research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[(aceto­nitrile-κN)(μ3-7-{[bis­­(pyridin-2-ylmeth­yl)amino]­meth­yl}-8-hy­dr­oxy­quinoline-5-sulfonato-κ4N,O:O′:O′′)sodium]

crossmark logo

aOsaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582, Japan, and bOsaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
*Correspondence e-mail: kubono@cc.osaka-kyoiku.ac.jp

Edited by C. Schulzke, Universität Greifswald, Germany (Received 28 June 2023; accepted 7 July 2023; online 14 July 2023)

In the title compound, [Na(C22H19N4O4S)(CH3CN)]n, the NaI atom adopts a distorted square-pyramidal coordination geometry, formed by one N and one O atom of the qunolinol moiety in the ligand, two O atoms of sulfonate moieties of two adjacent ligands and the N atom of the coordinated aceto­nitrile solvent. The NaI atom is located well above the mean basal plane of the square-based pyramid. The apical position is occupied by a sulfonate O atom of a neighboring ligand. Three N atoms of the bis­(pyridin-2-ylmeth­yl)amine moiety in the ligand are not coordinated by the sodium atom. The mol­ecule forms an intra­molecular bifurcated O—H⋯[N(tertiary amine),N(pyridine)] hydrogen bond, generating S(6) and S(5) rings. In the crystal, four mol­ecules are linked by four Na—O(sulfonato) bridged coordination bonds, forming a supra­molecular centrosymmetric tetra­mer unit comprising an eight-membered ring, and generating a two-dimensional network sheet. The mol­ecules of different sheets form inter­molecular C—H⋯O hydrogen bonds, and thereby a three-dimensional network structure.

1. Chemical context

8-Quinolinol (Hq) is a well-known chelating ligand and analytical reagent (Wiberley et al., 1949[Wiberley, S. E. & Bassett, L. G. (1949). Anal. Chem. 21, 609-612.]). Metal complexes with Hq derivatives have been investigated as pharmaceutical treatments (Mo et al., 2021[Mo, X., Chen, K., Chen, Z., Chu, B., Liu, D., Liang, Y., Xiong, J., Yang, Y., Cai, J. & Liang, F. (2021). Inorg. Chem. 60, 16128-16139.]), magnetic materials (Ma et al., 2021[Ma, S., Zhang, T., Zhao, J.-P., Liu, Z.-Y. & Liu, F.-C. (2021). Dalton Trans. 50, 1307-1312.]) and organic light-emitting diodes (Huo et al. 2015[Huo, Y., Lu, J., Lu, T., Fang, X., Ouyang, X., Zhang, L. & Yuan, G. (2015). New J. Chem. 39, 333-341.]; Back et al., 2016[Back, S. H., Park, J. H., Cui, C. & Ahn, D. J. (2016). Nat. Commun. 7, 10234.]). As part of our research into the development of fluorescent chelate reagents for the determination of metal ions and anions, we synthesized the penta­dentate ligand, 7-{[bis-(pyridin-2-ylmeth­yl)amino]­meth­yl}-5-chloro­quinolin-8-ol (HClqdpa) containing Hq and bis(pyridin-2-ylmeth­yl)amine ­[di-(2-picol­yl)amine] (dpa) moieties (RUTSIK; Kubono et al., 2015[Kubono, K., Kado, K., Kashiwagi, Y., Tani, K. & Yokoi, K. (2015). Acta Cryst. E71, 1545-1547.]). This ligand has only rather poor water solubility. To improve the solubility, we synthesized a new and now water-soluble fluorescent chelate reagent, based on Hq containing sulfonato-sodium and dpa moieties. Herein we report the respective synthesis and the crystal structure of its aceto­nitrile solvate complex.

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The NaI atom (Na2) of the asymmetric unit adopts a distorted square-pyramidal geometry and coordinates N and O atoms of the quinolinol moiety in the ligand, two O atoms of the sulfonate moieties of two neighboring ligands and the N atom of aceto­nitrile solvent. The phenolic hydrogen atom H3 of the quinolinol moiety is bound to the O3 atom. The proton, therefore, does not dissociate. Three N atoms of the dpa moiety in the ligand are not coordinated by the NaI atom.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius. The intra­molecular O—H⋯N hydrogen bonds are shown as double-dashed lines. [Symmetry codes: (i) 2 − x, y − [{1\over 2}], [{3\over 2}] − z; (iii) x, [{1\over 2}] − y, z − [{1\over 2}]; (iv) 2 − x, y + [{1\over 2}], [{3\over 2}] − z; (v) x, [{1\over 2}] − y, z + [{1\over 2}].]

