research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and Hirshfeld surface analyses of N,N-di­methyl­acetamide–1-(di­methyl-λ4-aza­nyl­­idene)ethan-1-ol tribromide (1/1), N,N-di­methyl­acetamide–1-(di­methyl-λ4-aza­nyl­­idene)ethan-1-ol di­bromido­iodate (1/1) and N,N-di­methyl­acetamide–1-(di­methyl-λ4-aza­nyl­­idene)ethan-1-ol di­chlorido­iodate (1/1)

crossmark logo

aOrganic Chemistry Department, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, cFrumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31, bld. 4, Moscow 119071, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, eDepartment of Physics, Faculty of Science, Eskisehir Technical University, Yunus Emre Campus, 26470 Eskisehir, Türkiye, and fDepartment of Chemistry, M.M.A.M.C., Tribhuvan University, Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by C. Schulzke, Universität Greifswald, Germany (Received 8 May 2023; accepted 22 June 2023; online 4 July 2023)

In the title compounds, N,N-di­methyl­acetamide–1-(dimethyl-λ4-aza­nyl­idene)ethan-1-ol tribromide (1/1), C4H9NO·C4H10NO+·Br3 or [(C4H9NO)·(C4H10NO)](Br3), (I), N,N-di­methyl­acetamide–1-(dimethyl-λ4-aza­nyl­idene)ethan-1-ol di­bromido­iodate (1/1), C4H9NO·C4H10NO+·Br2I or [(C4H9NO)·(C4H10NO)](Br2I), (II), and N,N-di­methyl­acetamide–1-(dimethyl-λ4-aza­nyl­idene)ethan-1-ol di­chlorido­iodate (1/1), C4H9NO·C4H10NO+·Cl2I or [(C4H9NO)·(C4H10NO)]·(Cl2I), (III), all the anions are almost linear in geometry and all the cations, except for the methyl H atoms, are essentially planar. In the crystal structure of (I), the cations are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) ring motif. These dimers also exhibit O—H⋯O hydrogen bonding. Dimerized cation pairs and anions are arranged in columns along the a axis. In the crystal of (II), the cations are linked by pairs of O—H⋯O and C—H⋯O hydrogen bonds, forming an R44(14) ring motif. These groups of cations and the anions form individual columns along the a axis and jointly reside in planes roughly parallel to (011). In the crystal of (III), cations and anions also form columns parallel to the a axis, resulting in layers parallel to the (020) plane. Furthermore, the crystal structures of (I), (II) and (III) are consolidated by strong halogen (Br and/or I and/or Cl)⋯H and weak van der Waals inter­actions. In addition to the structural evaluation, a Hirshfeld surface analysis was carried out.

1. Chemical context

Halogenation is a chemical reaction that involves the introduction of one or more halogen atoms to an organic compound. Usually, either direct replacement of hydrogen by a halogen atom or addition of a halogen mol­ecule to double and triple bonds are used. The pathway and stereochemistry of halogenation reactions are strongly dependent on the halogenating agent. However, halogens and inter­halogens are very harmful to health. An effective source of active halogen should be a safe solid substance well soluble in different solvents, with a low pressure of halogen vapour and high content of the active halogen. As a source of halogens, mol­ecular complexes with N- and O-nucleophiles are widely used. However, the N-halogen succinimides slowly decompose when stored and are poorly soluble in some solvents, while the mol­ecular complexes of halogens with N- and O-nucleophiles (for instance, dioxane dibromide or complexes with pyridine) are short-lived (Abdell-Wahab et al., 1957[Abdel-Wahab, M. F. & Barakat, M. Z. (1957). Monatsh. Chem. 88, 692-701.]; Horner et al., 1959[Horner, L. & Winkelmann, E. H. (1959). Angew. Chem. 71, 349-365.]; Zaugg et al., 1954[Zaugg, H. E. (1954). J. Am. Chem. Soc. 76, 5818-5819.]; Buckles et al., 1957[Buckles, R. E., Johnson, R. C. & Probst, W. J. (1957). J. Org. Chem. 22, 55-59.]; Ramachandrappa et al., 1998[Ramachandrappa, R., Puttaswamy, Mayanna, S. M. & Made Gowda, N. M. (1998). Int. J. Chem. Kinet. 30, 407-414.]; Groebel et al., 1960[Groebel, W. (1960). Chem. Ber. 93, 284-285.]; Mohamed Farook et al., 2006[Farook, N. A. M. (2006). J. Iran. Chem. Soc. 3, 378-386.]; Sui et al., 2006[Sui, X.-F., Yuan, J.-Y., Zhou, M. & He, Y.-H. (2006). Chin. J. Org. Chem. 26, 1518-1524.]). In this context, we synthesized inexpensive and readily available bis­(N,N-di­methyl­acetamide) hydrogen tri­halides as halogenation agents and source of positively charged halogen ions (Rodygin et al., 1992[Rodygin, M. Yu., Mikhailov, V. A., Savelova, V. A. & Chernovol, P. A. (1992). Zh. Org. Khim. 28, 1926-1927.]; Prokop'eva et al., 2008[Prokop'eva, T. M., Mikhailov, V. A., Turovskaya, M. K., Karpichev, E. A., Burakov, N. I., Savelova, V. A., Kapitanov, I. V. & Popov, A. F. (2008). Russ. J. Org. Chem. 44, 637-646.]). The amide complexes with halogens are excellent reagents for the functionalization of phenols and anilines (Rodygin et al., 1992[Rodygin, M. Yu., Mikhailov, V. A., Savelova, V. A. & Chernovol, P. A. (1992). Zh. Org. Khim. 28, 1926-1927.]; Mikhailov et al., 1993[Mikhailov, V. A., Savelova, V. A. & Rodygin, M. Yu. (1993). Zh. Org. Khim. 29, 2251-2254.]; Safavora et al., 2019[Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183-1185.]). They are also used in the synthesis of mono-halogen-substituted ketones (Rodygin et al., 1994a[Rodygin, M. Yu., Mikhailov, V. A. & Savelova, V. A. (1994a). Zh. Org. Khim. 30, 827-832.]; Burakov et al., 2001[Burakov, N. I., Kanibolotskii, A. L., Osichenko, G. Yu., Mikhailov, V. A., Savelova, V. A. & Kosmynin, V. V. (2001). Russ. J. Org. Chem. 37, 1210-1219.]; Abdelhamid et al., 2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.]; Khalilov et al., 2021[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.]) and the halogenation of various alkenes, alkynes (Rodygin et al., 1994b[Rodygin, M. Yu., Mikhailov, V. A., Zurbritskii, M. Yu. & Savelova, V. A. (1994b). Zh. Org. Khim. 30, 339-343.]) and bridged ep­oxy-isoindolones (Zaytsev et al., 2017[Zaytsev, V. P., Revutskaya, E. L., Nikanorova, T. V., Nikitina, E. V., Dorovatovskii, P. V., Khrustalev, V. N., Yagafarov, N. Z., Zubkov, F. I. & Varlamov, A. V. (2017). Synthesis, 49, 3749-3767.]; Zubkov et al., 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]; Mertsalov et al., 2021a[Mertsalov, D. F., Nadirova, M. A., Chervyakova, L. V., Grigoriev, M. S., Shelukho, E. R., Çelikesir, S. T., Akkurt, M. & Mlowe, S. (2021a). Acta Cryst. E77, 237-241.],b[Mertsalov, D. F., Zaytsev, V. P., Pokazeev, K. M., Grigoriev, M. S., Bachinsky, A. V., Çelikesir, S. T., Akkurt, M. & Mlowe, S. (2021b). Acta Cryst. E77, 255-259.]). The most famous amide complex, i.e. Povidone-iodine (PVP-I), also known as iodo­povidone, is an anti­septic used for skin disinfection before and after surgery (Stuart et al., 2009[Stuart, M. C., Kouimtzi, M. & Hill, S. R. (2009). WHO model formulary 2008, edited by M. C. Stuart, M. Kouimtzi & S. R. Hill, pp. 321-323. Geneva: World Health Organization. https://apps.who.int/iris/handle/10665/44053.]). Moreover, noncovalent inter­actions play critical roles in synthesis and catalysis, as well as in forming supra­molecular structures due to their significant contribution to the self-assembly process (Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.],b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833-14837.], 2022a[Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019-1031.],b[Gurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932-3940.]; Ma et al., 2017[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017). Mol. Catal. 428, 17-23.], 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Mahmoudi et al., 2017a[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192-205.],b[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. 2017, 4763-4772.]; Mahmudov et al., 2011[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159-165.], 2022[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.]). Similar to hydrogen bonding, the halogen bond has also been used in the design of materials (Shikhaliyev et al., 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]). We, thus, analyzed such expected respective inter­molecular inter­actions in the isolated and structurally characterized three title aggregates in the context of the present study.

[Scheme 1]

2. Structural commentary

In the title compounds (I), (II) and (III) (Figs. 1[link], 2[link] and 3[link]), the Br3, Br2I and Cl2I anions are almost or perfectly linear in geometry. For (I), Br1 resides in the centre of inversion symmetry [Br2—Br1—Br2(−x + 1, −y + 1, −z + 1) = 180.0°], with Br1—Br2 distances of 2.53725 (17) Å. The cations, except for their methyl H atoms, are essentially planar [r.m.s. deviation = 0.041 (1) Å for O1]. For (II), the angles and distances of the anion are Br1—I1—Br2 = 177.942 (5)°, I1—Br1 = 2.7244 (2) Å and I1—Br2 = 2.68597 (19) Å. These values are in agreement with data reported in the literature (Gardberg et al., 2002[Gardberg, A. S., Yang, S., Hoffman, B. M. & Ibers, J. A. (2002). Inorg. Chem. 41, 1778-1781.]). The cations, except for their methyl H atoms, are again essentially planar [r.m.s. deviations = −0.018 (1) Å for O1 and −0.038 (2) Å for C7]. For (III), I1 resides in the centre of inversion symmetry [Cl1—I1—Cl1(−x + 1, −y + 1, −z + 1) = 180.0°], with distances of I1—Cl1 = 2.53973 (18) Å. The cations, except for their methyl H atoms, are planar and all reside on mirror planes.

[Figure 1]
Figure 1
The mol­ecular structure of (I), with displacement ellipsoids for the non-H atoms drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of (II), with displacement ellipsoids for the non-H atoms drawn at the 50% probability level. Symmetry codes: (_a) −x + 1, −y + 1, −z + 1; (_b) −x + 2, −y + 1, −z + 2.
[Figure 3]
Figure 3
The mol­ecular structure of (III), with displacement ellipsoids for the non-H atoms drawn at the 50% probability level. Symmetry code: (_a) −x + 1, y, −z + 1.

In (I), (II) and (III), the O—C and N—C bond distances of the cation all fall between single and double bond values, with C1—N1 = 1.3134 (17) Å and C1—O1 = 1.2786 (16) Å for (I), C1—N1 = 1.3168 (16) Å, C5—N2 = 1.3121 (16) Å, C1—O1 = 1.2771 (15) Å and C5—O2 = 1.2794 (15) Å for (II), and C1—N1 = 1.3161 (8) Å and C1—O1 = 1.2750 (8) Å for (III). The corresponding bond lengths of the three compounds are in good agreement with each other and with the literature.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal of (I), the cations are linked by pairs of C—H⋯O hydrogen bonds (symmetry code: −x + 2, −y + 1, −z + 2), forming inversion dimers with an R22(8) ring motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) (Table 1[link] and Fig. 4[link]). These dimers also exhibit O—H⋯O hydrogen bonds (symmetry code: −x + 2, −y + 1, −z + 2). Dimerized cation pairs and anions are arranged in columns along the a axis (Figs. 4[link] and 5[link]). In the crystal of (II), two cations are refined in the asymmetric unit. These cations are linked by pairs of O—H⋯O and C—H⋯O hydrogen bonds, forming an R44(14) ring motif (Table 2[link], and Figs. 6[link] and 7[link]). The groups of cations and anions form columns along the a axis and reside in planes parallel to (011) (Figs. 6[link] and 7[link]). In the crystal of (III), cations and anions are arranged in columns parallel to the a axis, forming layers parallel to the (020) plane (Table 3[link], and Figs. 8[link] and 9[link]). Furthermore, the crystal structures of (I), (II) and (III) are consolidated by strong halogen (Br and/or I and/or Cl)⋯H bonding inter­actions, Coulombic attraction and weak van der Waals inter­actions (Tables 4[link] and 5[link]) between the cations and anions in three dimensions.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O1i 0.98 2.52 3.2622 (18) 132
C2—H2B⋯Br2ii 0.98 3.14 4.0788 (15) 162
C2—H2C⋯Br1iii 0.98 3.13 3.9596 (14) 143
C3—H3A⋯Br2iv 0.98 3.10 4.0216 (15) 158
C3—H3C⋯Br2 0.98 3.05 3.8847 (15) 143
O1—H1⋯O1i 1.21 1.21 2.4224 (15) 180
Symmetry codes: (i) [-x+2, -y+1, -z+2]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, -y+1, -z+2].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.75 (5) 1.69 (5) 2.4278 (13) 173 (4)
O2—H2⋯O1 0.85 (5) 1.59 (5) 2.4278 (14) 170 (4)
C2—H2A⋯O2 0.98 2.57 3.2872 (17) 130
C2—H2B⋯Br2 0.98 3.09 4.0105 (14) 158
C2—H2C⋯I1i 0.98 3.18 4.0838 (14) 155
C3—H3A⋯Br2ii 0.98 3.07 3.8153 (14) 134
C3—H3B⋯O2iii 0.98 2.54 3.3481 (16) 140
C4—H4A⋯I1i 0.98 3.31 4.1081 (14) 140
C6—H6A⋯O1 0.98 2.64 3.3630 (16) 131
C6—H6C⋯Br1ii 0.98 3.06 3.7331 (14) 128
C7—H7B⋯Br1iv 0.98 2.97 3.8980 (15) 159
C8—H8A⋯Br1v 0.98 3.05 3.9722 (15) 157
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x, -y+1, -z+1]; (iv) [x-1, y, z+1]; (v) x, y, z+1.

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.64 (3) 1.79 (3) 2.4261 (11) 170 (4)
C2—H2A⋯Cl1ii 0.98 2.93 3.7461 (8) 141
C2—H2A⋯O1i 0.98 2.61 3.3230 (9) 130
C2—H2C⋯Cl1 0.98 2.96 3.6902 (3) 132
C3—H3A⋯Cl1iii 0.98 2.95 3.6479 (9) 129
C3—H3B⋯Cl1iv 0.98 2.89 3.7897 (8) 153
C3—H3C⋯O1v 0.98 2.65 3.6256 (4) 176
Symmetry codes: (i) [-x+1, -y, -z+2]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iv) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (v) [-x+{\script{3\over 2}}, -y-{\script{1\over 2}}, -z+2].

Table 4
Summary of short inter­atomic contacts (Å) in (I), (II) and (III)

Contact Distance Symmetry operation
(I)    
H1⋯O1 1.61 x + 2, −y + 1, −z + 2
O1⋯H4B 2.73 x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]
C2⋯H4C 3.06 x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}]
C2⋯H3B 3.09 x + [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]
H2A⋯Br2 3.21 x + 1, y, z
H3C⋯Br2 3.05 x, y, z
H2C⋯Br1 3.13 x + [{3\over 2}], y − [{1\over 2}], −z + [{3\over 2}]
H3A⋯Br2 3.09 x + 1, −y + 1, −z + 2
H4C⋯Br2 3.23 x + [{1\over 2}], y − [{1\over 2}], −z + [{3\over 2}]
Br2⋯H2B 3.14 x + 1, −y + 1, −z + 1
     
(II)    
H1⋯H2 0.86 x, y, z
C1⋯O1 3.24 x, −y + 1, −z + 1
H3C⋯O1 2.68 x + 1, −y + 1, −z + 1
H2A⋯H2A 2.54 x, −y, −z + 1
H3C⋯Br2 3.23 x, y + 1, z
H2B⋯Br2 3.09 x, y, z
H2C⋯I1 3.18 x − 1, y, z
H3A⋯Br2 3.07 x + 1, −y + 1, −z + 1
H3C⋯H6A 2.58 x + 1, −y + 1, −z + 1
O2⋯H3B 2.54 x, −y + 1, −z + 1
H8B⋯Br1 3.19 x + 1, −y, −z + 1
H6C⋯Br1 3.06 x + 1, −y + 1, −z + 1
H8A⋯Br1 3.05 x, y, z + 1
H7B⋯Br1 2.97 x − 1, y, z + 1
     
(III)    
H1⋯O1 1.79 x + 1, y, −z + 2
H3C⋯O1 2.65 x + [{3\over 2}], y − [{1\over 2}], −z + 2
H4B⋯Cl1 3.00 x, y − 1, z
H2C⋯Cl1 2.96 x, y, z
C3⋯C3 2.60 x + 2, y, −z + 2
H3A⋯Cl1 2.95 x + [{3\over 2}], y − [{1\over 2}], −z + 2
H2A⋯Cl1 2.93 x − [{1\over 2}], y − [{1\over 2}], z
H2C⋯H4C 2.58 x − [{1\over 2}], y + [{1\over 2}], z
H3B⋯Cl1 2.89 x + [{1\over 2}], y − [{1\over 2}], z
I1⋯H4A 3.37 x + 1, y, −z + 1
I1⋯H4C 3.36 x + [{3\over 2}], y + [{1\over 2}], −z + 1

Table 5
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I), (II) and (III)

Contact (I) (%) (II) (%) (III) (%)
H⋯H 57.5 60.3 88.9
Br⋯H/H⋯Br 24.0 15.2
O⋯H/H⋯O 13.3 12.0 6.5
C⋯H/H⋯C 3.0 2.7 2.0
Br⋯N/N⋯Br 1.0
N⋯H/H⋯N 0.9 2.4 0.8
Br⋯C/C⋯Br 0.5
I⋯H/H⋯I 4.7
O⋯C/C⋯O 2.2
O⋯N/N⋯O 0.3
O⋯O 0.1
Cl⋯N/N⋯Cl 0.8
Cl⋯C/C⋯Cl 0.7
Cl⋯H/H⋯Cl 0.4
[Figure 4]
Figure 4
A view along the a axis of the O—H⋯O and C—H⋯O inter­actions in the crystal structure of (I)[link].
[Figure 5]
Figure 5
A view along the c axis of the O—H⋯O and C—H⋯O inter­actions in the crystal structure of (I)[link].
[Figure 6]
Figure 6
A view along the a axis of the O—H⋯O and C—H⋯O inter­actions in the crystal structure of (II)[link].
[Figure 7]
Figure 7
A view along the b axis of the O—H⋯O and C—H⋯O inter­actions in the crystal structure of (II)[link].
[Figure 8]
Figure 8
A view along the a axis of the O—H⋯O inter­actions in the crystal structure of (III)[link].
[Figure 9]
Figure 9
A view along the c axis of the O—H⋯O inter­actions in the crystal structure of (III)[link].

The O⋯O distances in (I), (II) and (III) are 2.4224 (15), 2.4278 (14) and 2.4261 (9) Å, respectivly, and are thereby within the range (2.31–2.63 Å) found for short/strong classical hydrogen bonds (Hussain & Schlemper, 1980[Hussain, M. S. & Schlemper, E. O. (1980). J. Chem. Soc. Dalton Trans. pp. 750-755.]; Behmel et al., 1981[Behmel, P., Clegg, W., Sheldrick, G. M., Weber, G. & Ziegler, M. (1981). J. Mol. Struct. 74, 19-28.]).

The Hirshfeld surface analysis and the associated two-dimensional fingerprint plots over the cations of (I), (II) and (III) were carried out and created with CrystalExplorer17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). A summary of the short inter­atomic contacts in (I), (II) and (III) is given in Table 4[link]. The two-dimensional fingerprint plots for compounds (I), (II) and (III) are shown in Fig. 10[link]. The principal inter­atomic inter­actions for the title compound [Figs. 10[link](b)–(d) and Table 5[link]] are delineated into H⋯H [57.5% for (I); 60.3% for (II); 88.9% for (III)], Br⋯H/H⋯Br [24.0% for (I); 15.2% for (II)], O⋯H/H⋯O [6.5% for (III)] and O⋯H/H⋯O [13.3% for (I); 12.0% for (II)] and C⋯H/H⋯C [2.0% for (III)] contacts.

[Figure 10]
Figure 10
A view of the two-dimensional fingerprint plots for compounds (I), (II) and (III), showing (a) all inter­actions, and separated into (b) H⋯H, (c) Br⋯H/H⋯Br for (I) and (II), O⋯H/H⋯O for (III) and (d) O⋯H/H⋯O for (I) and (II), C⋯H/H⋯C for (III) inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The respective differences in the crystal structures of the three title compounds [(I): space group, monoclinic P21/n, Z = 2; (II): space group, triclinic P[\overline{1}], Z = 2; (III): space group, monoclinic C2/m, Z = 2], may be the result of small deviations in the inter­actions arising from the different crystal systems and packing, as well as from the variations in the anions of the compounds.

4. Database survey

A database search was carried out using ConQUEST (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), part of Version 2022.3.0 of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). A search for structures with the simultaneous presence of N,N-di­methyl­acetamide and its respective protonated form resulted in ten hits. Two compounds are deposited twice, so there are only eight related structures known. Compounds closely related to the title compound are: bis­[hexa­kis­(N,N-di­methyl­acetamide-κO)aluminium(III)] bis­(N,N-di­methyl­acetamide)­ium hepta­kis­(perchlorate) (CSD refcode DEGBOH; Suzuki & Ishiguro, 2006[Suzuki, H. & Ishiguro, S. (2006). Acta Cryst. E62, m576-m578.]), hydrogen bis­(N,N-di­methyl­acetamide) tetra­chloro­gold(III) (HDMAAU; Hussain et al., 1980[Hussain, M. S. & Schlemper, E. O. (1980). J. Chem. Soc. Dalton Trans. pp. 750-755.]), hydrogen bis­(di­methyl­acetamide) tribromide [SEGMOG (Gubin et al., 1988[Gubin, A. I., Buranbaev, M. Zh., Kostynyuk, V. P., Kopot', O. I. & Il'in, A. I. (1988). Kristallografiya (Russ.) (Crystallogr. Rep.), 33, 1393-1395.]) and SEGMOG01 (Mikhailov et al., 1992[Mikhailov, V. A., Yufit, D. S. & Struchkov, Yu. T. (1992). Zh. Obshch. Khim. 62, 399-405.])].

In the crystal of DEGBOH (space group: monoclinic P21n, Z = 2), the Al3+ ion is surrounded by dma mol­ecules (dma = di­methyl­acetamide) in an octa­hedral arrangement. The dma mol­ecules are essentially planar. Three Al—O—C—N torsion angles [138.8 (8)–149.3 (4)°] are found to deviate significantly from 180°. The centrosymmetric cation has the bridging H atom at the centre of inversion. The planar structure is essentially the same as those reported for [H(dma)2]+ cations; the O⋯O distance [2.386 (8) Å] is within the range (2.31–2.63 Å) found for short hydrogen bonds (Hussain & Schlemper, 1980[Hussain, M. S. & Schlemper, E. O. (1980). J. Chem. Soc. Dalton Trans. pp. 750-755.]; Behmel et al., 1981[Behmel, P., Clegg, W., Sheldrick, G. M., Weber, G. & Ziegler, M. (1981). J. Mol. Struct. 74, 19-28.]).

In the crystal of HDMAAU (space group: monoclinic P21a, Z = 2), the structure consists of distinct [AuCl4] anions and [H(dma)2]+ cations, with the gold and the bridging H atoms located at centres of symmetry. The hydrogen bond is `symmetrical' as a result of crystallographic requirements. The O⋯O distance is 2.430 (16) Å. Thermal motion analysis indicates that methyl groups attached to nitro­gen have higher rotational amplitudes, resulting in short apparent C—H bond lengths [average 0.96 (4) Å] compared with the methyl group attached to a carbonyl C atom which has an average C—H bond length of 1.02 (2) Å.

In the crystal of SEGMOG (space group: monoclinic P21c, Z = 2), two N,N-di­methyl­acetamide mol­ecules in the asymmetric unit are connected to each other by an O—H⋯O hydrogen bond, essentially sharing the central H atom. These mol­ecules and the Br—Br—Br groups are arranged in columns parallel to the a axis. The arrangement is consolidated in the crystal packing by van der Waals inter­actions between these columns.

In the crystal of SEGMOG01 (space group: monoclinic P21n, Z = 2), the unit-cell parameters and the arrangement of the mol­ecules are relatively similar to the older structure (SEGMOG), while the H atom bridging the the two acetamides was not refined.

5. Synthesis and crystallization

5.1. General procedure

To a solution of di­methyl­acetamide (9.28 ml, 0.1 mol) in 0.09 mol of 38% hydro­chloric or 40% hydro­bromic acid under stirring and cooling in an ice–water bath, 0.05 mol iodine monochloride (8.10 g, 0.05 mol), iodine monobromide (10.35 g, 0.05 mol) or bromine (4.00 g, 0.05 mol) was added gradually. The mixture was stirred for 1 h and the crystals were filtered off, dried and recrystallized from methanol to give the target bis­(N,N-di­methyl­acetamide) hydrogen halides as orange colored solids. Single crystals of bis­(N,N-di­methyl­acetamide) hydrogen halides were obtained by slow crystallization from methanol.

5.2. N,N-Di­methyl­acetamide–1-(dimethyl-λ4-aza­nyl­idene)ethan-1-ol tribromide (1/1), (I)

Bright orange crystals (Rodygin et al., 1992[Rodygin, M. Yu., Mikhailov, V. A., Savelova, V. A. & Chernovol, P. A. (1992). Zh. Org. Khim. 28, 1926-1927.]; Gubin et al., 1988[Gubin, A. I., Buranbaev, M. Zh., Kostynyuk, V. P., Kopot', O. I. & Il'in, A. I. (1988). Kristallografiya (Russ.) (Crystallogr. Rep.), 33, 1393-1395.]), yield 81% (16.8 g), m.p. 361–362 K. IR (KBr), ν (cm−1): 1664 (NCO). 1H NMR (700.2 MHz, CDCl3): δ (J, Hz) 12.51 (br s, 1H), 3.28 (s, 3H, NCH3), 3.19 (s, 3H, NCH3), 2.45 (s, 3H, CH3); 13C{1H} NMR (176 MHz, CDCl3): δ 174.5, 39.7, 37.5, 19.9.

5.3. N,N-Di­methyl­acetamide–1-(dimethyl-λ4-aza­nyl­idene)ethan-1-ol di­bromido­iodate (1/1), (II)

Bright-orange crystals, yield 44% (10.2 g), m.p. 343–344 K. IR (KBr), ν (cm−1): 1606 (NCO). 1H NMR (700.2 MHz, CDCl3): δ (J, Hz) 10.72 (br s, 1H), 3.28 (s, 3H, NCH3), 3.19 (s, 3H, NCH3), 2.46 (s, 3H, CH3); 13C{1H} NMR (176 MHz, CDCl3): δ 174.6, 39.6, 37.5, 20.1.

5.4. N,N-Di­methyl­acetamide–1-(dimethyl-λ4-aza­nyl­idene)ethan-1-ol di­chlorido­iodate (1/1), (III)

Bright orange crystals, yield 75% (14 g), m.p. 364–365 K. IR (KBr), ν (cm−1): 1611 (NCO). 1H NMR (700.2 MHz, CDCl3): δ (J, Hz) 9.98 (br s, 1H), 3.25 (s, 3H, NCH3), 3.17 (s, 3H, NCH3), 2.41 (s, 3H, CH3); 13C{1H} NMR (176 MHz, CDCl3): δ 174.2, 39.4, 37.2, 19.8.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. In compounds (I), (II) and (III), the C-bound H atoms were positioned geometrically, with C—H = 0.98 Å (for methyl H atoms), and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C). The hy­droxy H atoms were found in the difference Fourier maps and their coordinates were refined freely, with Uiso(H) = 1.5Ueq(O). In (I), the H atom of the OH group is located in a special position (1.0, 0.5, 1.0) with an occupancy of 0.5 for the rrefined atom. In (II), the H atoms of the OH groups are disordered over two positions, with occupancies of 0.49 and 0.51. In (III), the H atom of the OH group was refined with an occupancy of 0.25 for its position close to an inversion centre in between the O atoms of two acetamides and simultaneously residing on a mirror plane.

Table 6
Experimental details

For all structures: Z = 2. Experiments were carried out at 100 K with Mo Kα radiation using a Bruker Kappa APEXII area-detector diffractometer. Absorption was corrected for by multi-scan methods (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]).

  (I) (II) (III)
Crystal data
Chemical formula C4H9NO·C4H10NO+·Br3 C4H9NO·C4H10NO+·Br2I C4H9NO·C4H10NO+·Cl2I
Mr 414.98 461.97 373.05
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}] Monoclinic, C2/m
a, b, c (Å) 7.9009 (4), 10.3466 (6), 9.4948 (5) 7.2943 (3), 7.9544 (4), 13.6097 (7) 10.5264 (3), 6.7261 (2), 10.8124 (3)
α, β, γ (°) 90, 107.703 (2), 90 90.645 (2), 103.651 (2), 93.656 (2) 90, 105.950 (1), 90
V3) 739.42 (7) 765.51 (6) 736.06 (4)
μ (mm−1) 8.17 7.30 2.53
Crystal size (mm) 0.24 × 0.20 × 0.14 0.14 × 0.08 × 0.06 0.20 × 0.18 × 0.14
 
Data collection
Tmin, Tmax 0.315, 0.394 0.515, 0.669 0.630, 0.719
No. of measured, independent and observed [I > 2σ(I)] reflections 11995, 3239, 2402 30601, 6766, 5446 13071, 1745, 1745
Rint 0.026 0.021 0.014
(sin θ/λ)max−1) 0.807 0.811 0.811
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.056, 1.01 0.019, 0.038, 1.03 0.008, 0.022, 1.06
No. of reflections 3239 6766 1745
No. of parameters 73 149 52
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.43, −0.78 0.52, −0.62 0.46, −0.26
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

For all structures, data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

N,N-Dimethylacetamide–1-(dimethyl-λ4-azanylidene)ethan-1-ol tribromide (1/1) (I) top
Crystal data top
C4H9NO·C4H10NO+·Br3F(000) = 404
Mr = 414.98Dx = 1.864 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.9009 (4) ÅCell parameters from 3187 reflections
b = 10.3466 (6) Åθ = 3.0–34.7°
c = 9.4948 (5) ŵ = 8.17 mm1
β = 107.703 (2)°T = 100 K
V = 739.42 (7) Å3Fragment, orange
Z = 20.24 × 0.20 × 0.14 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
2402 reflections with I > 2σ(I)
ω– and φ–scansRint = 0.026
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 35.0°, θmin = 4.5°
Tmin = 0.315, Tmax = 0.394h = 1212
11995 measured reflectionsk = 1616
3239 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0249P)2 + 0.0334P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
3239 reflectionsΔρmax = 0.43 e Å3
73 parametersΔρmin = 0.78 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.5000000.5000000.5000000.01461 (5)
Br20.26135 (2)0.50973 (2)0.62805 (2)0.02228 (5)
O10.85472 (13)0.45244 (10)0.98120 (11)0.0190 (2)
H11.0000000.5000001.0000000.029*
N10.66034 (15)0.29961 (10)0.87188 (13)0.0153 (2)
C10.80749 (18)0.36364 (12)0.88341 (15)0.0146 (2)
C20.91855 (19)0.33325 (14)0.78479 (16)0.0193 (3)
H2A1.0287240.3836190.8161580.029*
H2B0.8524280.3554100.6824860.029*
H2C0.9471230.2408460.7912280.029*
C30.55467 (19)0.32410 (14)0.97137 (17)0.0198 (3)
H3A0.6247890.3748371.0562420.030*
H3B0.5210000.2416421.0060570.030*
H3C0.4473120.3722480.9185610.030*
C40.5868 (2)0.20268 (14)0.75764 (17)0.0214 (3)
H4A0.6581310.1997380.6893890.032*
H4B0.4640050.2255200.7030180.032*
H4C0.5890380.1177780.8039360.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01420 (9)0.01516 (8)0.01360 (8)0.00133 (6)0.00293 (7)0.00072 (6)
Br20.01914 (8)0.02903 (8)0.02132 (8)0.00196 (6)0.01013 (6)0.00041 (6)
O10.0217 (5)0.0179 (4)0.0149 (5)0.0066 (4)0.0018 (4)0.0020 (4)
N10.0183 (6)0.0141 (5)0.0135 (5)0.0035 (4)0.0050 (5)0.0023 (4)
C10.0168 (6)0.0132 (5)0.0116 (6)0.0002 (5)0.0009 (5)0.0037 (4)
C20.0210 (7)0.0196 (6)0.0184 (7)0.0002 (5)0.0078 (6)0.0016 (5)
C30.0205 (7)0.0214 (6)0.0200 (7)0.0025 (5)0.0098 (6)0.0021 (5)
C40.0255 (7)0.0186 (6)0.0191 (7)0.0073 (5)0.0056 (6)0.0063 (5)
Geometric parameters (Å, º) top
Br1—Br2i2.5372 (2)C2—H2B0.9800
Br1—Br22.5372 (2)C2—H2C0.9800
O1—C11.2786 (16)C3—H3A0.9800
O1—H11.2112C3—H3B0.9800
N1—C11.3134 (17)C3—H3C0.9800
N1—C31.4605 (18)C4—H4A0.9800
N1—C41.4618 (18)C4—H4B0.9800
C1—C21.4984 (19)C4—H4C0.9800
C2—H2A0.9800
Br2i—Br1—Br2180.0H2B—C2—H2C109.5
C1—O1—H1116.95N1—C3—H3A109.5
C1—N1—C3121.62 (11)N1—C3—H3B109.5
C1—N1—C4123.36 (12)H3A—C3—H3B109.5
C3—N1—C4115.00 (11)N1—C3—H3C109.5
O1—C1—N1118.58 (12)H3A—C3—H3C109.5
O1—C1—C2120.50 (12)H3B—C3—H3C109.5
N1—C1—C2120.92 (12)N1—C4—H4A109.5
C1—C2—H2A109.5N1—C4—H4B109.5
C1—C2—H2B109.5H4A—C4—H4B109.5
H2A—C2—H2B109.5N1—C4—H4C109.5
C1—C2—H2C109.5H4A—C4—H4C109.5
H2A—C2—H2C109.5H4B—C4—H4C109.5
C3—N1—C1—O12.46 (19)C3—N1—C1—C2177.27 (12)
C4—N1—C1—O1175.52 (13)C4—N1—C1—C24.8 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1ii0.982.523.2622 (18)132
C2—H2B···Br2i0.983.144.0788 (15)162
C2—H2C···Br1iii0.983.133.9596 (14)143
C3—H3A···Br2iv0.983.104.0216 (15)158
C3—H3C···Br20.983.053.8847 (15)143
O1—H1···O1ii1.211.212.4224 (15)180
C3—H3A···O10.982.292.6940 (19)104
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+2; (iii) x+3/2, y1/2, z+3/2; (iv) x+1, y+1, z+2.
N,N-Dimethylacetamide–1-(dimethyl-λ4-azanylidene)ethan-1-ol dibromidoiodate (1/1) (II) top
Crystal data top
C4H9NO·C4H10NO·Br2IZ = 2
Mr = 461.97F(000) = 440
Triclinic, P1Dx = 2.004 Mg m3
a = 7.2943 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.9544 (4) ÅCell parameters from 9984 reflections
c = 13.6097 (7) Åθ = 2.9–35.2°
α = 90.645 (2)°µ = 7.30 mm1
β = 103.651 (2)°T = 100 K
γ = 93.656 (2)°Fragment, orange
V = 765.51 (6) Å30.14 × 0.08 × 0.06 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
5446 reflections with I > 2σ(I)
ω– and φ–scansRint = 0.021
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 35.2°, θmin = 4.3°
Tmin = 0.515, Tmax = 0.669h = 1111
30601 measured reflectionsk = 1212
6766 independent reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.038 w = 1/[σ2(Fo2) + (0.0119P)2 + 0.2374P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6766 reflectionsΔρmax = 0.52 e Å3
149 parametersΔρmin = 0.62 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.65027 (2)0.18015 (2)0.21358 (2)0.01710 (2)
Br10.80118 (2)0.33097 (2)0.06912 (2)0.02346 (3)
Br20.51412 (2)0.02963 (2)0.35979 (2)0.02157 (3)
O10.20994 (14)0.43799 (12)0.57436 (7)0.01964 (19)
H10.187 (6)0.388 (6)0.617 (3)0.029*0.49 (4)
O20.10583 (13)0.27819 (13)0.70454 (7)0.02121 (19)
H20.151 (5)0.325 (6)0.659 (3)0.032*0.51 (4)
N10.22672 (15)0.45877 (13)0.41323 (8)0.01563 (19)
N20.14789 (15)0.19762 (14)0.86403 (8)0.0168 (2)
C10.17805 (16)0.37110 (15)0.48569 (9)0.0147 (2)
C20.08734 (19)0.19621 (16)0.46499 (10)0.0204 (2)
H2A0.0805000.1439840.5290200.031*
H2B0.1626520.1294030.4303490.031*
H2C0.0405530.2006960.4220600.031*
C30.31786 (18)0.62905 (16)0.43360 (10)0.0198 (2)
H3A0.3546480.6517000.5067980.030*
H3B0.2293800.7111800.4016120.030*
H3C0.4305630.6382700.4060420.030*
C40.1909 (2)0.39725 (18)0.30812 (10)0.0215 (3)
H4A0.1043200.2958520.2985070.032*
H4B0.3104880.3701620.2926950.032*
H4C0.1340300.4845800.2628240.032*
C50.21588 (17)0.26890 (15)0.79243 (9)0.0155 (2)
C60.41829 (18)0.33486 (16)0.81159 (10)0.0192 (2)
H6A0.4386040.3963280.7526440.029*
H6B0.5001510.2404980.8234840.029*
H6C0.4486500.4109350.8711980.029*
C70.0468 (2)0.12246 (19)0.84285 (11)0.0243 (3)
H7A0.1077380.1354590.7712880.036*
H7B0.1174100.1793060.8849270.036*
H7C0.0454560.0023960.8581790.036*
C80.2581 (2)0.18213 (19)0.96814 (10)0.0236 (3)
H8A0.3821900.2429010.9764320.035*
H8B0.2747820.0628860.9824920.035*
H8C0.1910260.2302601.0150970.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01763 (4)0.01708 (3)0.01549 (4)0.00366 (3)0.00121 (3)0.00183 (3)
Br10.02527 (7)0.02855 (7)0.01748 (7)0.00332 (5)0.00655 (5)0.00017 (5)
Br20.02328 (7)0.01921 (6)0.02211 (7)0.00054 (5)0.00536 (5)0.00173 (5)
O10.0235 (5)0.0221 (4)0.0133 (4)0.0003 (4)0.0045 (4)0.0014 (3)
O20.0171 (4)0.0323 (5)0.0145 (4)0.0026 (4)0.0038 (4)0.0061 (4)
N10.0139 (5)0.0185 (4)0.0143 (5)0.0007 (4)0.0031 (4)0.0021 (4)
N20.0175 (5)0.0207 (5)0.0125 (5)0.0015 (4)0.0040 (4)0.0017 (4)
C10.0113 (5)0.0178 (5)0.0146 (5)0.0026 (4)0.0020 (4)0.0022 (4)
C20.0220 (6)0.0181 (5)0.0202 (6)0.0019 (5)0.0039 (5)0.0016 (5)
C30.0168 (6)0.0189 (5)0.0227 (6)0.0016 (4)0.0030 (5)0.0038 (5)
C40.0237 (7)0.0266 (6)0.0148 (6)0.0022 (5)0.0059 (5)0.0006 (5)
C50.0164 (5)0.0161 (5)0.0149 (5)0.0043 (4)0.0047 (4)0.0006 (4)
C60.0182 (6)0.0213 (5)0.0180 (6)0.0003 (4)0.0043 (5)0.0013 (5)
C70.0194 (6)0.0337 (7)0.0208 (7)0.0019 (5)0.0075 (5)0.0031 (5)
C80.0270 (7)0.0292 (7)0.0133 (6)0.0001 (5)0.0027 (5)0.0039 (5)
Geometric parameters (Å, º) top
I1—Br22.6860 (2)C3—H3A0.9800
I1—Br12.7243 (2)C3—H3B0.9800
O1—C11.2771 (15)C3—H3C0.9800
O1—H10.75 (5)C4—H4A0.9800
O2—C51.2794 (15)C4—H4B0.9800
O2—H20.85 (5)C4—H4C0.9800
N1—C11.3168 (16)C5—C61.4965 (18)
N1—C31.4640 (16)C6—H6A0.9800
N1—C41.4648 (17)C6—H6B0.9800
N2—C51.3121 (16)C6—H6C0.9800
N2—C81.4656 (17)C7—H7A0.9800
N2—C71.4673 (17)C7—H7B0.9800
C1—C21.4961 (17)C7—H7C0.9800
C2—H2A0.9800C8—H8A0.9800
C2—H2B0.9800C8—H8B0.9800
C2—H2C0.9800C8—H8C0.9800
Br2—I1—Br1177.942 (6)H4A—C4—H4B109.5
C1—O1—H1120 (3)N1—C4—H4C109.5
C5—O2—H2118 (3)H4A—C4—H4C109.5
C1—N1—C3120.94 (11)H4B—C4—H4C109.5
C1—N1—C4123.49 (11)O2—C5—N2118.46 (12)
C3—N1—C4115.55 (10)O2—C5—C6120.28 (11)
C5—N2—C8123.75 (11)N2—C5—C6121.25 (11)
C5—N2—C7120.94 (11)C5—C6—H6A109.5
C8—N2—C7115.28 (11)C5—C6—H6B109.5
O1—C1—N1118.77 (11)H6A—C6—H6B109.5
O1—C1—C2120.38 (11)C5—C6—H6C109.5
N1—C1—C2120.84 (11)H6A—C6—H6C109.5
C1—C2—H2A109.5H6B—C6—H6C109.5
C1—C2—H2B109.5N2—C7—H7A109.5
H2A—C2—H2B109.5N2—C7—H7B109.5
C1—C2—H2C109.5H7A—C7—H7B109.5
H2A—C2—H2C109.5N2—C7—H7C109.5
H2B—C2—H2C109.5H7A—C7—H7C109.5
N1—C3—H3A109.5H7B—C7—H7C109.5
N1—C3—H3B109.5N2—C8—H8A109.5
H3A—C3—H3B109.5N2—C8—H8B109.5
N1—C3—H3C109.5H8A—C8—H8B109.5
H3A—C3—H3C109.5N2—C8—H8C109.5
H3B—C3—H3C109.5H8A—C8—H8C109.5
N1—C4—H4A109.5H8B—C8—H8C109.5
N1—C4—H4B109.5
C3—N1—C1—O10.75 (17)C8—N2—C5—O2178.76 (12)
C4—N1—C1—O1177.75 (11)C7—N2—C5—O23.09 (18)
C3—N1—C1—C2179.15 (11)C8—N2—C5—C62.56 (19)
C4—N1—C1—C22.35 (18)C7—N2—C5—C6175.59 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.75 (5)1.69 (5)2.4278 (13)173 (4)
O2—H2···O10.85 (5)1.59 (5)2.4278 (14)170 (4)
C2—H2A···O20.982.573.2872 (17)130
C2—H2B···Br20.983.094.0105 (14)158
C2—H2C···I1i0.983.184.0838 (14)155
C3—H3A···Br2ii0.983.073.8153 (14)134
C3—H3B···O2iii0.982.543.3481 (16)140
C4—H4A···I1i0.983.314.1081 (14)140
C6—H6A···O10.982.643.3630 (16)131
C6—H6C···Br1ii0.983.063.7331 (14)128
C7—H7B···Br1iv0.982.973.8980 (15)159
C8—H8A···Br1v0.983.053.9722 (15)157
C3—H3A···O10.982.262.6878 (16)105
C7—H7A···O20.982.242.6801 (18)106
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x1, y, z+1; (v) x, y, z+1.
N,N-Dimethylacetamide–1-(dimethyl-λ4-azanylidene)ethan-1-ol dichloridoiodate (1/1) (III) top
Crystal data top
C4H9NO·C4H10NO·Cl2IF(000) = 368
Mr = 373.05Dx = 1.683 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
a = 10.5264 (3) ÅCell parameters from 9986 reflections
b = 6.7261 (2) Åθ = 3.6–35.1°
c = 10.8124 (3) ŵ = 2.53 mm1
β = 105.950 (1)°T = 100 K
V = 736.06 (4) Å3Fragment, orange
Z = 20.20 × 0.18 × 0.14 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
1745 reflections with I > 2σ(I)
ω– and φ–scansRint = 0.014
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 35.2°, θmin = 4.4°
Tmin = 0.630, Tmax = 0.719h = 1616
13071 measured reflectionsk = 1010
1745 independent reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.008H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.022 w = 1/[σ2(Fo2) + (0.0153P)2 + 0.0381P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.003
1745 reflectionsΔρmax = 0.46 e Å3
52 parametersΔρmin = 0.25 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.5000000.5000000.5000000.01617 (2)
Cl10.60222 (2)0.5000000.74187 (2)0.02093 (3)
O10.60066 (6)0.0000000.96603 (6)0.02505 (10)
H10.543 (3)0.0000000.977 (3)0.038*0.5
N10.70175 (6)0.0000000.81090 (6)0.01741 (9)
C10.59151 (7)0.0000000.84597 (6)0.01742 (10)
C20.45979 (7)0.0000000.74807 (8)0.02291 (12)
H2A0.3901930.0219710.7909590.034*0.5
H2B0.4571660.1064470.6855270.034*0.5
H2C0.4457070.1284180.7035650.034*0.5
C30.82909 (8)0.0000000.90856 (8)0.02547 (13)
H3A0.8240280.0858660.9802730.038*0.5
H3B0.8975940.0499260.8708610.038*0.5
H3C0.8510760.1357920.9400460.038*0.5
C40.70493 (8)0.0000000.67698 (7)0.02212 (12)
H4A0.6225600.0568490.6230150.033*0.5
H4B0.7144770.1367240.6495080.033*0.5
H4C0.7798970.0798740.6683650.033*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01526 (3)0.01688 (3)0.01778 (3)0.0000.00693 (2)0.000
Cl10.02127 (7)0.02325 (7)0.01802 (6)0.0000.00499 (5)0.000
O10.0226 (2)0.0357 (3)0.0204 (2)0.0000.01195 (19)0.000
N10.0170 (2)0.0189 (2)0.0187 (2)0.0000.00881 (18)0.000
C10.0173 (2)0.0164 (2)0.0208 (2)0.0000.0090 (2)0.000
C20.0176 (3)0.0254 (3)0.0260 (3)0.0000.0065 (2)0.000
C30.0172 (3)0.0356 (4)0.0242 (3)0.0000.0067 (2)0.000
C40.0235 (3)0.0260 (3)0.0201 (3)0.0000.0113 (2)0.000
Geometric parameters (Å, º) top
I1—Cl12.5398 (2)C2—H2Cii0.980 (10)
I1—Cl1i2.5398 (2)C3—H3A0.9800
O1—C11.2750 (8)C3—H3B0.9800
O1—H10.64 (3)C3—H3C0.9800
N1—C11.3161 (8)C3—H3Aii0.980 (9)
N1—C41.4576 (9)C3—H3Bii0.980 (6)
N1—C31.4608 (10)C3—H3Cii0.980 (3)
C1—C21.4955 (10)C4—H4A0.9800
C2—H2A0.9800C4—H4B0.9800
C2—H2B0.9800C4—H4C0.9800
C2—H2C0.9800C4—H4Aii0.980 (7)
C2—H2Aii0.980 (5)C4—H4Bii0.9800 (17)
C2—H2Bii0.980 (15)C4—H4Cii0.980 (8)
Cl1—I1—Cl1i180.0H3A—C3—H3Aii72.2
C1—O1—H1112 (3)H3B—C3—H3Aii137.5
C1—N1—C4123.30 (6)H3C—C3—H3Aii40.1
C1—N1—C3119.89 (6)N1—C3—H3Bii109.47 (14)
C4—N1—C3116.81 (6)H3A—C3—H3Bii137.5
O1—C1—N1117.87 (7)H3B—C3—H3Bii40.1
O1—C1—C2121.10 (6)H3C—C3—H3Bii72.2
N1—C1—C2121.02 (6)H3Aii—C3—H3Bii109.5
C1—C2—H2A109.5N1—C3—H3Cii109.47 (6)
C1—C2—H2B109.5H3A—C3—H3Cii40.1
H2A—C2—H2B109.5H3B—C3—H3Cii72.2
C1—C2—H2C109.5H3C—C3—H3Cii137.5
H2A—C2—H2C109.5H3Aii—C3—H3Cii109.5
H2B—C2—H2C109.5H3Bii—C3—H3Cii109.5
C1—C2—H2Aii109.47 (11)N1—C4—H4A109.5
H2B—C2—H2Aii123.6N1—C4—H4B109.5
H2C—C2—H2Aii93.9H4A—C4—H4B109.5
C1—C2—H2Bii109.5 (3)N1—C4—H4C109.5
H2A—C2—H2Bii123.6H4A—C4—H4C109.5
H2B—C2—H2Bii93.9H4B—C4—H4C109.5
H2C—C2—H2Bii17.3N1—C4—H4Aii109.47 (15)
H2Aii—C2—H2Bii109.5H4A—C4—H4Aii45.9
C1—C2—H2Cii109.5 (2)H4B—C4—H4Aii66.5
H2A—C2—H2Cii93.9H4C—C4—H4Aii139.6
H2B—C2—H2Cii17.3N1—C4—H4Bii109.47 (3)
H2C—C2—H2Cii123.6H4A—C4—H4Bii66.5
H2Aii—C2—H2Cii109.5H4B—C4—H4Bii139.6
H2Bii—C2—H2Cii109.5H4C—C4—H4Bii45.9
N1—C3—H3A109.5H4Aii—C4—H4Bii109.5
N1—C3—H3B109.5N1—C4—H4Cii109.47 (18)
H3A—C3—H3B109.5H4A—C4—H4Cii139.6
N1—C3—H3C109.5H4B—C4—H4Cii45.9
H3A—C3—H3C109.5H4C—C4—H4Cii66.5
H3B—C3—H3C109.5H4Aii—C4—H4Cii109.5
N1—C3—H3Aii109.5 (2)H4Bii—C4—H4Cii109.5
C4—N1—C1—O1180.000 (1)C4—N1—C1—C20.000 (1)
C3—N1—C1—O10.000 (1)C3—N1—C1—C2180.000 (1)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1iii0.64 (3)1.79 (3)2.4261 (11)170 (4)
C2—H2A···Cl1iv0.982.933.7461 (8)141
C2—H2A···O1iii0.982.613.3230 (9)130
C2—H2C···Cl10.982.963.6902 (3)132
C3—H3A···Cl1v0.982.953.6479 (9)129
C3—H3B···Cl1vi0.982.893.7897 (8)153
C3—H3C···O1vii0.982.653.6256 (4)176
Symmetry codes: (iii) x+1, y, z+2; (iv) x1/2, y1/2, z; (v) x+3/2, y+1/2, z+2; (vi) x+1/2, y1/2, z; (vii) x+3/2, y1/2, z+2.
Summary of short interatomic contacts (Å) in (I), (II) and (III) top
ContactDistanceSymmetry operation
(I)
H1···O11.61-x+2, -y+1, -z+2
O1···H4B2.73x+1/2, -y+1/2, z+1/2
C2···H4C3.06-x+3/2, y+1/2, -z+3/2
C2···H3B3.09x+1/2, -y+1/2, z-1/2
H2A···Br23.21x+1, y, z
H3C···Br23.05x, y, z
H2C···Br13.13-x+3/2, y-1/2, -z+3/2
H3A···Br23.09-x+1, -y+1, -z+2
H4C···Br23.23-x+1/2, y-1/2, -z+3/2
Br2···H2B3.14-x+1, -y+1, -z+1
(II)
H1···H20.86x, y, z
C1···O13.24-x, -y+1, -z+1
H3C···O12.68-x+1, -y+1, -z+1
H2A···H2A2.54-x, -y, -z+1
H3C···Br23.23x, y+1, z
H2B···Br23.09x, y, z
H2C···I13.18x-1, y, z
H3A···Br23.07-x+1, -y+1, -z+1
H3C···H6A2.58-x+1, -y+1, -z+1
O2···H3B2.54-x, -y+1, -z+1
H8B···Br13.19-x+1, -y, -z+1
H6C···Br13.06-x+1, -y+1, -z+1
H8A···Br13.05x, y, z+1
H7B···Br12.97x-1, y, z+1
(III)
H1···O11.79-x+1, y, -z+2
H3C···O12.65-x+3/2, y-1/2, -z+2
H4B···Cl13.00x, y-1, z
H2C···Cl12.96x, y, z
C3···C32.60-x+2, y, -z+2
H3A···Cl12.95-x+3/2, y-1/2, -z+2
H2A···Cl12.93x-1/2, y-1/2, z
H2C···H4C2.58x-1/2, y+1/2, z
H3B···Cl12.89x+1/2, y-1/2, z
I1···H4A3.37-x+1, y, -z+1
I1···H4C3.36-x+3/2, y+1/2, -z+1
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I), (II) and (III) top
Contact(I) (%)(II) (%)(III) (%)
H···H57.560.388.9
Br···H/H···Br24.015.2-
O···H/H···O13.312.06.5
C···H/H···C3.02.72.0
Br···N/N···Br1.0--
N···H/H···N0.92.40.8
Br···C/C···Br0.5--
I···H/H···I-4.7-
O···C/C···O-2.2-
O···N/N···O-0.3-
O···O-0.1-
Cl···N/N···Cl--0.8
Cl···C/C···Cl--0.7
Cl···H/H···Cl--0.4
 

Acknowledgements

The contributions of the authors are as follows: conceptualization, MA and AB; synthesis, DFM, DMS and MSG; X-ray analysis, GZM, MA, and SÖY; writing (review and editing of the manuscript) MA and AB; funding acquisition, GZM, DFM, DMS and MSG; supervision, MA and AB.

Funding information

GMZ thanks Baku State University for financial support. This publication was supported by the Russian Science Foundation (https://rscf.ru/project/22-73-00127/).

References

First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAbdel-Wahab, M. F. & Barakat, M. Z. (1957). Monatsh. Chem. 88, 692–701.  CAS Google Scholar
First citationBehmel, P., Clegg, W., Sheldrick, G. M., Weber, G. & Ziegler, M. (1981). J. Mol. Struct. 74, 19–28.  CSD CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBuckles, R. E., Johnson, R. C. & Probst, W. J. (1957). J. Org. Chem. 22, 55–59.  CrossRef CAS Web of Science Google Scholar
First citationBurakov, N. I., Kanibolotskii, A. L., Osichenko, G. Yu., Mikhailov, V. A., Savelova, V. A. & Kosmynin, V. V. (2001). Russ. J. Org. Chem. 37, 1210–1219.  Web of Science CrossRef CAS Google Scholar
First citationFarook, N. A. M. (2006). J. Iran. Chem. Soc. 3, 378–386.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGardberg, A. S., Yang, S., Hoffman, B. M. & Ibers, J. A. (2002). Inorg. Chem. 41, 1778–1781.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGroebel, W. (1960). Chem. Ber. 93, 284–285.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGubin, A. I., Buranbaev, M. Zh., Kostynyuk, V. P., Kopot', O. I. & Il'in, A. I. (1988). Kristallografiya (Russ.) (Crystallogr. Rep.), 33, 1393–1395.  CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019–1031.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932–3940.  Web of Science CSD CrossRef CAS Google Scholar
First citationHorner, L. & Winkelmann, E. H. (1959). Angew. Chem. 71, 349–365.  CrossRef CAS Web of Science Google Scholar
First citationHussain, M. S. & Schlemper, E. O. (1980). J. Chem. Soc. Dalton Trans. pp. 750–755.  CSD CrossRef Web of Science Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.  Web of Science CrossRef Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017). Mol. Catal. 428, 17–23.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. 2017, 4763–4772.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159–165.  Web of Science CSD CrossRef CAS Google Scholar
First citationMertsalov, D. F., Nadirova, M. A., Chervyakova, L. V., Grigoriev, M. S., Shelukho, E. R., Çelikesir, S. T., Akkurt, M. & Mlowe, S. (2021a). Acta Cryst. E77, 237–241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMertsalov, D. F., Zaytsev, V. P., Pokazeev, K. M., Grigoriev, M. S., Bachinsky, A. V., Çelikesir, S. T., Akkurt, M. & Mlowe, S. (2021b). Acta Cryst. E77, 255–259.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMikhailov, V. A., Savelova, V. A. & Rodygin, M. Yu. (1993). Zh. Org. Khim. 29, 2251–2254.  CAS Google Scholar
First citationMikhailov, V. A., Yufit, D. S. & Struchkov, Yu. T. (1992). Zh. Obshch. Khim. 62, 399–405.  CAS Google Scholar
First citationProkop'eva, T. M., Mikhailov, V. A., Turovskaya, M. K., Karpichev, E. A., Burakov, N. I., Savelova, V. A., Kapitanov, I. V. & Popov, A. F. (2008). Russ. J. Org. Chem. 44, 637–646.  CAS Google Scholar
First citationRamachandrappa, R., Puttaswamy, Mayanna, S. M. & Made Gowda, N. M. (1998). Int. J. Chem. Kinet. 30, 407–414.  Web of Science CrossRef CAS Google Scholar
First citationRodygin, M. Yu., Mikhailov, V. A. & Savelova, V. A. (1994a). Zh. Org. Khim. 30, 827–832.  CAS Google Scholar
First citationRodygin, M. Yu., Mikhailov, V. A., Savelova, V. A. & Chernovol, P. A. (1992). Zh. Org. Khim. 28, 1926–1927.  CAS Google Scholar
First citationRodygin, M. Yu., Mikhailov, V. A., Zurbritskii, M. Yu. & Savelova, V. A. (1994b). Zh. Org. Khim. 30, 339–343.  CAS Google Scholar
First citationSafavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStuart, M. C., Kouimtzi, M. & Hill, S. R. (2009). WHO model formulary 2008, edited by M. C. Stuart, M. Kouimtzi & S. R. Hill, pp. 321–323. Geneva: World Health Organization. https://apps.who.int/iris/handle/10665/44053Google Scholar
First citationSui, X.-F., Yuan, J.-Y., Zhou, M. & He, Y.-H. (2006). Chin. J. Org. Chem. 26, 1518–1524.  CAS Google Scholar
First citationSuzuki, H. & Ishiguro, S. (2006). Acta Cryst. E62, m576–m578.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZaugg, H. E. (1954). J. Am. Chem. Soc. 76, 5818–5819.  Google Scholar
First citationZaytsev, V. P., Revutskaya, E. L., Nikanorova, T. V., Nikitina, E. V., Dorovatovskii, P. V., Khrustalev, V. N., Yagafarov, N. Z., Zubkov, F. I. & Varlamov, A. V. (2017). Synthesis, 49, 3749–3767.  Web of Science CSD CrossRef CAS Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds