H9NO·C4H10NO+·Cl2I− or [(C4H9NO)·(C4H10NO)]·(Cl2I), (III), all the anions are almost linear in geometry and all the cations, except for the methyl H atoms, are essentially planar. In the of (I), the cations are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) ring motif. These dimers also exhibit O—H⋯O hydrogen bonding. Dimerized cation pairs and anions are arranged in columns along the a axis. In the crystal of (II), the cations are linked by pairs of O—H⋯O and C—H⋯O hydrogen bonds, forming an R44(14) ring motif. These groups of cations and the anions form individual columns along the a axis and jointly reside in planes roughly parallel to (011). In the crystal of (III), cations and anions also form columns parallel to the a axis, resulting in layers parallel to the (020) plane. Furthermore, the crystal structures of (I), (II) and (III) are consolidated by strong halogen (Br and/or I and/or Cl)⋯H and weak van der Waals interactions. In addition to the structural evaluation, a Hirshfeld surface analysis was carried out.
1. Chemical context
Halogenation is a chemical reaction that involves the introduction of one or more halogen atoms to an organic compound. Usually, either direct replacement of hydrogen by a halogen atom or addition of a halogen molecule to double and triple bonds are used. The pathway and stereochemistry of halogenation reactions are strongly dependent on the halogenating agent. However, halogens and interhalogens are very harmful to health. An effective source of active halogen should be a safe solid substance well soluble in different solvents, with a low pressure of halogen vapour and high content of the active halogen. As a source of halogens, molecular complexes with N- and O-nucleophiles are widely used. However, the N-halogen succinimides slowly decompose when stored and are poorly soluble in some solvents, while the molecular complexes of halogens with N- and O-nucleophiles (for instance, dioxane dibromide or complexes with pyridine) are short-lived (Abdell-Wahab et al., 1957; Horner et al., 1959; Zaugg et al., 1954; Buckles et al., 1957; Ramachandrappa et al., 1998; Groebel et al., 1960; Mohamed Farook et al., 2006; Sui et al., 2006). In this context, we synthesized inexpensive and readily available bis(N,N-dimethylacetamide) hydrogen trihalides as halogenation agents and source of positively charged halogen ions (Rodygin et al., 1992; Prokop'eva et al., 2008). The amide complexes with halogens are excellent reagents for the functionalization of and anilines (Rodygin et al., 1992; Mikhailov et al., 1993; Safavora et al., 2019). They are also used in the synthesis of mono-halogen-substituted (Rodygin et al., 1994a; Burakov et al., 2001; Abdelhamid et al., 2011; Khalilov et al., 2021) and the halogenation of various (Rodygin et al., 1994b) and bridged epoxy-isoindolones (Zaytsev et al., 2017; Zubkov et al., 2018; Mertsalov et al., 2021a,b). The most famous amide complex, i.e. Povidone-iodine (PVP-I), also known as iodopovidone, is an antiseptic used for skin disinfection before and after surgery (Stuart et al., 2009). Moreover, noncovalent interactions play critical roles in synthesis and catalysis, as well as in forming supramolecular structures due to their significant contribution to the self-assembly process (Gurbanov et al., 2020a,b, 2022a,b; Ma et al., 2017, 2021; Mahmoudi et al., 2017a,b; Mahmudov et al., 2011, 2022). Similar to hydrogen bonding, the halogen bond has also been used in the design of materials (Shikhaliyev et al., 2019). We, thus, analyzed such expected respective intermolecular interactions in the isolated and structurally characterized three title aggregates in the context of the present study.
2. Structural commentary
In the title compounds (I), (II) and (III) (Figs. 1, 2 and 3), the Br3−, Br2I− and Cl2I− anions are almost or perfectly linear in geometry. For (I), Br1 resides in the centre of inversion symmetry [Br2—Br1—Br2(−x + 1, −y + 1, −z + 1) = 180.0°], with Br1—Br2 distances of 2.53725 (17) Å. The cations, except for their methyl H atoms, are essentially planar [r.m.s. deviation = 0.041 (1) Å for O1]. For (II), the angles and distances of the anion are Br1—I1—Br2 = 177.942 (5)°, I1—Br1 = 2.7244 (2) Å and I1—Br2 = 2.68597 (19) Å. These values are in agreement with data reported in the literature (Gardberg et al., 2002). The cations, except for their methyl H atoms, are again essentially planar [r.m.s. deviations = −0.018 (1) Å for O1 and −0.038 (2) Å for C7]. For (III), I1 resides in the centre of inversion symmetry [Cl1—I1—Cl1(−x + 1, −y + 1, −z + 1) = 180.0°], with distances of I1—Cl1 = 2.53973 (18) Å. The cations, except for their methyl H atoms, are planar and all reside on mirror planes.
In (I), (II) and (III), the O—C and N—C bond distances of the cation all fall between single and double bond values, with C1—N1 = 1.3134 (17) Å and C1—O1 = 1.2786 (16) Å for (I), C1—N1 = 1.3168 (16) Å, C5—N2 = 1.3121 (16) Å, C1—O1 = 1.2771 (15) Å and C5—O2 = 1.2794 (15) Å for (II), and C1—N1 = 1.3161 (8) Å and C1—O1 = 1.2750 (8) Å for (III). The corresponding bond lengths of the three compounds are in good agreement with each other and with the literature.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal of (I), the cations are linked by pairs of C—H⋯O hydrogen bonds (symmetry code: −x + 2, −y + 1, −z + 2), forming inversion dimers with an R22(8) ring motif (Bernstein et al., 1995) (Table 1 and Fig. 4). These dimers also exhibit O—H⋯O hydrogen bonds (symmetry code: −x + 2, −y + 1, −z + 2). Dimerized cation pairs and anions are arranged in columns along the a axis (Figs. 4 and 5). In the crystal of (II), two cations are refined in the These cations are linked by pairs of O—H⋯O and C—H⋯O hydrogen bonds, forming an R44(14) ring motif (Table 2, and Figs. 6 and 7). The groups of cations and anions form columns along the a axis and reside in planes parallel to (011) (Figs. 6 and 7). In the crystal of (III), cations and anions are arranged in columns parallel to the a axis, forming layers parallel to the (020) plane (Table 3, and Figs. 8 and 9). Furthermore, the crystal structures of (I), (II) and (III) are consolidated by strong halogen (Br and/or I and/or Cl)⋯H bonding interactions, Coulombic attraction and weak van der Waals interactions (Tables 4 and 5) between the cations and anions in three dimensions.
|
|
|
|
The O⋯O distances in (I), (II) and (III) are 2.4224 (15), 2.4278 (14) and 2.4261 (9) Å, respectivly, and are thereby within the range (2.31–2.63 Å) found for short/strong classical hydrogen bonds (Hussain & Schlemper, 1980; Behmel et al., 1981).
The Hirshfeld surface analysis and the associated two-dimensional fingerprint plots over the cations of (I), (II) and (III) were carried out and created with CrystalExplorer17.5 (Spackman et al., 2021). A summary of the short interatomic contacts in (I), (II) and (III) is given in Table 4. The two-dimensional fingerprint plots for compounds (I), (II) and (III) are shown in Fig. 10. The principal interatomic interactions for the title compound [Figs. 10(b)–(d) and Table 5] are delineated into H⋯H [57.5% for (I); 60.3% for (II); 88.9% for (III)], Br⋯H/H⋯Br [24.0% for (I); 15.2% for (II)], O⋯H/H⋯O [6.5% for (III)] and O⋯H/H⋯O [13.3% for (I); 12.0% for (II)] and C⋯H/H⋯C [2.0% for (III)] contacts.
The respective differences in the crystal structures of the three title compounds [(I): monoclinic P21/n, Z = 2; (II): triclinic P, Z = 2; (III): monoclinic C2/m, Z = 2], may be the result of small deviations in the interactions arising from the different crystal systems and packing, as well as from the variations in the anions of the compounds.
4. Database survey
A database search was carried out using ConQUEST (Bruno et al., 2002), part of Version 2022.3.0 of the Cambridge Structural Database (Groom et al., 2016). A search for structures with the simultaneous presence of N,N-dimethylacetamide and its respective protonated form resulted in ten hits. Two compounds are deposited twice, so there are only eight related structures known. Compounds closely related to the title compound are: bis[hexakis(N,N-dimethylacetamide-κO)aluminium(III)] bis(N,N-dimethylacetamide)ium heptakis(perchlorate) (CSD refcode DEGBOH; Suzuki & Ishiguro, 2006), hydrogen bis(N,N-dimethylacetamide) tetrachlorogold(III) (HDMAAU; Hussain et al., 1980), hydrogen bis(dimethylacetamide) tribromide [SEGMOG (Gubin et al., 1988) and SEGMOG01 (Mikhailov et al., 1992)].
In the crystal of DEGBOH (space group: monoclinic P21n, Z = 2), the Al3+ ion is surrounded by dma molecules (dma = dimethylacetamide) in an octahedral arrangement. The dma molecules are essentially planar. Three Al—O—C—N torsion angles [138.8 (8)–149.3 (4)°] are found to deviate significantly from 180°. The centrosymmetric cation has the bridging H atom at the centre of inversion. The planar structure is essentially the same as those reported for [H(dma)2]+ cations; the O⋯O distance [2.386 (8) Å] is within the range (2.31–2.63 Å) found for short hydrogen bonds (Hussain & Schlemper, 1980; Behmel et al., 1981).
In the crystal of HDMAAU (space group: monoclinic P21a, Z = 2), the structure consists of distinct [AuCl4]− anions and [H(dma)2]+ cations, with the gold and the bridging H atoms located at centres of symmetry. The hydrogen bond is `symmetrical' as a result of crystallographic requirements. The O⋯O distance is 2.430 (16) Å. Thermal motion analysis indicates that methyl groups attached to nitrogen have higher rotational amplitudes, resulting in short apparent C—H bond lengths [average 0.96 (4) Å] compared with the methyl group attached to a carbonyl C atom which has an average C—H bond length of 1.02 (2) Å.
In the crystal of SEGMOG (space group: monoclinic P21c, Z = 2), two N,N-dimethylacetamide molecules in the are connected to each other by an O—H⋯O hydrogen bond, essentially sharing the central H atom. These molecules and the Br—Br—Br groups are arranged in columns parallel to the a axis. The arrangement is consolidated in the crystal packing by van der Waals interactions between these columns.
In the crystal of SEGMOG01 (space group: monoclinic P21n, Z = 2), the unit-cell parameters and the arrangement of the molecules are relatively similar to the older structure (SEGMOG), while the H atom bridging the the two acetamides was not refined.
5. Synthesis and crystallization
5.1. General procedure
To a solution of dimethylacetamide (9.28 ml, 0.1 mol) in 0.09 mol of 38% hydrochloric or 40% hydrobromic acid under stirring and cooling in an ice–water bath, 0.05 mol iodine monochloride (8.10 g, 0.05 mol), iodine monobromide (10.35 g, 0.05 mol) or bromine (4.00 g, 0.05 mol) was added gradually. The mixture was stirred for 1 h and the crystals were filtered off, dried and recrystallized from methanol to give the target bis(N,N-dimethylacetamide) hydrogen halides as orange colored solids. Single crystals of bis(N,N-dimethylacetamide) hydrogen halides were obtained by slow crystallization from methanol.
5.2. N,N-Dimethylacetamide–1-(dimethyl-λ4-azanylidene)ethan-1-ol tribromide (1/1), (I)
Bright orange crystals (Rodygin et al., 1992; Gubin et al., 1988), yield 81% (16.8 g), m.p. 361–362 K. IR (KBr), ν (cm−1): 1664 (NCO). 1H NMR (700.2 MHz, CDCl3): δ (J, Hz) 12.51 (br s, 1H), 3.28 (s, 3H, NCH3), 3.19 (s, 3H, NCH3), 2.45 (s, 3H, CH3); 13C{1H} NMR (176 MHz, CDCl3): δ 174.5, 39.7, 37.5, 19.9.
5.3. N,N-Dimethylacetamide–1-(dimethyl-λ4-azanylidene)ethan-1-ol dibromidoiodate (1/1), (II)
Bright-orange crystals, yield 44% (10.2 g), m.p. 343–344 K. IR (KBr), ν (cm−1): 1606 (NCO). 1H NMR (700.2 MHz, CDCl3): δ (J, Hz) 10.72 (br s, 1H), 3.28 (s, 3H, NCH3), 3.19 (s, 3H, NCH3), 2.46 (s, 3H, CH3); 13C{1H} NMR (176 MHz, CDCl3): δ 174.6, 39.6, 37.5, 20.1.
5.4. N,N-Dimethylacetamide–1-(dimethyl-λ4-azanylidene)ethan-1-ol dichloridoiodate (1/1), (III)
Bright orange crystals, yield 75% (14 g), m.p. 364–365 K. IR (KBr), ν (cm−1): 1611 (NCO). 1H NMR (700.2 MHz, CDCl3): δ (J, Hz) 9.98 (br s, 1H), 3.25 (s, 3H, NCH3), 3.17 (s, 3H, NCH3), 2.41 (s, 3H, CH3); 13C{1H} NMR (176 MHz, CDCl3): δ 174.2, 39.4, 37.2, 19.8.
6. Refinement
Crystal data, data collection and structure . In compounds (I), (II) and (III), the C-bound H atoms were positioned geometrically, with C—H = 0.98 Å (for methyl H atoms), and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C). The hydroxy H atoms were found in the difference Fourier maps and their coordinates were refined freely, with Uiso(H) = 1.5Ueq(O). In (I), the H atom of the OH group is located in a special position (1.0, 0.5, 1.0) with an occupancy of 0.5 for the rrefined atom. In (II), the H atoms of the OH groups are disordered over two positions, with occupancies of 0.49 and 0.51. In (III), the H atom of the OH group was refined with an occupancy of 0.25 for its position close to an inversion centre in between the O atoms of two acetamides and simultaneously residing on a mirror plane.
details are summarized in Table 6
|
Supporting information
https://doi.org/10.1107/S2056989023005509/yz2034sup1.cif
contains datablocks I, II, III, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023005509/yz2034Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989023005509/yz2034IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989023005509/yz2034IIIsup4.hkl
For all structures, data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C4H9NO·C4H10NO+·Br3− | F(000) = 404 |
Mr = 414.98 | Dx = 1.864 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.9009 (4) Å | Cell parameters from 3187 reflections |
b = 10.3466 (6) Å | θ = 3.0–34.7° |
c = 9.4948 (5) Å | µ = 8.17 mm−1 |
β = 107.703 (2)° | T = 100 K |
V = 739.42 (7) Å3 | Fragment, orange |
Z = 2 | 0.24 × 0.20 × 0.14 mm |
Bruker Kappa APEXII area-detector diffractometer | 2402 reflections with I > 2σ(I) |
ω– and φ–scans | Rint = 0.026 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | θmax = 35.0°, θmin = 4.5° |
Tmin = 0.315, Tmax = 0.394 | h = −12→12 |
11995 measured reflections | k = −16→16 |
3239 independent reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.056 | w = 1/[σ2(Fo2) + (0.0249P)2 + 0.0334P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.002 |
3239 reflections | Δρmax = 0.43 e Å−3 |
73 parameters | Δρmin = −0.78 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.500000 | 0.500000 | 0.500000 | 0.01461 (5) | |
Br2 | 0.26135 (2) | 0.50973 (2) | 0.62805 (2) | 0.02228 (5) | |
O1 | 0.85472 (13) | 0.45244 (10) | 0.98120 (11) | 0.0190 (2) | |
H1 | 1.000000 | 0.500000 | 1.000000 | 0.029* | |
N1 | 0.66034 (15) | 0.29961 (10) | 0.87188 (13) | 0.0153 (2) | |
C1 | 0.80749 (18) | 0.36364 (12) | 0.88341 (15) | 0.0146 (2) | |
C2 | 0.91855 (19) | 0.33325 (14) | 0.78479 (16) | 0.0193 (3) | |
H2A | 1.028724 | 0.383619 | 0.816158 | 0.029* | |
H2B | 0.852428 | 0.355410 | 0.682486 | 0.029* | |
H2C | 0.947123 | 0.240846 | 0.791228 | 0.029* | |
C3 | 0.55467 (19) | 0.32410 (14) | 0.97137 (17) | 0.0198 (3) | |
H3A | 0.624789 | 0.374837 | 1.056242 | 0.030* | |
H3B | 0.521000 | 0.241642 | 1.006057 | 0.030* | |
H3C | 0.447312 | 0.372248 | 0.918561 | 0.030* | |
C4 | 0.5868 (2) | 0.20268 (14) | 0.75764 (17) | 0.0214 (3) | |
H4A | 0.658131 | 0.199738 | 0.689389 | 0.032* | |
H4B | 0.464005 | 0.225520 | 0.703018 | 0.032* | |
H4C | 0.589038 | 0.117778 | 0.803936 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.01420 (9) | 0.01516 (8) | 0.01360 (8) | 0.00133 (6) | 0.00293 (7) | −0.00072 (6) |
Br2 | 0.01914 (8) | 0.02903 (8) | 0.02132 (8) | 0.00196 (6) | 0.01013 (6) | −0.00041 (6) |
O1 | 0.0217 (5) | 0.0179 (4) | 0.0149 (5) | −0.0066 (4) | 0.0018 (4) | −0.0020 (4) |
N1 | 0.0183 (6) | 0.0141 (5) | 0.0135 (5) | −0.0035 (4) | 0.0050 (5) | −0.0023 (4) |
C1 | 0.0168 (6) | 0.0132 (5) | 0.0116 (6) | 0.0002 (5) | 0.0009 (5) | 0.0037 (4) |
C2 | 0.0210 (7) | 0.0196 (6) | 0.0184 (7) | −0.0002 (5) | 0.0078 (6) | 0.0016 (5) |
C3 | 0.0205 (7) | 0.0214 (6) | 0.0200 (7) | −0.0025 (5) | 0.0098 (6) | −0.0021 (5) |
C4 | 0.0255 (7) | 0.0186 (6) | 0.0191 (7) | −0.0073 (5) | 0.0056 (6) | −0.0063 (5) |
Br1—Br2i | 2.5372 (2) | C2—H2B | 0.9800 |
Br1—Br2 | 2.5372 (2) | C2—H2C | 0.9800 |
O1—C1 | 1.2786 (16) | C3—H3A | 0.9800 |
O1—H1 | 1.2112 | C3—H3B | 0.9800 |
N1—C1 | 1.3134 (17) | C3—H3C | 0.9800 |
N1—C3 | 1.4605 (18) | C4—H4A | 0.9800 |
N1—C4 | 1.4618 (18) | C4—H4B | 0.9800 |
C1—C2 | 1.4984 (19) | C4—H4C | 0.9800 |
C2—H2A | 0.9800 | ||
Br2i—Br1—Br2 | 180.0 | H2B—C2—H2C | 109.5 |
C1—O1—H1 | 116.95 | N1—C3—H3A | 109.5 |
C1—N1—C3 | 121.62 (11) | N1—C3—H3B | 109.5 |
C1—N1—C4 | 123.36 (12) | H3A—C3—H3B | 109.5 |
C3—N1—C4 | 115.00 (11) | N1—C3—H3C | 109.5 |
O1—C1—N1 | 118.58 (12) | H3A—C3—H3C | 109.5 |
O1—C1—C2 | 120.50 (12) | H3B—C3—H3C | 109.5 |
N1—C1—C2 | 120.92 (12) | N1—C4—H4A | 109.5 |
C1—C2—H2A | 109.5 | N1—C4—H4B | 109.5 |
C1—C2—H2B | 109.5 | H4A—C4—H4B | 109.5 |
H2A—C2—H2B | 109.5 | N1—C4—H4C | 109.5 |
C1—C2—H2C | 109.5 | H4A—C4—H4C | 109.5 |
H2A—C2—H2C | 109.5 | H4B—C4—H4C | 109.5 |
C3—N1—C1—O1 | −2.46 (19) | C3—N1—C1—C2 | 177.27 (12) |
C4—N1—C1—O1 | 175.52 (13) | C4—N1—C1—C2 | −4.8 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···O1ii | 0.98 | 2.52 | 3.2622 (18) | 132 |
C2—H2B···Br2i | 0.98 | 3.14 | 4.0788 (15) | 162 |
C2—H2C···Br1iii | 0.98 | 3.13 | 3.9596 (14) | 143 |
C3—H3A···Br2iv | 0.98 | 3.10 | 4.0216 (15) | 158 |
C3—H3C···Br2 | 0.98 | 3.05 | 3.8847 (15) | 143 |
O1—H1···O1ii | 1.21 | 1.21 | 2.4224 (15) | 180 |
C3—H3A···O1 | 0.98 | 2.29 | 2.6940 (19) | 104 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+2; (iii) −x+3/2, y−1/2, −z+3/2; (iv) −x+1, −y+1, −z+2. |
C4H9NO·C4H10NO−·Br2I− | Z = 2 |
Mr = 461.97 | F(000) = 440 |
Triclinic, P1 | Dx = 2.004 Mg m−3 |
a = 7.2943 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.9544 (4) Å | Cell parameters from 9984 reflections |
c = 13.6097 (7) Å | θ = 2.9–35.2° |
α = 90.645 (2)° | µ = 7.30 mm−1 |
β = 103.651 (2)° | T = 100 K |
γ = 93.656 (2)° | Fragment, orange |
V = 765.51 (6) Å3 | 0.14 × 0.08 × 0.06 mm |
Bruker Kappa APEXII area-detector diffractometer | 5446 reflections with I > 2σ(I) |
ω– and φ–scans | Rint = 0.021 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | θmax = 35.2°, θmin = 4.3° |
Tmin = 0.515, Tmax = 0.669 | h = −11→11 |
30601 measured reflections | k = −12→12 |
6766 independent reflections | l = −22→21 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.019 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.038 | w = 1/[σ2(Fo2) + (0.0119P)2 + 0.2374P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
6766 reflections | Δρmax = 0.52 e Å−3 |
149 parameters | Δρmin = −0.62 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
I1 | 0.65027 (2) | 0.18015 (2) | 0.21358 (2) | 0.01710 (2) | |
Br1 | 0.80118 (2) | 0.33097 (2) | 0.06912 (2) | 0.02346 (3) | |
Br2 | 0.51412 (2) | 0.02963 (2) | 0.35979 (2) | 0.02157 (3) | |
O1 | 0.20994 (14) | 0.43799 (12) | 0.57436 (7) | 0.01964 (19) | |
H1 | 0.187 (6) | 0.388 (6) | 0.617 (3) | 0.029* | 0.49 (4) |
O2 | 0.10583 (13) | 0.27819 (13) | 0.70454 (7) | 0.02121 (19) | |
H2 | 0.151 (5) | 0.325 (6) | 0.659 (3) | 0.032* | 0.51 (4) |
N1 | 0.22672 (15) | 0.45877 (13) | 0.41323 (8) | 0.01563 (19) | |
N2 | 0.14789 (15) | 0.19762 (14) | 0.86403 (8) | 0.0168 (2) | |
C1 | 0.17805 (16) | 0.37110 (15) | 0.48569 (9) | 0.0147 (2) | |
C2 | 0.08734 (19) | 0.19621 (16) | 0.46499 (10) | 0.0204 (2) | |
H2A | 0.080500 | 0.143984 | 0.529020 | 0.031* | |
H2B | 0.162652 | 0.129403 | 0.430349 | 0.031* | |
H2C | −0.040553 | 0.200696 | 0.422060 | 0.031* | |
C3 | 0.31786 (18) | 0.62905 (16) | 0.43360 (10) | 0.0198 (2) | |
H3A | 0.354648 | 0.651700 | 0.506798 | 0.030* | |
H3B | 0.229380 | 0.711180 | 0.401612 | 0.030* | |
H3C | 0.430563 | 0.638270 | 0.406042 | 0.030* | |
C4 | 0.1909 (2) | 0.39725 (18) | 0.30812 (10) | 0.0215 (3) | |
H4A | 0.104320 | 0.295852 | 0.298507 | 0.032* | |
H4B | 0.310488 | 0.370162 | 0.292695 | 0.032* | |
H4C | 0.134030 | 0.484580 | 0.262824 | 0.032* | |
C5 | 0.21588 (17) | 0.26890 (15) | 0.79243 (9) | 0.0155 (2) | |
C6 | 0.41829 (18) | 0.33486 (16) | 0.81159 (10) | 0.0192 (2) | |
H6A | 0.438604 | 0.396328 | 0.752644 | 0.029* | |
H6B | 0.500151 | 0.240498 | 0.823484 | 0.029* | |
H6C | 0.448650 | 0.410935 | 0.871198 | 0.029* | |
C7 | −0.0468 (2) | 0.12246 (19) | 0.84285 (11) | 0.0243 (3) | |
H7A | −0.107738 | 0.135459 | 0.771288 | 0.036* | |
H7B | −0.117410 | 0.179306 | 0.884927 | 0.036* | |
H7C | −0.045456 | 0.002396 | 0.858179 | 0.036* | |
C8 | 0.2581 (2) | 0.18213 (19) | 0.96814 (10) | 0.0236 (3) | |
H8A | 0.382190 | 0.242901 | 0.976432 | 0.035* | |
H8B | 0.274782 | 0.062886 | 0.982492 | 0.035* | |
H8C | 0.191026 | 0.230260 | 1.015097 | 0.035* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.01763 (4) | 0.01708 (3) | 0.01549 (4) | 0.00366 (3) | 0.00121 (3) | −0.00183 (3) |
Br1 | 0.02527 (7) | 0.02855 (7) | 0.01748 (7) | 0.00332 (5) | 0.00655 (5) | −0.00017 (5) |
Br2 | 0.02328 (7) | 0.01921 (6) | 0.02211 (7) | 0.00054 (5) | 0.00536 (5) | 0.00173 (5) |
O1 | 0.0235 (5) | 0.0221 (4) | 0.0133 (4) | 0.0003 (4) | 0.0045 (4) | 0.0014 (3) |
O2 | 0.0171 (4) | 0.0323 (5) | 0.0145 (4) | 0.0026 (4) | 0.0038 (4) | 0.0061 (4) |
N1 | 0.0139 (5) | 0.0185 (4) | 0.0143 (5) | 0.0007 (4) | 0.0031 (4) | 0.0021 (4) |
N2 | 0.0175 (5) | 0.0207 (5) | 0.0125 (5) | 0.0015 (4) | 0.0040 (4) | 0.0017 (4) |
C1 | 0.0113 (5) | 0.0178 (5) | 0.0146 (5) | 0.0026 (4) | 0.0020 (4) | 0.0022 (4) |
C2 | 0.0220 (6) | 0.0181 (5) | 0.0202 (6) | −0.0019 (5) | 0.0039 (5) | 0.0016 (5) |
C3 | 0.0168 (6) | 0.0189 (5) | 0.0227 (6) | −0.0016 (4) | 0.0030 (5) | 0.0038 (5) |
C4 | 0.0237 (7) | 0.0266 (6) | 0.0148 (6) | 0.0022 (5) | 0.0059 (5) | 0.0006 (5) |
C5 | 0.0164 (5) | 0.0161 (5) | 0.0149 (5) | 0.0043 (4) | 0.0047 (4) | 0.0006 (4) |
C6 | 0.0182 (6) | 0.0213 (5) | 0.0180 (6) | 0.0003 (4) | 0.0043 (5) | 0.0013 (5) |
C7 | 0.0194 (6) | 0.0337 (7) | 0.0208 (7) | −0.0019 (5) | 0.0075 (5) | 0.0031 (5) |
C8 | 0.0270 (7) | 0.0292 (7) | 0.0133 (6) | 0.0001 (5) | 0.0027 (5) | 0.0039 (5) |
I1—Br2 | 2.6860 (2) | C3—H3A | 0.9800 |
I1—Br1 | 2.7243 (2) | C3—H3B | 0.9800 |
O1—C1 | 1.2771 (15) | C3—H3C | 0.9800 |
O1—H1 | 0.75 (5) | C4—H4A | 0.9800 |
O2—C5 | 1.2794 (15) | C4—H4B | 0.9800 |
O2—H2 | 0.85 (5) | C4—H4C | 0.9800 |
N1—C1 | 1.3168 (16) | C5—C6 | 1.4965 (18) |
N1—C3 | 1.4640 (16) | C6—H6A | 0.9800 |
N1—C4 | 1.4648 (17) | C6—H6B | 0.9800 |
N2—C5 | 1.3121 (16) | C6—H6C | 0.9800 |
N2—C8 | 1.4656 (17) | C7—H7A | 0.9800 |
N2—C7 | 1.4673 (17) | C7—H7B | 0.9800 |
C1—C2 | 1.4961 (17) | C7—H7C | 0.9800 |
C2—H2A | 0.9800 | C8—H8A | 0.9800 |
C2—H2B | 0.9800 | C8—H8B | 0.9800 |
C2—H2C | 0.9800 | C8—H8C | 0.9800 |
Br2—I1—Br1 | 177.942 (6) | H4A—C4—H4B | 109.5 |
C1—O1—H1 | 120 (3) | N1—C4—H4C | 109.5 |
C5—O2—H2 | 118 (3) | H4A—C4—H4C | 109.5 |
C1—N1—C3 | 120.94 (11) | H4B—C4—H4C | 109.5 |
C1—N1—C4 | 123.49 (11) | O2—C5—N2 | 118.46 (12) |
C3—N1—C4 | 115.55 (10) | O2—C5—C6 | 120.28 (11) |
C5—N2—C8 | 123.75 (11) | N2—C5—C6 | 121.25 (11) |
C5—N2—C7 | 120.94 (11) | C5—C6—H6A | 109.5 |
C8—N2—C7 | 115.28 (11) | C5—C6—H6B | 109.5 |
O1—C1—N1 | 118.77 (11) | H6A—C6—H6B | 109.5 |
O1—C1—C2 | 120.38 (11) | C5—C6—H6C | 109.5 |
N1—C1—C2 | 120.84 (11) | H6A—C6—H6C | 109.5 |
C1—C2—H2A | 109.5 | H6B—C6—H6C | 109.5 |
C1—C2—H2B | 109.5 | N2—C7—H7A | 109.5 |
H2A—C2—H2B | 109.5 | N2—C7—H7B | 109.5 |
C1—C2—H2C | 109.5 | H7A—C7—H7B | 109.5 |
H2A—C2—H2C | 109.5 | N2—C7—H7C | 109.5 |
H2B—C2—H2C | 109.5 | H7A—C7—H7C | 109.5 |
N1—C3—H3A | 109.5 | H7B—C7—H7C | 109.5 |
N1—C3—H3B | 109.5 | N2—C8—H8A | 109.5 |
H3A—C3—H3B | 109.5 | N2—C8—H8B | 109.5 |
N1—C3—H3C | 109.5 | H8A—C8—H8B | 109.5 |
H3A—C3—H3C | 109.5 | N2—C8—H8C | 109.5 |
H3B—C3—H3C | 109.5 | H8A—C8—H8C | 109.5 |
N1—C4—H4A | 109.5 | H8B—C8—H8C | 109.5 |
N1—C4—H4B | 109.5 | ||
C3—N1—C1—O1 | 0.75 (17) | C8—N2—C5—O2 | −178.76 (12) |
C4—N1—C1—O1 | −177.75 (11) | C7—N2—C5—O2 | 3.09 (18) |
C3—N1—C1—C2 | −179.15 (11) | C8—N2—C5—C6 | 2.56 (19) |
C4—N1—C1—C2 | 2.35 (18) | C7—N2—C5—C6 | −175.59 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2 | 0.75 (5) | 1.69 (5) | 2.4278 (13) | 173 (4) |
O2—H2···O1 | 0.85 (5) | 1.59 (5) | 2.4278 (14) | 170 (4) |
C2—H2A···O2 | 0.98 | 2.57 | 3.2872 (17) | 130 |
C2—H2B···Br2 | 0.98 | 3.09 | 4.0105 (14) | 158 |
C2—H2C···I1i | 0.98 | 3.18 | 4.0838 (14) | 155 |
C3—H3A···Br2ii | 0.98 | 3.07 | 3.8153 (14) | 134 |
C3—H3B···O2iii | 0.98 | 2.54 | 3.3481 (16) | 140 |
C4—H4A···I1i | 0.98 | 3.31 | 4.1081 (14) | 140 |
C6—H6A···O1 | 0.98 | 2.64 | 3.3630 (16) | 131 |
C6—H6C···Br1ii | 0.98 | 3.06 | 3.7331 (14) | 128 |
C7—H7B···Br1iv | 0.98 | 2.97 | 3.8980 (15) | 159 |
C8—H8A···Br1v | 0.98 | 3.05 | 3.9722 (15) | 157 |
C3—H3A···O1 | 0.98 | 2.26 | 2.6878 (16) | 105 |
C7—H7A···O2 | 0.98 | 2.24 | 2.6801 (18) | 106 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z+1; (iv) x−1, y, z+1; (v) x, y, z+1. |
C4H9NO·C4H10NO−·Cl2I− | F(000) = 368 |
Mr = 373.05 | Dx = 1.683 Mg m−3 |
Monoclinic, C2/m | Mo Kα radiation, λ = 0.71073 Å |
a = 10.5264 (3) Å | Cell parameters from 9986 reflections |
b = 6.7261 (2) Å | θ = 3.6–35.1° |
c = 10.8124 (3) Å | µ = 2.53 mm−1 |
β = 105.950 (1)° | T = 100 K |
V = 736.06 (4) Å3 | Fragment, orange |
Z = 2 | 0.20 × 0.18 × 0.14 mm |
Bruker Kappa APEXII area-detector diffractometer | 1745 reflections with I > 2σ(I) |
ω– and φ–scans | Rint = 0.014 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | θmax = 35.2°, θmin = 4.4° |
Tmin = 0.630, Tmax = 0.719 | h = −16→16 |
13071 measured reflections | k = −10→10 |
1745 independent reflections | l = −17→16 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.008 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.022 | w = 1/[σ2(Fo2) + (0.0153P)2 + 0.0381P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.003 |
1745 reflections | Δρmax = 0.46 e Å−3 |
52 parameters | Δρmin = −0.25 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
I1 | 0.500000 | 0.500000 | 0.500000 | 0.01617 (2) | |
Cl1 | 0.60222 (2) | 0.500000 | 0.74187 (2) | 0.02093 (3) | |
O1 | 0.60066 (6) | 0.000000 | 0.96603 (6) | 0.02505 (10) | |
H1 | 0.543 (3) | 0.000000 | 0.977 (3) | 0.038* | 0.5 |
N1 | 0.70175 (6) | 0.000000 | 0.81090 (6) | 0.01741 (9) | |
C1 | 0.59151 (7) | 0.000000 | 0.84597 (6) | 0.01742 (10) | |
C2 | 0.45979 (7) | 0.000000 | 0.74807 (8) | 0.02291 (12) | |
H2A | 0.390193 | −0.021971 | 0.790959 | 0.034* | 0.5 |
H2B | 0.457166 | −0.106447 | 0.685527 | 0.034* | 0.5 |
H2C | 0.445707 | 0.128418 | 0.703565 | 0.034* | 0.5 |
C3 | 0.82909 (8) | 0.000000 | 0.90856 (8) | 0.02547 (13) | |
H3A | 0.824028 | 0.085866 | 0.980273 | 0.038* | 0.5 |
H3B | 0.897594 | 0.049926 | 0.870861 | 0.038* | 0.5 |
H3C | 0.851076 | −0.135792 | 0.940046 | 0.038* | 0.5 |
C4 | 0.70493 (8) | 0.000000 | 0.67698 (7) | 0.02212 (12) | |
H4A | 0.622560 | 0.056849 | 0.623015 | 0.033* | 0.5 |
H4B | 0.714477 | −0.136724 | 0.649508 | 0.033* | 0.5 |
H4C | 0.779897 | 0.079874 | 0.668365 | 0.033* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.01526 (3) | 0.01688 (3) | 0.01778 (3) | 0.000 | 0.00693 (2) | 0.000 |
Cl1 | 0.02127 (7) | 0.02325 (7) | 0.01802 (6) | 0.000 | 0.00499 (5) | 0.000 |
O1 | 0.0226 (2) | 0.0357 (3) | 0.0204 (2) | 0.000 | 0.01195 (19) | 0.000 |
N1 | 0.0170 (2) | 0.0189 (2) | 0.0187 (2) | 0.000 | 0.00881 (18) | 0.000 |
C1 | 0.0173 (2) | 0.0164 (2) | 0.0208 (2) | 0.000 | 0.0090 (2) | 0.000 |
C2 | 0.0176 (3) | 0.0254 (3) | 0.0260 (3) | 0.000 | 0.0065 (2) | 0.000 |
C3 | 0.0172 (3) | 0.0356 (4) | 0.0242 (3) | 0.000 | 0.0067 (2) | 0.000 |
C4 | 0.0235 (3) | 0.0260 (3) | 0.0201 (3) | 0.000 | 0.0113 (2) | 0.000 |
I1—Cl1 | 2.5398 (2) | C2—H2Cii | 0.980 (10) |
I1—Cl1i | 2.5398 (2) | C3—H3A | 0.9800 |
O1—C1 | 1.2750 (8) | C3—H3B | 0.9800 |
O1—H1 | 0.64 (3) | C3—H3C | 0.9800 |
N1—C1 | 1.3161 (8) | C3—H3Aii | 0.980 (9) |
N1—C4 | 1.4576 (9) | C3—H3Bii | 0.980 (6) |
N1—C3 | 1.4608 (10) | C3—H3Cii | 0.980 (3) |
C1—C2 | 1.4955 (10) | C4—H4A | 0.9800 |
C2—H2A | 0.9800 | C4—H4B | 0.9800 |
C2—H2B | 0.9800 | C4—H4C | 0.9800 |
C2—H2C | 0.9800 | C4—H4Aii | 0.980 (7) |
C2—H2Aii | 0.980 (5) | C4—H4Bii | 0.9800 (17) |
C2—H2Bii | 0.980 (15) | C4—H4Cii | 0.980 (8) |
Cl1—I1—Cl1i | 180.0 | H3A—C3—H3Aii | 72.2 |
C1—O1—H1 | 112 (3) | H3B—C3—H3Aii | 137.5 |
C1—N1—C4 | 123.30 (6) | H3C—C3—H3Aii | 40.1 |
C1—N1—C3 | 119.89 (6) | N1—C3—H3Bii | 109.47 (14) |
C4—N1—C3 | 116.81 (6) | H3A—C3—H3Bii | 137.5 |
O1—C1—N1 | 117.87 (7) | H3B—C3—H3Bii | 40.1 |
O1—C1—C2 | 121.10 (6) | H3C—C3—H3Bii | 72.2 |
N1—C1—C2 | 121.02 (6) | H3Aii—C3—H3Bii | 109.5 |
C1—C2—H2A | 109.5 | N1—C3—H3Cii | 109.47 (6) |
C1—C2—H2B | 109.5 | H3A—C3—H3Cii | 40.1 |
H2A—C2—H2B | 109.5 | H3B—C3—H3Cii | 72.2 |
C1—C2—H2C | 109.5 | H3C—C3—H3Cii | 137.5 |
H2A—C2—H2C | 109.5 | H3Aii—C3—H3Cii | 109.5 |
H2B—C2—H2C | 109.5 | H3Bii—C3—H3Cii | 109.5 |
C1—C2—H2Aii | 109.47 (11) | N1—C4—H4A | 109.5 |
H2B—C2—H2Aii | 123.6 | N1—C4—H4B | 109.5 |
H2C—C2—H2Aii | 93.9 | H4A—C4—H4B | 109.5 |
C1—C2—H2Bii | 109.5 (3) | N1—C4—H4C | 109.5 |
H2A—C2—H2Bii | 123.6 | H4A—C4—H4C | 109.5 |
H2B—C2—H2Bii | 93.9 | H4B—C4—H4C | 109.5 |
H2C—C2—H2Bii | 17.3 | N1—C4—H4Aii | 109.47 (15) |
H2Aii—C2—H2Bii | 109.5 | H4A—C4—H4Aii | 45.9 |
C1—C2—H2Cii | 109.5 (2) | H4B—C4—H4Aii | 66.5 |
H2A—C2—H2Cii | 93.9 | H4C—C4—H4Aii | 139.6 |
H2B—C2—H2Cii | 17.3 | N1—C4—H4Bii | 109.47 (3) |
H2C—C2—H2Cii | 123.6 | H4A—C4—H4Bii | 66.5 |
H2Aii—C2—H2Cii | 109.5 | H4B—C4—H4Bii | 139.6 |
H2Bii—C2—H2Cii | 109.5 | H4C—C4—H4Bii | 45.9 |
N1—C3—H3A | 109.5 | H4Aii—C4—H4Bii | 109.5 |
N1—C3—H3B | 109.5 | N1—C4—H4Cii | 109.47 (18) |
H3A—C3—H3B | 109.5 | H4A—C4—H4Cii | 139.6 |
N1—C3—H3C | 109.5 | H4B—C4—H4Cii | 45.9 |
H3A—C3—H3C | 109.5 | H4C—C4—H4Cii | 66.5 |
H3B—C3—H3C | 109.5 | H4Aii—C4—H4Cii | 109.5 |
N1—C3—H3Aii | 109.5 (2) | H4Bii—C4—H4Cii | 109.5 |
C4—N1—C1—O1 | 180.000 (1) | C4—N1—C1—C2 | 0.000 (1) |
C3—N1—C1—O1 | 0.000 (1) | C3—N1—C1—C2 | 180.000 (1) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O1iii | 0.64 (3) | 1.79 (3) | 2.4261 (11) | 170 (4) |
C2—H2A···Cl1iv | 0.98 | 2.93 | 3.7461 (8) | 141 |
C2—H2A···O1iii | 0.98 | 2.61 | 3.3230 (9) | 130 |
C2—H2C···Cl1 | 0.98 | 2.96 | 3.6902 (3) | 132 |
C3—H3A···Cl1v | 0.98 | 2.95 | 3.6479 (9) | 129 |
C3—H3B···Cl1vi | 0.98 | 2.89 | 3.7897 (8) | 153 |
C3—H3C···O1vii | 0.98 | 2.65 | 3.6256 (4) | 176 |
Symmetry codes: (iii) −x+1, −y, −z+2; (iv) x−1/2, y−1/2, z; (v) −x+3/2, −y+1/2, −z+2; (vi) x+1/2, y−1/2, z; (vii) −x+3/2, −y−1/2, −z+2. |
Contact | Distance | Symmetry operation |
(I) | ||
H1···O1 | 1.61 | -x+2, -y+1, -z+2 |
O1···H4B | 2.73 | x+1/2, -y+1/2, z+1/2 |
C2···H4C | 3.06 | -x+3/2, y+1/2, -z+3/2 |
C2···H3B | 3.09 | x+1/2, -y+1/2, z-1/2 |
H2A···Br2 | 3.21 | x+1, y, z |
H3C···Br2 | 3.05 | x, y, z |
H2C···Br1 | 3.13 | -x+3/2, y-1/2, -z+3/2 |
H3A···Br2 | 3.09 | -x+1, -y+1, -z+2 |
H4C···Br2 | 3.23 | -x+1/2, y-1/2, -z+3/2 |
Br2···H2B | 3.14 | -x+1, -y+1, -z+1 |
(II) | ||
H1···H2 | 0.86 | x, y, z |
C1···O1 | 3.24 | -x, -y+1, -z+1 |
H3C···O1 | 2.68 | -x+1, -y+1, -z+1 |
H2A···H2A | 2.54 | -x, -y, -z+1 |
H3C···Br2 | 3.23 | x, y+1, z |
H2B···Br2 | 3.09 | x, y, z |
H2C···I1 | 3.18 | x-1, y, z |
H3A···Br2 | 3.07 | -x+1, -y+1, -z+1 |
H3C···H6A | 2.58 | -x+1, -y+1, -z+1 |
O2···H3B | 2.54 | -x, -y+1, -z+1 |
H8B···Br1 | 3.19 | -x+1, -y, -z+1 |
H6C···Br1 | 3.06 | -x+1, -y+1, -z+1 |
H8A···Br1 | 3.05 | x, y, z+1 |
H7B···Br1 | 2.97 | x-1, y, z+1 |
(III) | ||
H1···O1 | 1.79 | -x+1, y, -z+2 |
H3C···O1 | 2.65 | -x+3/2, y-1/2, -z+2 |
H4B···Cl1 | 3.00 | x, y-1, z |
H2C···Cl1 | 2.96 | x, y, z |
C3···C3 | 2.60 | -x+2, y, -z+2 |
H3A···Cl1 | 2.95 | -x+3/2, y-1/2, -z+2 |
H2A···Cl1 | 2.93 | x-1/2, y-1/2, z |
H2C···H4C | 2.58 | x-1/2, y+1/2, z |
H3B···Cl1 | 2.89 | x+1/2, y-1/2, z |
I1···H4A | 3.37 | -x+1, y, -z+1 |
I1···H4C | 3.36 | -x+3/2, y+1/2, -z+1 |
Contact | (I) (%) | (II) (%) | (III) (%) |
H···H | 57.5 | 60.3 | 88.9 |
Br···H/H···Br | 24.0 | 15.2 | - |
O···H/H···O | 13.3 | 12.0 | 6.5 |
C···H/H···C | 3.0 | 2.7 | 2.0 |
Br···N/N···Br | 1.0 | - | - |
N···H/H···N | 0.9 | 2.4 | 0.8 |
Br···C/C···Br | 0.5 | - | - |
I···H/H···I | - | 4.7 | - |
O···C/C···O | - | 2.2 | - |
O···N/N···O | - | 0.3 | - |
O···O | - | 0.1 | - |
Cl···N/N···Cl | - | - | 0.8 |
Cl···C/C···Cl | - | - | 0.7 |
Cl···H/H···Cl | - | - | 0.4 |
Acknowledgements
The contributions of the authors are as follows: conceptualization, MA and AB; synthesis, DFM, DMS and MSG; X-ray analysis, GZM, MA, and SÖY; writing (review and editing of the manuscript) MA and AB; funding acquisition, GZM, DFM, DMS and MSG; supervision, MA and AB.
Funding information
GMZ thanks Baku State University for financial support. This publication was supported by the Russian Science Foundation (https://rscf.ru/project/22-73-00127/).
References
Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. Web of Science CSD CrossRef IUCr Journals Google Scholar
Abdel-Wahab, M. F. & Barakat, M. Z. (1957). Monatsh. Chem. 88, 692–701. CAS Google Scholar
Behmel, P., Clegg, W., Sheldrick, G. M., Weber, G. & Ziegler, M. (1981). J. Mol. Struct. 74, 19–28. CSD CrossRef CAS Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Buckles, R. E., Johnson, R. C. & Probst, W. J. (1957). J. Org. Chem. 22, 55–59. CrossRef CAS Web of Science Google Scholar
Burakov, N. I., Kanibolotskii, A. L., Osichenko, G. Yu., Mikhailov, V. A., Savelova, V. A. & Kosmynin, V. V. (2001). Russ. J. Org. Chem. 37, 1210–1219. Web of Science CrossRef CAS Google Scholar
Farook, N. A. M. (2006). J. Iran. Chem. Soc. 3, 378–386. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gardberg, A. S., Yang, S., Hoffman, B. M. & Ibers, J. A. (2002). Inorg. Chem. 41, 1778–1781. Web of Science CSD CrossRef PubMed CAS Google Scholar
Groebel, W. (1960). Chem. Ber. 93, 284–285. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gubin, A. I., Buranbaev, M. Zh., Kostynyuk, V. P., Kopot', O. I. & Il'in, A. I. (1988). Kristallografiya (Russ.) (Crystallogr. Rep.), 33, 1393–1395. CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019–1031. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932–3940. Web of Science CSD CrossRef CAS Google Scholar
Horner, L. & Winkelmann, E. H. (1959). Angew. Chem. 71, 349–365. CrossRef CAS Web of Science Google Scholar
Hussain, M. S. & Schlemper, E. O. (1980). J. Chem. Soc. Dalton Trans. pp. 750–755. CSD CrossRef Web of Science Google Scholar
Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761. Web of Science CrossRef Google Scholar
Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017). Mol. Catal. 428, 17–23. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859. Web of Science CrossRef Google Scholar
Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. 2017, 4763–4772. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159–165. Web of Science CSD CrossRef CAS Google Scholar
Mertsalov, D. F., Nadirova, M. A., Chervyakova, L. V., Grigoriev, M. S., Shelukho, E. R., Çelikesir, S. T., Akkurt, M. & Mlowe, S. (2021a). Acta Cryst. E77, 237–241. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mertsalov, D. F., Zaytsev, V. P., Pokazeev, K. M., Grigoriev, M. S., Bachinsky, A. V., Çelikesir, S. T., Akkurt, M. & Mlowe, S. (2021b). Acta Cryst. E77, 255–259. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mikhailov, V. A., Savelova, V. A. & Rodygin, M. Yu. (1993). Zh. Org. Khim. 29, 2251–2254. CAS Google Scholar
Mikhailov, V. A., Yufit, D. S. & Struchkov, Yu. T. (1992). Zh. Obshch. Khim. 62, 399–405. CAS Google Scholar
Prokop'eva, T. M., Mikhailov, V. A., Turovskaya, M. K., Karpichev, E. A., Burakov, N. I., Savelova, V. A., Kapitanov, I. V. & Popov, A. F. (2008). Russ. J. Org. Chem. 44, 637–646. CAS Google Scholar
Ramachandrappa, R., Puttaswamy, Mayanna, S. M. & Made Gowda, N. M. (1998). Int. J. Chem. Kinet. 30, 407–414. Web of Science CrossRef CAS Google Scholar
Rodygin, M. Yu., Mikhailov, V. A. & Savelova, V. A. (1994a). Zh. Org. Khim. 30, 827–832. CAS Google Scholar
Rodygin, M. Yu., Mikhailov, V. A., Savelova, V. A. & Chernovol, P. A. (1992). Zh. Org. Khim. 28, 1926–1927. CAS Google Scholar
Rodygin, M. Yu., Mikhailov, V. A., Zurbritskii, M. Yu. & Savelova, V. A. (1994b). Zh. Org. Khim. 30, 339–343. CAS Google Scholar
Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038. Web of Science CSD CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stuart, M. C., Kouimtzi, M. & Hill, S. R. (2009). WHO model formulary 2008, edited by M. C. Stuart, M. Kouimtzi & S. R. Hill, pp. 321–323. Geneva: World Health Organization. https://apps.who.int/iris/handle/10665/44053. Google Scholar
Sui, X.-F., Yuan, J.-Y., Zhou, M. & He, Y.-H. (2006). Chin. J. Org. Chem. 26, 1518–1524. CAS Google Scholar
Suzuki, H. & Ishiguro, S. (2006). Acta Cryst. E62, m576–m578. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zaugg, H. E. (1954). J. Am. Chem. Soc. 76, 5818–5819. Google Scholar
Zaytsev, V. P., Revutskaya, E. L., Nikanorova, T. V., Nikitina, E. V., Dorovatovskii, P. V., Khrustalev, V. N., Yagafarov, N. Z., Zubkov, F. I. & Varlamov, A. V. (2017). Synthesis, 49, 3749–3767. Web of Science CSD CrossRef CAS Google Scholar
Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.