The five-coordinate geometry index, τ = (β − α)/60, derived from the two largest angles (α, β) in a structure has ideal values of 0 for square-pyramidal and of 1 for trigonal–bipyramidal geometry (Addison et al., 1984[Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). In the title compound it is equal to 0.310. The NaI atom is located 0.7311 (8) Å above the mean basal plane [O3/N7/N11/O5iii; symmetry code: (iii) x, [{1\over 2}] − y, z − [{1\over 2}]] of the square-based pyramid. The apical position is occupied by the O4i atom of the sulfonate moiety in a neighboring ligand with the Na2—O4i bond being 2.2602 (16) Å long [symmetry code: (i) 2 − x, y − [{1\over 2}], [{3\over 2}] − z]. The Na2—O3(quinolinol) bond distance is 2.4248 (15) Å, longer than the equatorial Na—O(sulfonato) bond [Na2—O5iii; 2.2500 (16) Å]. The Na2—N7(quinolinol) distance is 2.467 (2) Å, shorter than the Na2—N11(aceto­nitrile) bond [2.487 (2) Å]. The chelate angle O3—Na2—N7 is 65.83 (5)°, the smallest of all the coordination angels. It agrees well with that of a related compound, (8-hy­droxy­quinoline-5-sulfonato-N1,O8)sodium(I) [UGUNOZ; Baskar Raj et al., 2002[Baskar Raj, S., Muthiah, P. T., Bocelli, G. & Olla, R. (2002). Acta Cryst. E58, m513-m516.]; O—Na—N; 64.86 (4)°]. The τ-parameter of this related compound is 0.505, and indicative of a significantly distorted trigonal–bipyramidal geometry with bond distances of Na—O(quinolinol) and Na—N(quinolinol) of 2.4892 (14) and 2.4418 (15) Å, respectively.

The title mol­ecule forms in its crystal structure an intra­molecular bifurcated O3—H3⋯(N8, N9) hydrogen bond (Table 1[link]), resulting in S(6) and S(5) rings, which stabilize the conformation of the mol­ecule. The N10 atom in the pyridine ring is not engaged in a coordination bond, hydrogen bond or any other inter- or intra­molecular inter­action. The dihedral angle between two pyridine rings in the title compound is 88.37 (11)°. In a related compound, 7-{[bis­(pyridin-2-ylmeth­yl)amino]­meth­yl}-5-chloro­quinolin-8-ol, HClqdpa (RUTSIK; Kubono et al., 2015[Kubono, K., Kado, K., Kashiwagi, Y., Tani, K. & Yokoi, K. (2015). Acta Cryst. E71, 1545-1547.]), the dihedral angle between two pyridine rings is 80.97 (12)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N8 0.88 (2) 2.46 (3) 3.057 (2) 125 (2)
O3—H3⋯N9 0.88 (2) 1.87 (2) 2.7120 (19) 158 (3)
C31—H31⋯O6i 0.95 2.53 3.397 (3) 152
C35—H35A⋯O6ii 0.98 2.55 3.502 (4) 166
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+3, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Even though in HClqdpa the dpa moiety is metal-free, and only one pyridine N atom forms an intra­molecular hydrogen bond with the OH group, these angles are relatively similar. The quinoline ring of the title compound is slightly bent, with r.m.s. deviations of 0.020 (2) Å. The S—O bond distances are in the range 1.4469 (14)–1.4585 (15) Å, with O—S—O angles ranging from 112.87 (9) to 113.25 (9)°. The bond lengths and angles largely agree with those values in the related compound [UGUNOZ; Baskar Raj et al., 2002[Baskar Raj, S., Muthiah, P. T., Bocelli, G. & Olla, R. (2002). Acta Cryst. E58, m513-m516.]; S—O; 1.4482 (12)–1.4731 (12) Å, O—S—O; 110.92 (7)–114.35 (7)°]. The O6 atom is not coordinated by the NaI atom, and the bond distance S1—O6 is shorter than the other two.

3. Supra­molecular features

In the crystal, four mol­ecules of the title compound are linked by four bridging Na—O coordination bonds, forming a supra­molecular centrosymmetric structure based on a central eight-membered ring (Na2/O4i/S1i/O5i/Na2vi/O4iii/S1iii/O5iii) [symmetry code: (vi) 2 − x, −y, 1 − z]. The tetra­meric building block is shown in Fig. 2[link]. A two-dimensional coordination polymer is formed by bridging coordination bonds between the NaI atom and two sulfonato O atoms of two adjacent ligands (Na2—O4i and Na2—O5iii) in the bc plane (Fig. 3[link]). An inter­molecular C—H⋯O hydrogen bond (C31—H31⋯O6i, Table 1[link]) is observed, forming a C(12) chain motif along the b-axis direction. In the crystal structure, mol­ecules are further linked by an inter­molecular C—H⋯O hydrogen bond [C35—H35A⋯O6ii; symmetry code: (ii) 3 − x, y − [{1\over 2}], [{3\over 2}] − z] (Table 1[link]), forming a C(8) chain motif running along the a-axis direction (Fig. 4[link]). The mol­ecules are linked through the bridging Na2—O4i and Na2—O5iii coordination bonds and the inter­molecular C35—H35A⋯O6ii hydrogen bonds, forming a three-dimensional network structure.

[Figure 2]
Figure 2
Supra­molecular centrosymmetric tetra­meric component of the crystal packing motif in the title compound formed by bridging coordination bonds. The intra­molecular hydrogen bonds are shown as dashed lines. H atoms not involved in the inter­actions are omitted for clarity. [Symmetry code: (i) 2 − x, y − [{1\over 2}], [{3\over 2}] − z; (iii) x, [{1\over 2}] − y, z − [{1\over 2}]; (vi) 2 − x, −y, 1 − z.]
[Figure 3]
Figure 3
A projection along the a axis of the crystal packing of the title compound. The C—H⋯O hydrogen bonds are shown as dashed magenta lines. H atoms not involved in the inter­actions are omitted for clarity.
[Figure 4]
Figure 4
A projection along the b axis of the crystal packing of the title compound. The O—H⋯N and C—H⋯O hydrogen bonds are shown as dashed lines. H atoms not involved in the inter­actions are omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.44; April 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for the quinolin-8-ol-5-sulfonato fragment gave 78 hits. Of these, only two structures are NaI complexes with the quinolin-8-ol-5-sulfonato ligand, viz. (8-hy­droxy­quinoline-5-sulfonato-N1,O8)sodium(I) (UGUNOZ; Baskar Raj et al., 2002[Baskar Raj, S., Muthiah, P. T., Bocelli, G. & Olla, R. (2002). Acta Cryst. E58, m513-m516.]) and its trihydrate (BOXKOO; Viossat et al., 1982[Viossat, B., Khodadad, P. & Rodier, N. (1982). Bull. Soc. Chim. Fr. 72, 289-291.]). Both the anhydrate and trihydrate of (quinolin-8-ol-5-sulfonato)­sodium form centrosymmetric dimeric structures in their crystals. Centrosymmetric dimer structures are observed in the crystals of various metal complexes with quinolin-8-ol-5-sulfonate and its derivatives. In the crystal of the anhydrous sodium complex, four Na—O(sulfonato) bridged coordination bonds construct a supra­molecular centrosymmetric eight-membered ring, similar to the title complex. A search for the fragment of 7-methyl-quinolin-8-ol-5-sulfonato gave two hits, which are 8-hy­droxy-7-[(morpholin-4-ium-4-yl)meth­yl]quin­oline-5-sulfonate aceto­nitrile solvate (UPAYIW; Kumar et al., 2021[Kumar, A., Sardhalia, V., Sahoo, P. R., Kumar, A. & Kumar, S. (2021). J. Mol. Struct. 1235, 130233.]) and 8-hy­droxy-7-[(piperidin-1-ium-1-yl)meth­yl]quin­oline-5-sulfonate monohydrate (UPAYOC; Kumar et al., 2021[Kumar, A., Sardhalia, V., Sahoo, P. R., Kumar, A. & Kumar, S. (2021). J. Mol. Struct. 1235, 130233.]). These compounds are metal-free ligands, and the crystal structures of their sodium salts or complexes are not reported. A search for a compound fragment in which the substituent is moved to the pyridyl ring, 2-methyl-quinolin-8-ol-5-sulfonato, gave two hits, namely aqua-{2,2′-[(1,4,10,13-tetra­oxa-7,16-di­aza­cyclo-octa­decane-7,16-di­yl)-bis­(methyl­ene)]bis­[8-(hy­droxy)quinoline-5-sulfonato]}-barium octa­hydrate (BINXEE; Thiele et al., 2018[Thiele, N. A., MacMillan, S. N. & Wilson, J. J. (2018). J. Am. Chem. Soc. 140, 17071-17078.]), and 2-methyl-8-hy­droxy­quinoline-5-sulfonic acid monohydrate (MHQUSO; Merritt Jr, et al., 1970[Merritt, L. L. Jr & Duffin, B. (1970). Acta Cryst. B26, 734-744.]).

5. Synthesis and crystallization

A suspension of paraformaldehyde (0.41 g, 14 mmol) and bis­(2-pyridyl­meth­yl)amine (1.99 g, 10 mmol) in 100 mL of MeOH was stirred for 18 h at room temperature. The solvent was removed in vacuo. To the product was added 90 mL of methanol, 8-hy­droxy­quinoline-5-sulfonic acid monohydrate (1.80 g, 10 mmol) and sodium hydroxide (0.40 g, 10 mmol) in 10 mL of water, the mixture was heated for 24 h at 353 K. The solvent was removed in vacuo to give an oily product, which was precipitated by addition of acetone (0.72 g, 31.4%). A small amount of crude solid was recrystallized from aceto­nitrile to obtain colorless crystals of the title compound. 1H NMR (CD3OD, 400 MHz): δ = 2.03 (s, 3H, aceto­nitrile), 3.90 (s, 4H), 3.97 (s, 2H), 7.23–7.26 (m, 2H), 7.56–7.59 (dd, J = 8.8 Hz, J = 4.4 Hz, 1H), 7.63 (d, J = 8.0 Hz, 2H), 7.75–7.78 (td, J = 8.0 Hz, J = 1.6 Hz, 2H), 8.22 (s, 1H), 8.45–8.47 (m, 2H), 8.81–8.83 (dd, J = 4.4 Hz, J = 1.6 Hz, 1H), 9.10–9.15 (dd, J = 8.8 Hz, J = 1.6 Hz, 1H). TG: expected weight loss for aceto­nitrile: 8.21%; found: 8.23% (around 447 to 465 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hy­droxy H atom was located in a difference-Fourier map and freely refined. All H atoms bound to carbon were positioned geometrically and refined using a riding model, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2 or 1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Na(C22H19N4O4S)(C2H3N)]
Mr 499.52
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 10.4951 (4), 14.1401 (5), 16.9249 (6)
β (°) 106.378 (8)
V3) 2409.77 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.25 × 0.20 × 0.15
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.867, 0.971
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 23162, 5490, 4023
Rint 0.042
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.103, 1.01
No. of reflections 5490
No. of parameters 321
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.30
Computer programs: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare, et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and CrystalStructure (Rigaku, 2016[Rigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SIR92 (Altomare, et al., 1993); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: CrystalStructure (Rigaku, 2016).

Poly[(acetonitrile-κN)(µ3-7-{[bis(pyridin-2-ylmethyl)amino]methyl}-8-hydroxyquinoline-5-sulfonato-κ4N,O:O':O'')sodium] top
Crystal data top
[Na(C22H19N4O4S)(C2H3N)]F(000) = 1040.00
Mr = 499.52Dx = 1.377 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 10.4951 (4) ÅCell parameters from 16856 reflections
b = 14.1401 (5) Åθ = 2.1–27.4°
c = 16.9249 (6) ŵ = 0.19 mm1
β = 106.378 (8)°T = 173 K
V = 2409.77 (18) Å3Block, colorless
Z = 40.25 × 0.20 × 0.15 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4023 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.042
ω scansθmax = 27.4°, θmin = 2.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1313
Tmin = 0.867, Tmax = 0.971k = 1818
23162 measured reflectionsl = 2021
5490 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0403P)2 + 1.2511P]
where P = (Fo2 + 2Fc2)/3
5490 reflections(Δ/σ)max = 0.001
321 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.30 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.18114 (5)0.46635 (3)0.90911 (3)0.03024 (12)
Na21.07043 (8)0.10172 (5)0.58208 (5)0.03309 (19)
O31.02142 (14)0.26904 (9)0.58507 (8)0.0319 (3)
O41.12279 (14)0.55994 (10)0.89339 (9)0.0394 (3)
O51.12432 (16)0.40982 (11)0.96284 (9)0.0444 (4)
O61.32483 (13)0.46752 (10)0.93467 (9)0.0395 (3)
N71.18687 (17)0.18141 (11)0.71220 (10)0.0315 (4)
N80.78852 (16)0.40512 (11)0.56663 (9)0.0291 (3)
N90.85965 (17)0.32740 (12)0.43831 (10)0.0363 (4)
N100.49005 (19)0.36242 (14)0.62557 (13)0.0472 (5)
N111.2229 (2)0.03275 (15)0.63619 (14)0.0582 (6)
C121.05317 (18)0.31647 (13)0.65748 (11)0.0261 (4)
C131.00738 (18)0.40634 (12)0.66745 (11)0.0269 (4)
C141.04797 (18)0.44926 (13)0.74581 (11)0.0272 (4)
H141.0143630.5101960.7525340.033*
C151.13363 (18)0.40683 (13)0.81249 (11)0.0267 (4)
C161.18340 (18)0.31472 (13)0.80365 (11)0.0275 (4)
C171.2732 (2)0.26440 (14)0.86880 (12)0.0349 (5)
H171.3019280.2910250.9224430.042*
C181.3174 (2)0.17810 (15)0.85359 (13)0.0421 (5)
H181.3783790.1440700.8962960.051*
C191.2722 (2)0.13945 (14)0.77409 (13)0.0388 (5)
H191.3054520.0793140.7645610.047*
C201.14255 (18)0.26954 (12)0.72610 (11)0.0260 (4)
C210.91430 (19)0.45661 (13)0.59585 (12)0.0303 (4)
H21A0.8968450.5211990.6128410.036*
H21B0.9562310.4622630.5504830.036*
C220.7130 (2)0.43493 (15)0.48490 (12)0.0364 (5)
H22A0.7165500.5047360.4815680.044*
H22B0.6189380.4165260.4757970.044*
C230.7636 (2)0.39248 (14)0.41728 (12)0.0324 (4)
C240.7072 (2)0.42029 (16)0.33616 (13)0.0409 (5)
H240.6404080.4676890.3231340.049*
C250.7503 (2)0.37761 (18)0.27478 (13)0.0487 (6)
H250.7134220.3954510.2188580.058*
C260.8473 (2)0.30886 (17)0.29556 (14)0.0475 (6)
H260.8770400.2777170.2542610.057*
C270.9004 (2)0.28629 (17)0.37764 (14)0.0437 (5)
H270.9684160.2398560.3920490.052*
C280.7092 (2)0.41116 (14)0.62489 (12)0.0329 (4)
H28A0.6664990.4741470.6199560.040*
H28B0.7686460.4051270.6816030.040*
C290.60371 (19)0.33608 (14)0.61095 (12)0.0313 (4)
C300.6250 (2)0.24534 (14)0.58610 (13)0.0375 (5)
H300.7069130.2294190.5759840.045*
C310.5256 (2)0.17819 (16)0.57619 (13)0.0448 (5)
H310.5378000.1157260.5589900.054*
C320.4090 (2)0.20405 (19)0.59181 (15)0.0523 (6)
H320.3389840.1597100.5862280.063*
C330.3958 (2)0.2952 (2)0.61563 (18)0.0590 (7)
H330.3144220.3123030.6258790.071*
C341.3112 (3)0.07824 (16)0.63605 (14)0.0474 (6)
C351.4259 (3)0.1369 (2)0.6367 (2)0.0806 (10)
H35A1.4818520.1038270.6080240.121*
H35B1.3955690.1969380.6088780.121*
H35C1.4773300.1492530.6937950.121*
H30.958 (2)0.2949 (17)0.5457 (16)0.051 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0311 (2)0.0346 (3)0.0258 (2)0.0037 (2)0.00925 (19)0.00541 (19)
Na20.0414 (4)0.0325 (4)0.0282 (4)0.0002 (3)0.0143 (3)0.0019 (3)
O30.0414 (8)0.0307 (7)0.0218 (7)0.0043 (6)0.0058 (6)0.0001 (5)
O40.0424 (8)0.0370 (8)0.0375 (8)0.0038 (6)0.0093 (7)0.0093 (6)
O50.0543 (10)0.0549 (9)0.0285 (8)0.0145 (8)0.0190 (7)0.0051 (6)
O60.0324 (7)0.0416 (8)0.0412 (8)0.0034 (6)0.0048 (6)0.0066 (7)
N70.0405 (9)0.0257 (8)0.0282 (9)0.0011 (7)0.0095 (7)0.0010 (6)
N80.0304 (8)0.0344 (8)0.0232 (8)0.0014 (7)0.0088 (7)0.0002 (6)
N90.0389 (10)0.0418 (10)0.0293 (9)0.0014 (8)0.0112 (8)0.0003 (7)
N100.0402 (10)0.0538 (12)0.0549 (12)0.0031 (9)0.0255 (9)0.0010 (9)
N110.0693 (15)0.0459 (12)0.0577 (14)0.0152 (11)0.0152 (11)0.0014 (10)
C120.0290 (9)0.0279 (9)0.0238 (9)0.0044 (7)0.0112 (8)0.0003 (7)
C130.0265 (9)0.0287 (9)0.0266 (9)0.0023 (7)0.0093 (8)0.0021 (7)
C140.0285 (9)0.0265 (9)0.0285 (9)0.0006 (7)0.0112 (8)0.0006 (7)
C150.0264 (9)0.0303 (9)0.0255 (9)0.0039 (7)0.0106 (8)0.0035 (7)
C160.0281 (9)0.0298 (9)0.0258 (9)0.0046 (8)0.0096 (8)0.0020 (7)
C170.0411 (12)0.0346 (11)0.0258 (10)0.0037 (9)0.0044 (9)0.0001 (8)
C180.0497 (13)0.0323 (11)0.0354 (12)0.0048 (10)0.0026 (10)0.0054 (9)
C190.0490 (13)0.0281 (10)0.0361 (11)0.0064 (9)0.0066 (10)0.0025 (8)
C200.0294 (9)0.0261 (9)0.0249 (9)0.0023 (7)0.0115 (8)0.0019 (7)
C210.0337 (10)0.0292 (10)0.0281 (10)0.0002 (8)0.0090 (8)0.0027 (8)
C220.0367 (11)0.0412 (11)0.0295 (11)0.0061 (9)0.0061 (9)0.0025 (9)
C230.0343 (11)0.0340 (10)0.0275 (10)0.0041 (9)0.0065 (8)0.0010 (8)
C240.0452 (12)0.0435 (12)0.0306 (11)0.0026 (10)0.0053 (9)0.0036 (9)
C250.0575 (15)0.0606 (15)0.0256 (11)0.0131 (12)0.0079 (10)0.0011 (10)
C260.0533 (14)0.0608 (15)0.0327 (12)0.0085 (12)0.0191 (11)0.0100 (10)
C270.0448 (13)0.0514 (13)0.0371 (12)0.0003 (11)0.0153 (10)0.0065 (10)
C280.0358 (11)0.0349 (11)0.0305 (10)0.0031 (8)0.0133 (9)0.0036 (8)
C290.0312 (10)0.0397 (11)0.0233 (9)0.0025 (8)0.0081 (8)0.0029 (8)
C300.0357 (11)0.0387 (11)0.0372 (12)0.0026 (9)0.0087 (9)0.0010 (9)
C310.0507 (14)0.0426 (12)0.0350 (12)0.0069 (10)0.0021 (10)0.0012 (9)
C320.0462 (14)0.0641 (16)0.0454 (14)0.0189 (12)0.0112 (11)0.0054 (12)
C330.0385 (13)0.0741 (19)0.0722 (19)0.0056 (13)0.0286 (13)0.0041 (15)
C340.0618 (16)0.0419 (13)0.0405 (13)0.0019 (12)0.0179 (12)0.0003 (10)
C350.074 (2)0.087 (2)0.092 (2)0.0236 (18)0.0406 (19)0.0027 (19)
Geometric parameters (Å, º) top
S1—O61.4469 (14)C17—H170.9500
S1—O41.4510 (15)C18—C191.405 (3)
S1—O51.4585 (15)C18—H180.9500
S1—C151.7808 (18)C19—H190.9500
S1—Na2i3.2984 (9)C21—H21A0.9900
Na2—O5ii2.2500 (16)C21—H21B0.9900
Na2—O4iii2.2602 (16)C22—C231.515 (3)
Na2—O32.4248 (15)C22—H22A0.9900
Na2—N72.4690 (18)C22—H22B0.9900
Na2—N112.487 (2)C23—C241.390 (3)
Na2—Na2iv3.9829 (15)C24—C251.383 (3)
O3—C121.354 (2)C24—H240.9500
O3—H30.88 (3)C25—C261.380 (3)
N7—C191.312 (3)C25—H250.9500
N7—C201.373 (2)C26—C271.380 (3)
N8—C221.449 (2)C26—H260.9500
N8—C281.461 (2)C27—H270.9500
N8—C211.466 (2)C28—C291.504 (3)
N9—C231.337 (3)C28—H28A0.9900
N9—C271.350 (3)C28—H28B0.9900
N10—C291.338 (3)C29—C301.388 (3)
N10—C331.347 (3)C30—C311.386 (3)
N11—C341.129 (3)C30—H300.9500
C12—C131.386 (3)C31—C321.372 (3)
C12—C201.433 (3)C31—H310.9500
C13—C141.411 (3)C32—C331.369 (4)
C13—C211.504 (3)C32—H320.9500
C14—C151.367 (3)C33—H330.9500
C14—H140.9500C34—C351.459 (4)
C15—C161.427 (3)C35—H35A0.9800
C16—C201.413 (3)C35—H35B0.9800
C16—C171.423 (3)C35—H35C0.9800
C17—C181.356 (3)
O6—S1—O4113.25 (9)C17—C18—H18120.3
O6—S1—O5113.25 (9)C19—C18—H18120.3
O4—S1—O5112.87 (9)N7—C19—C18123.96 (19)
O6—S1—C15106.16 (9)N7—C19—H19118.0
O4—S1—C15105.55 (9)C18—C19—H19118.0
O5—S1—C15104.82 (9)N7—C20—C16122.71 (17)
O6—S1—Na2i139.46 (6)N7—C20—C12117.21 (16)
O4—S1—Na2i34.63 (6)C16—C20—C12120.07 (16)
O5—S1—Na2i79.43 (7)N8—C21—C13110.84 (15)
C15—S1—Na2i107.18 (6)N8—C21—H21A109.5
O5ii—Na2—O4iii127.68 (7)C13—C21—H21A109.5
O5ii—Na2—O3101.42 (6)N8—C21—H21B109.5
O4iii—Na2—O392.56 (6)C13—C21—H21B109.5
O5ii—Na2—N7130.30 (7)H21A—C21—H21B108.1
O4iii—Na2—N7101.50 (6)N8—C22—C23113.07 (16)
O3—Na2—N765.83 (5)N8—C22—H22A109.0
O5ii—Na2—N1188.66 (7)C23—C22—H22A109.0
O4iii—Na2—N11104.46 (7)N8—C22—H22B109.0
O3—Na2—N11148.91 (7)C23—C22—H22B109.0
N7—Na2—N1185.14 (7)H22A—C22—H22B107.8
O5ii—Na2—S1iii113.91 (5)N9—C23—C24122.47 (19)
O4iii—Na2—S1iii21.39 (4)N9—C23—C22118.05 (17)
O3—Na2—S1iii112.83 (4)C24—C23—C22119.46 (19)
N7—Na2—S1iii115.19 (5)C25—C24—C23118.7 (2)
N11—Na2—S1iii88.83 (6)C25—C24—H24120.6
O5ii—Na2—Na2iv57.30 (5)C23—C24—H24120.6
O4iii—Na2—Na2iv76.32 (5)C26—C25—C24119.3 (2)
O3—Na2—Na2iv132.85 (5)C26—C25—H25120.3
N7—Na2—Na2iv160.89 (5)C24—C25—H25120.3
N11—Na2—Na2iv77.20 (6)C25—C26—C27118.6 (2)
S1iii—Na2—Na2iv57.86 (2)C25—C26—H26120.7
C12—O3—Na2120.18 (11)C27—C26—H26120.7
C12—O3—H3114.9 (16)N9—C27—C26122.8 (2)
Na2—O3—H3120.7 (16)N9—C27—H27118.6
S1—O4—Na2i123.98 (9)C26—C27—H27118.6
S1—O5—Na2v148.14 (10)N8—C28—C29112.78 (16)
C19—N7—C20117.48 (17)N8—C28—H28A109.0
C19—N7—Na2124.08 (13)C29—C28—H28A109.0
C20—N7—Na2117.42 (12)N8—C28—H28B109.0
C22—N8—C28111.39 (16)C29—C28—H28B109.0
C22—N8—C21112.06 (15)H28A—C28—H28B107.8
C28—N8—C21111.93 (15)N10—C29—C30122.79 (19)
C23—N9—C27118.06 (18)N10—C29—C28115.47 (18)
C29—N10—C33116.2 (2)C30—C29—C28121.73 (18)
C34—N11—Na2151.4 (2)C31—C30—C29119.4 (2)
O3—C12—C13124.01 (17)C31—C30—H30120.3
O3—C12—C20116.23 (16)C29—C30—H30120.3
C13—C12—C20119.75 (17)C32—C31—C30118.4 (2)
C12—C13—C14119.07 (17)C32—C31—H31120.8
C12—C13—C21120.28 (17)C30—C31—H31120.8
C14—C13—C21120.64 (16)C33—C32—C31118.5 (2)
C15—C14—C13122.77 (17)C33—C32—H32120.8
C15—C14—H14118.6C31—C32—H32120.8
C13—C14—H14118.6N10—C33—C32124.7 (2)
C14—C15—C16119.26 (17)N10—C33—H33117.6
C14—C15—S1119.96 (14)C32—C33—H33117.6
C16—C15—S1120.78 (14)N11—C34—C35179.4 (3)
C20—C16—C17117.06 (17)C34—C35—H35A109.5
C20—C16—C15119.07 (17)C34—C35—H35B109.5
C17—C16—C15123.87 (17)H35A—C35—H35B109.5
C18—C17—C16119.36 (19)C34—C35—H35C109.5
C18—C17—H17120.3H35A—C35—H35C109.5
C16—C17—H17120.3H35B—C35—H35C109.5
C17—C18—C19119.39 (19)
O6—S1—O4—Na2i146.44 (9)Na2—N7—C20—C1213.3 (2)
O5—S1—O4—Na2i16.08 (13)C17—C16—C20—N70.6 (3)
C15—S1—O4—Na2i97.84 (10)C15—C16—C20—N7179.29 (17)
O6—S1—O5—Na2v78.3 (2)C17—C16—C20—C12179.41 (17)
O4—S1—O5—Na2v52.0 (2)C15—C16—C20—C120.5 (3)
C15—S1—O5—Na2v166.41 (18)O3—C12—C20—N70.3 (2)
Na2i—S1—O5—Na2v61.26 (19)C13—C12—C20—N7178.66 (16)
Na2—O3—C12—C13167.32 (14)O3—C12—C20—C16178.61 (16)
Na2—O3—C12—C2014.4 (2)C13—C12—C20—C160.2 (3)
O3—C12—C13—C14179.49 (17)C22—N8—C21—C13163.21 (16)
C20—C12—C13—C141.2 (3)C28—N8—C21—C1370.82 (19)
O3—C12—C13—C211.3 (3)C12—C13—C21—N863.1 (2)
C20—C12—C13—C21179.60 (16)C14—C13—C21—N8116.12 (18)
C12—C13—C14—C151.6 (3)C28—N8—C22—C23155.23 (16)
C21—C13—C14—C15179.20 (17)C21—N8—C22—C2378.5 (2)
C13—C14—C15—C160.9 (3)C27—N9—C23—C241.4 (3)
C13—C14—C15—S1179.41 (14)C27—N9—C23—C22176.90 (19)
O6—S1—C15—C14126.08 (15)N8—C22—C23—N96.4 (3)
O4—S1—C15—C145.59 (17)N8—C22—C23—C24175.17 (18)
O5—S1—C15—C14113.80 (16)N9—C23—C24—C251.3 (3)
Na2i—S1—C15—C1430.51 (16)C22—C23—C24—C25177.0 (2)
O6—S1—C15—C1654.26 (17)C23—C24—C25—C260.1 (3)
O4—S1—C15—C16174.74 (15)C24—C25—C26—C271.3 (3)
O5—S1—C15—C1665.86 (17)C23—N9—C27—C260.2 (3)
Na2i—S1—C15—C16149.16 (13)C25—C26—C27—N91.2 (4)
C14—C15—C16—C200.1 (3)C22—N8—C28—C2972.0 (2)
S1—C15—C16—C20179.53 (13)C21—N8—C28—C29161.71 (16)
C14—C15—C16—C17179.75 (18)C33—N10—C29—C300.6 (3)
S1—C15—C16—C170.6 (3)C33—N10—C29—C28178.2 (2)
C20—C16—C17—C181.6 (3)N8—C28—C29—N10145.01 (18)
C15—C16—C17—C18178.31 (19)N8—C28—C29—C3036.2 (3)
C16—C17—C18—C190.9 (3)N10—C29—C30—C310.4 (3)
C20—N7—C19—C181.9 (3)C28—C29—C30—C31178.36 (19)
Na2—N7—C19—C18166.24 (17)C29—C30—C31—C320.3 (3)
C17—C18—C19—N70.9 (4)C30—C31—C32—C330.7 (3)
C19—N7—C20—C161.1 (3)C29—N10—C33—C320.2 (4)
Na2—N7—C20—C16167.84 (13)C31—C32—C33—N100.4 (4)
C19—N7—C20—C12177.74 (18)
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x, y+1/2, z1/2; (iii) x+2, y1/2, z+3/2; (iv) x+2, y, z+1; (v) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N80.88 (2)2.46 (3)3.057 (2)125 (2)
O3—H3···N90.88 (2)1.87 (2)2.7120 (19)158 (3)
C31—H31···O6iii0.952.533.397 (3)152
C35—H35A···O6vi0.982.553.502 (4)166
Symmetry codes: (iii) x+2, y1/2, z+3/2; (vi) x+3, y1/2, z+3/2.
 

Funding information

Funding for this research was provided by: JSPS KAKENHI (grant No. JP20K05565).

References

First citationAddison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBack, S. H., Park, J. H., Cui, C. & Ahn, D. J. (2016). Nat. Commun. 7, 10234.  Web of Science CrossRef PubMed Google Scholar
First citationBaskar Raj, S., Muthiah, P. T., Bocelli, G. & Olla, R. (2002). Acta Cryst. E58, m513–m516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHuo, Y., Lu, J., Lu, T., Fang, X., Ouyang, X., Zhang, L. & Yuan, G. (2015). New J. Chem. 39, 333–341.  Web of Science CSD CrossRef CAS Google Scholar
First citationKubono, K., Kado, K., Kashiwagi, Y., Tani, K. & Yokoi, K. (2015). Acta Cryst. E71, 1545–1547.  CSD CrossRef IUCr Journals Google Scholar
First citationKumar, A., Sardhalia, V., Sahoo, P. R., Kumar, A. & Kumar, S. (2021). J. Mol. Struct. 1235, 130233.  Web of Science CSD CrossRef Google Scholar
First citationMa, S., Zhang, T., Zhao, J.-P., Liu, Z.-Y. & Liu, F.-C. (2021). Dalton Trans. 50, 1307–1312.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMerritt, L. L. Jr & Duffin, B. (1970). Acta Cryst. B26, 734–744.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMo, X., Chen, K., Chen, Z., Chu, B., Liu, D., Liang, Y., Xiong, J., Yang, Y., Cai, J. & Liang, F. (2021). Inorg. Chem. 60, 16128–16139.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThiele, N. A., MacMillan, S. N. & Wilson, J. J. (2018). J. Am. Chem. Soc. 140, 17071–17078.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationViossat, B., Khodadad, P. & Rodier, N. (1982). Bull. Soc. Chim. Fr. 72, 289–291.  Google Scholar
First citationWiberley, S. E. & Bassett, L. G. (1949). Anal. Chem. 21, 609–612.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds