research communications
Synthesis and
of a bench-stable pyridinium ketene hemiaminal: 1-(1-ethoxyethenyl)-2-[methyl(phenyl)amino]pyridin-1-ium trifluoromethanesulfonateaChemistry Department, Hamilton College, 198 College Hill Rd., Clinton, NY 13323, USA, and bDepartment of Chemistry, Clemson University, H.L. Hunter Laboratories, Clemson, SC 29634, USA
*Correspondence e-mail: mmajirec@hamilton.edu
The novel bench-stable N-quaternized ketene N,O-acetal, C16H19N2O+·CF3O3S−, was synthesized and its structure determined. The title compound is a rare example of a pyridinium ketene hemiaminal for which a has been determined, joining the 2-chloro-1-(1-ethyoxyethenyl)pyridin-1-ium trifluoromethanesulfonate salt from which it was synthesized. The cationic species of the title compound can be defined by three individually planar fragments assembling into a non-coplanar cation. The phenyl substituent extending from the amino nitrogen atom and the ethyoxyvinyl substituent extending from the pyridine N atom are oriented on the same side of the molecule and maintain the closest coplanar relationship of the three fragments. Supramolecular interactions are dominated by C—H⋯O interactions from the cation to the SO3 side of the trifluoromethanesulfonate anion, forming a two-dimensional substructure.
CCDC reference: 2278022
1. Chemical context
N-Quaternized ketene N,O-acetals are a generally unstable class of compounds, most often invoked as reactive intermediates (Kantlehner, 2006). Consequently, there are very few reports of isolable and well-characterized compounds in this class despite their first appearance in the literature over eight decades ago (Arens et al., 1955; Barnes et al., 1940; Filippova et al., 1983; Herkes & Simmons, 1973; Klages & Drerup, 1941; Lehn & Seher, 1966; Otsuru et al., 1969). In 2018, our laboratory discovered that several pyridinium ketene were unusually stable analogues of the N-quaternized ketene N,O-acetal class, amenable to isolation and purification by or recrystallization (Fig. 1, compounds I–III) (Shapiro et al., 2018). An ensuing report expanded access to over forty bench-stable examples of this rare class of compounds (McConnell et al., 2021). However, to date there has been only one published X-ray (Fig. 1, compound I) of these unusual unsubstituted ketene hemiaminals.
Pyridinium ketene NAr), and amidations (Shapiro et al., 2018; McConnell et al., 2021). As part of our ongoing efforts to explore the use of these compounds in valuable synthetic applications, we have sought to employ 2-halopyridinium ketene as facile electrophiles in mild SNAr reactions with amine nucleophiles, en route to the bioactive 2-aminopyridine products such as IV (Fig. 1). During the course of this study, 2-aminopyridium ketene hemiaminal IV yielded high-quality crystals. Given the scarcity of X-ray analyses on this compound class, we were compelled to investigate the X-ray structure of IV in depth.
are an emerging class of reagents in organic synthesis that are able to engage in a variety of reaction modes such as electrophilic aromatic substitutions, nucleophilic aromatic substitutions (S2. Structural commentary
The substituted pyridinium cation of the title compound is built from three individually planar fragments connected to form a non-coplanar molecule (Fig. 2). The 2-(methylamino)pyridine fragment forms one plane (A), the phenyl group extending from the amino-nitrogen atom forms a second plane (B), and the ethoxyvinyl substituent extending from the pyridine-nitrogen atom forms a third plane (C). Mean plane to mean plane angles between the fragments are 71.71 (4)° between A and B, 68.16 (4)° between A and C, and 29.77 (6)° between B and C. The phenyl group attached to the amino-nitrogen atom is folded toward the same side of the aminopyridine fragment as the ethoxyvinyl substituent, likely requiring their mean plane to mean plane angles to be closest to parallel. The orientation of the ethoxyvinyl substituent on the pyridine ring [C1—N1—C6—O1 torsion angle of 116.44 (12)°] is similar to that in the 2-chloro-substituted compound I, CSD refcode JETTOU, which has a mean plane to mean plane angle between the pyridine and ethoxyvinyl fragments of 70.2 (2)° and a C—N—C—O torsion angle of 109.1 (2)° about the exocyclic N—C bond, which was shown to be an energetically favorable arrangement (Shapiro et al., 2018).
3. Supramolecular features
The triflate anions and substituted pyridinium cations are arranged in individual columns along the c-axis of the and pack in alternating fashion along the a- and b-axes of the (Fig. 3). All three oxygen atoms of the triflate anion act as acceptor atoms for C—H⋯O interactions from the cation (Table 1). As a result, there are six C—H⋯O interactions between a central cation and four neighboring triflate anions where H⋯O is less than 2.60 Å (Fig. 4). The six contacts originate from the pyridinium fragment (two), methyl group on the amino nitrogen atom (two), vinyl carbon atom (one), and ethoxy group (one). The shortest contact occurs from C5 on the pyridinium ring, with H⋯O = 2.25 Å and C⋯O = 3.1819 (16) Å. Collectively, the six C—H⋯O interactions create a two-dimensional slab in the bc plane. These slabs may be considered to extend into a three-dimensional framework if a short C-H⋯F contact [H⋯F = 2.44 Å, C⋯F = 3.324 (2) Å, C—H⋯F = 153.1°] is considered from the C13 atom of the phenyl fragment to the F2 atom of the anion. Only one such contact occurs to the CF3 side of the anions.
4. Database survey
A CSD search revealed only six hits for any pyridinium-1-vinyl-1-ether fragment (CSD Version 5.43, Update 4, November 2022; Groom et al., 2016). Of these, five were of substituted isoquinolinium salts, where the vinyl group of the searched fragment corresponds to a C=C bond in a thiazole ring fused to the substituted isoquinoline, making them largely unrelated to the title compound (Matsumoto et al., 2018, 2022). The remaining hit is the related compound and precursor material, I, 2-chloro-1-(1-ethyoxyethenyl)pyridin-1-ium trifluoromethanesulfonate, CSD refcode JETTOU (Shapiro et al., 2018). Expansion of the search to include pyrazinium- or pyrimidinium-based fragments produced no hits.
5. Synthesis and crystallization
A sealed 0.5-2.0 mL Biotage microwave vial was charged with potassium carbonate (69 mg, 0.5 mmol), freshly prepared 2-chloropyridinium ketene hemiaminal I (167 mg, 0.5 mmol) (McConnell et al., 2021) and dichloromethane (1 mL). While stirring the resulting suspension at room temperature, N-methylaniline (0.054 mL, 0.5 mmol) was slowly added. After one minute of stirring at room temperature, the sealed microwave vial was placed in a pre-heated 313 K oil bath and stirred for 24 h. The reaction mixture was cooled to room temperature then concentrated to a residue that was purified by silica gel using a 0-70% gradient of isopropanol in chloroform to provide compound IV as a yellow solid (190 mg, 94%). 1H NMR (500 MHz, Acetone-d6) δ 8.36–8.26 (m, 2H), 7.69 (d, J = 9.1 Hz, 1H), 7.52 (t, J = 7.7 Hz, 2H), 7.45–7.38 (m, 4H), 4.69 (d, J = 4.8 Hz, 1H), 4.36 (d, J = 4.8 Hz, 1H), 3.74 (s, 3H), 3.63 (q, J = 7.1 Hz, 2H), 1.27 (t, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 154.5, 152.6, 145.5, 144.2, 142.6, 129.8, 127.9, 126.4, 121.5 (q, 1JCF = 320 Hz, CF3), 119.5, 116.4, 85.9, 65.8, 43.4, 13.2.; LRMS–ES+ m/z (relative intensity) 255.1 (C16H19N2O M+, 100); HRMS–ES+ (C16H19N2O) calculated 255.1497 (M+), found 255.1497. X-ray quality crystals were formed by slow evaporation of a solution of the purified compound IV in acetone over the course of one week.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms attached to carbon atoms were placed in calculated positions using appropriate riding models having C—H = 0.95–1.0 Å with Uiso(H) = 1.5Ueq(C) for methyl hydrogen atoms and Uiso(H) = 1.2Ueq(C) for other hydrogen atoms.
details are summarized in Table 2Supporting information
CCDC reference: 2278022
https://doi.org/10.1107/S2056989023005741/zl5048sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023005741/zl5048Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989023005741/zl5048Isup3.cml
Data collection: APEX3 v2017.3 (Bruker, 2017); cell
SAINT v8.37a (Bruker, 2016); data reduction: SAINT v8.37a (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: Mercury 2021.3.0 (Macrae et al., 2020); software used to prepare material for publication: publCIF v1.9.21_c (Westrip, 2010).C16H19N2O+·CF3O3S− | F(000) = 840 |
Mr = 404.40 | Dx = 1.462 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 13.0645 (11) Å | Cell parameters from 9938 reflections |
b = 11.0190 (9) Å | θ = 5.4–72.1° |
c = 13.4050 (11) Å | µ = 2.08 mm−1 |
β = 107.826 (3)° | T = 100 K |
V = 1837.1 (3) Å3 | Block, yellow |
Z = 4 | 0.19 × 0.14 × 0.11 mm |
Bruker D8 Venture Photon 2 diffractometer | 3389 reflections with I > 2σ(I) |
Radiation source: Incoatec IµS | Rint = 0.053 |
φ and ω scans | θmax = 72.2°, θmin = 5.3° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −15→16 |
Tmin = 0.779, Tmax = 1.000 | k = −13→13 |
29494 measured reflections | l = −16→16 |
3598 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0329P)2 + 0.8661P] where P = (Fo2 + 2Fc2)/3 |
3598 reflections | (Δ/σ)max = 0.001 |
246 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.68941 (7) | 0.39328 (8) | 0.68939 (7) | 0.01770 (19) | |
N1 | 0.83913 (8) | 0.27687 (9) | 0.73215 (8) | 0.0151 (2) | |
N2 | 0.80276 (8) | 0.11322 (9) | 0.61208 (8) | 0.0174 (2) | |
C1 | 0.85607 (10) | 0.15964 (11) | 0.70752 (10) | 0.0159 (2) | |
C2 | 0.93228 (10) | 0.09169 (11) | 0.78502 (10) | 0.0190 (3) | |
H2 | 0.948282 | 0.010822 | 0.770205 | 0.023* | |
C3 | 0.98306 (10) | 0.14072 (12) | 0.88065 (10) | 0.0210 (3) | |
H3 | 1.033550 | 0.093353 | 0.931944 | 0.025* | |
C4 | 0.96178 (10) | 0.26022 (12) | 0.90440 (10) | 0.0203 (3) | |
H4 | 0.996391 | 0.294247 | 0.971375 | 0.024* | |
C5 | 0.89038 (10) | 0.32568 (11) | 0.82896 (10) | 0.0179 (3) | |
H5 | 0.875417 | 0.407076 | 0.843271 | 0.022* | |
C6 | 0.77414 (10) | 0.36295 (11) | 0.65709 (10) | 0.0159 (2) | |
C7 | 0.80485 (10) | 0.40244 (12) | 0.57808 (10) | 0.0207 (3) | |
H7A | 0.764019 | 0.462911 | 0.532491 | 0.025* | |
H7B | 0.867858 | 0.370459 | 0.566633 | 0.025* | |
C8 | 0.61847 (10) | 0.48421 (12) | 0.62699 (10) | 0.0209 (3) | |
H8A | 0.591484 | 0.458094 | 0.552862 | 0.025* | |
H8B | 0.657063 | 0.562177 | 0.630412 | 0.025* | |
C9 | 0.52670 (11) | 0.49849 (13) | 0.67165 (11) | 0.0262 (3) | |
H9A | 0.486532 | 0.422138 | 0.663766 | 0.039* | |
H9B | 0.478850 | 0.563254 | 0.634162 | 0.039* | |
H9C | 0.554908 | 0.519366 | 0.746135 | 0.039* | |
C10 | 0.84661 (11) | 0.00327 (12) | 0.57730 (11) | 0.0230 (3) | |
H10A | 0.924596 | 0.011775 | 0.592838 | 0.034* | |
H10B | 0.813410 | −0.007354 | 0.501672 | 0.034* | |
H10C | 0.830934 | −0.067632 | 0.614292 | 0.034* | |
C11 | 0.69110 (10) | 0.13846 (11) | 0.55991 (10) | 0.0171 (3) | |
C12 | 0.61681 (10) | 0.13292 (11) | 0.61476 (10) | 0.0198 (3) | |
H12 | 0.639600 | 0.114576 | 0.687501 | 0.024* | |
C13 | 0.50860 (11) | 0.15441 (12) | 0.56254 (12) | 0.0249 (3) | |
H13 | 0.457657 | 0.151371 | 0.600081 | 0.030* | |
C14 | 0.47469 (11) | 0.18013 (12) | 0.45653 (12) | 0.0268 (3) | |
H14 | 0.400837 | 0.195192 | 0.421303 | 0.032* | |
C15 | 0.54952 (12) | 0.18379 (13) | 0.40186 (11) | 0.0265 (3) | |
H15 | 0.526424 | 0.200652 | 0.328851 | 0.032* | |
C16 | 0.65735 (11) | 0.16306 (12) | 0.45289 (10) | 0.0226 (3) | |
H16 | 0.708102 | 0.165609 | 0.415102 | 0.027* | |
C17 | 0.75323 (10) | 0.80283 (12) | 0.84257 (11) | 0.0215 (3) | |
S1 | 0.85507 (2) | 0.72568 (3) | 0.79769 (2) | 0.01600 (10) | |
F1 | 0.78050 (7) | 0.80925 (10) | 0.94640 (7) | 0.0377 (2) | |
F2 | 0.65920 (6) | 0.74488 (9) | 0.80939 (7) | 0.0324 (2) | |
F3 | 0.73626 (7) | 0.91547 (8) | 0.80509 (9) | 0.0408 (2) | |
O2 | 0.80593 (8) | 0.72136 (10) | 0.68618 (7) | 0.0281 (2) | |
O3 | 0.86690 (8) | 0.61097 (8) | 0.85145 (8) | 0.0267 (2) | |
O4 | 0.94731 (7) | 0.80419 (9) | 0.83385 (8) | 0.0241 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0169 (4) | 0.0165 (4) | 0.0194 (4) | 0.0043 (3) | 0.0050 (3) | 0.0024 (3) |
N1 | 0.0145 (5) | 0.0137 (5) | 0.0163 (5) | 0.0008 (4) | 0.0038 (4) | 0.0012 (4) |
N2 | 0.0163 (5) | 0.0155 (5) | 0.0203 (5) | 0.0011 (4) | 0.0055 (4) | −0.0028 (4) |
C1 | 0.0152 (6) | 0.0145 (6) | 0.0198 (6) | −0.0007 (4) | 0.0079 (5) | 0.0009 (5) |
C2 | 0.0178 (6) | 0.0148 (6) | 0.0252 (6) | 0.0013 (5) | 0.0079 (5) | 0.0036 (5) |
C3 | 0.0164 (6) | 0.0221 (6) | 0.0230 (6) | 0.0010 (5) | 0.0039 (5) | 0.0074 (5) |
C4 | 0.0188 (6) | 0.0231 (6) | 0.0179 (6) | −0.0017 (5) | 0.0039 (5) | 0.0003 (5) |
C5 | 0.0176 (6) | 0.0172 (6) | 0.0192 (6) | −0.0018 (5) | 0.0060 (5) | −0.0016 (5) |
C6 | 0.0156 (6) | 0.0119 (5) | 0.0186 (6) | 0.0002 (4) | 0.0026 (5) | −0.0009 (4) |
C7 | 0.0206 (6) | 0.0181 (6) | 0.0233 (6) | 0.0023 (5) | 0.0068 (5) | 0.0039 (5) |
C8 | 0.0199 (6) | 0.0182 (6) | 0.0226 (6) | 0.0059 (5) | 0.0037 (5) | 0.0045 (5) |
C9 | 0.0232 (7) | 0.0262 (7) | 0.0288 (7) | 0.0090 (5) | 0.0074 (6) | 0.0037 (6) |
C10 | 0.0251 (7) | 0.0174 (6) | 0.0277 (7) | 0.0030 (5) | 0.0100 (5) | −0.0048 (5) |
C11 | 0.0177 (6) | 0.0126 (6) | 0.0200 (6) | −0.0014 (4) | 0.0042 (5) | −0.0028 (4) |
C12 | 0.0212 (6) | 0.0169 (6) | 0.0215 (6) | −0.0006 (5) | 0.0072 (5) | −0.0008 (5) |
C13 | 0.0207 (6) | 0.0211 (6) | 0.0343 (8) | −0.0011 (5) | 0.0104 (6) | −0.0035 (6) |
C14 | 0.0194 (6) | 0.0201 (7) | 0.0344 (8) | 0.0009 (5) | −0.0013 (6) | −0.0044 (6) |
C15 | 0.0309 (7) | 0.0230 (7) | 0.0199 (6) | 0.0008 (6) | −0.0006 (6) | −0.0025 (5) |
C16 | 0.0252 (7) | 0.0225 (6) | 0.0199 (6) | −0.0018 (5) | 0.0069 (5) | −0.0022 (5) |
C17 | 0.0172 (6) | 0.0229 (6) | 0.0234 (6) | 0.0002 (5) | 0.0044 (5) | 0.0002 (5) |
S1 | 0.01580 (16) | 0.01503 (17) | 0.01710 (17) | −0.00019 (10) | 0.00493 (12) | 0.00136 (10) |
F1 | 0.0340 (5) | 0.0542 (6) | 0.0244 (4) | 0.0069 (4) | 0.0084 (4) | −0.0126 (4) |
F2 | 0.0182 (4) | 0.0450 (5) | 0.0356 (5) | −0.0072 (4) | 0.0107 (3) | −0.0031 (4) |
F3 | 0.0333 (5) | 0.0251 (5) | 0.0691 (7) | 0.0124 (4) | 0.0229 (5) | 0.0117 (4) |
O2 | 0.0244 (5) | 0.0408 (6) | 0.0189 (5) | −0.0010 (4) | 0.0065 (4) | 0.0007 (4) |
O3 | 0.0359 (5) | 0.0162 (5) | 0.0306 (5) | 0.0019 (4) | 0.0141 (4) | 0.0038 (4) |
O4 | 0.0159 (4) | 0.0209 (5) | 0.0340 (5) | −0.0014 (4) | 0.0056 (4) | 0.0006 (4) |
O1—C6 | 1.3484 (15) | C9—H9B | 0.9800 |
O1—C8 | 1.4450 (14) | C9—H9C | 0.9800 |
N1—C1 | 1.3679 (16) | C10—H10A | 0.9800 |
N1—C5 | 1.3746 (16) | C10—H10B | 0.9800 |
N1—C6 | 1.4526 (15) | C10—H10C | 0.9800 |
N2—C1 | 1.3558 (16) | C11—C12 | 1.3869 (18) |
N2—C11 | 1.4387 (16) | C11—C16 | 1.3924 (18) |
N2—C10 | 1.4754 (16) | C12—C13 | 1.3923 (19) |
C1—C2 | 1.4135 (17) | C12—H12 | 0.9500 |
C2—C3 | 1.3619 (19) | C13—C14 | 1.382 (2) |
C2—H2 | 0.9500 | C13—H13 | 0.9500 |
C3—C4 | 1.4024 (19) | C14—C15 | 1.390 (2) |
C3—H3 | 0.9500 | C14—H14 | 0.9500 |
C4—C5 | 1.3548 (18) | C15—C16 | 1.384 (2) |
C4—H4 | 0.9500 | C15—H15 | 0.9500 |
C5—H5 | 0.9500 | C16—H16 | 0.9500 |
C6—C7 | 1.3161 (18) | C17—F1 | 1.3288 (16) |
C7—H7A | 0.9500 | C17—F3 | 1.3319 (16) |
C7—H7B | 0.9500 | C17—F2 | 1.3342 (16) |
C8—C9 | 1.5033 (19) | C17—S1 | 1.8289 (14) |
C8—H8A | 0.9900 | S1—O2 | 1.4357 (10) |
C8—H8B | 0.9900 | S1—O3 | 1.4397 (10) |
C9—H9A | 0.9800 | S1—O4 | 1.4415 (10) |
C6—O1—C8 | 115.47 (9) | H9A—C9—H9C | 109.5 |
C1—N1—C5 | 121.95 (10) | H9B—C9—H9C | 109.5 |
C1—N1—C6 | 123.57 (10) | N2—C10—H10A | 109.5 |
C5—N1—C6 | 114.26 (10) | N2—C10—H10B | 109.5 |
C1—N2—C11 | 122.50 (10) | H10A—C10—H10B | 109.5 |
C1—N2—C10 | 118.10 (10) | N2—C10—H10C | 109.5 |
C11—N2—C10 | 116.05 (10) | H10A—C10—H10C | 109.5 |
N2—C1—N1 | 120.64 (11) | H10B—C10—H10C | 109.5 |
N2—C1—C2 | 122.44 (11) | C12—C11—C16 | 120.17 (12) |
N1—C1—C2 | 116.90 (11) | C12—C11—N2 | 120.25 (11) |
C3—C2—C1 | 120.81 (12) | C16—C11—N2 | 119.51 (11) |
C3—C2—H2 | 119.6 | C11—C12—C13 | 119.57 (12) |
C1—C2—H2 | 119.6 | C11—C12—H12 | 120.2 |
C2—C3—C4 | 120.85 (12) | C13—C12—H12 | 120.2 |
C2—C3—H3 | 119.6 | C14—C13—C12 | 120.55 (13) |
C4—C3—H3 | 119.6 | C14—C13—H13 | 119.7 |
C5—C4—C3 | 118.00 (12) | C12—C13—H13 | 119.7 |
C5—C4—H4 | 121.0 | C13—C14—C15 | 119.47 (13) |
C3—C4—H4 | 121.0 | C13—C14—H14 | 120.3 |
C4—C5—N1 | 121.43 (12) | C15—C14—H14 | 120.3 |
C4—C5—H5 | 119.3 | C16—C15—C14 | 120.55 (13) |
N1—C5—H5 | 119.3 | C16—C15—H15 | 119.7 |
C7—C6—O1 | 131.23 (11) | C14—C15—H15 | 119.7 |
C7—C6—N1 | 121.05 (11) | C15—C16—C11 | 119.66 (13) |
O1—C6—N1 | 107.61 (10) | C15—C16—H16 | 120.2 |
C6—C7—H7A | 120.0 | C11—C16—H16 | 120.2 |
C6—C7—H7B | 120.0 | F1—C17—F3 | 107.80 (11) |
H7A—C7—H7B | 120.0 | F1—C17—F2 | 107.39 (11) |
O1—C8—C9 | 106.88 (10) | F3—C17—F2 | 106.88 (11) |
O1—C8—H8A | 110.3 | F1—C17—S1 | 112.37 (9) |
C9—C8—H8A | 110.3 | F3—C17—S1 | 111.29 (9) |
O1—C8—H8B | 110.3 | F2—C17—S1 | 110.87 (9) |
C9—C8—H8B | 110.3 | O2—S1—O3 | 115.94 (6) |
H8A—C8—H8B | 108.6 | O2—S1—O4 | 115.55 (6) |
C8—C9—H9A | 109.5 | O3—S1—O4 | 114.08 (6) |
C8—C9—H9B | 109.5 | O2—S1—C17 | 102.67 (6) |
H9A—C9—H9B | 109.5 | O3—S1—C17 | 102.76 (6) |
C8—C9—H9C | 109.5 | O4—S1—C17 | 103.17 (6) |
C11—N2—C1—N1 | −40.23 (17) | C1—N2—C11—C12 | −45.16 (17) |
C10—N2—C1—N1 | 161.27 (11) | C10—N2—C11—C12 | 113.75 (13) |
C11—N2—C1—C2 | 140.95 (12) | C1—N2—C11—C16 | 137.76 (13) |
C10—N2—C1—C2 | −17.55 (17) | C10—N2—C11—C16 | −63.34 (15) |
C5—N1—C1—N2 | 178.69 (11) | C16—C11—C12—C13 | −1.23 (19) |
C6—N1—C1—N2 | −6.97 (17) | N2—C11—C12—C13 | −178.29 (11) |
C5—N1—C1—C2 | −2.43 (17) | C11—C12—C13—C14 | 0.6 (2) |
C6—N1—C1—C2 | 171.92 (11) | C12—C13—C14—C15 | 0.4 (2) |
N2—C1—C2—C3 | −178.96 (12) | C13—C14—C15—C16 | −0.6 (2) |
N1—C1—C2—C3 | 2.18 (18) | C14—C15—C16—C11 | −0.1 (2) |
C1—C2—C3—C4 | −0.58 (19) | C12—C11—C16—C15 | 0.98 (19) |
C2—C3—C4—C5 | −0.85 (19) | N2—C11—C16—C15 | 178.07 (12) |
C3—C4—C5—N1 | 0.63 (19) | F1—C17—S1—O2 | 175.89 (10) |
C1—N1—C5—C4 | 1.07 (18) | F3—C17—S1—O2 | −63.11 (11) |
C6—N1—C5—C4 | −173.76 (12) | F2—C17—S1—O2 | 55.70 (11) |
C8—O1—C6—C7 | 0.53 (19) | F1—C17—S1—O3 | 55.19 (11) |
C8—O1—C6—N1 | 176.61 (9) | F3—C17—S1—O3 | 176.19 (9) |
C1—N1—C6—C7 | −67.00 (16) | F2—C17—S1—O3 | −65.00 (10) |
C5—N1—C6—C7 | 107.74 (14) | F1—C17—S1—O4 | −63.67 (11) |
C1—N1—C6—O1 | 116.44 (12) | F3—C17—S1—O4 | 57.33 (11) |
C5—N1—C6—O1 | −68.82 (12) | F2—C17—S1—O4 | 176.15 (9) |
C6—O1—C8—C9 | 176.38 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O4i | 0.95 | 2.43 | 3.2287 (16) | 141 |
C5—H5···O3 | 0.95 | 2.25 | 3.1819 (16) | 165 |
C7—H7B···O4ii | 0.95 | 2.48 | 3.2724 (16) | 140 |
C8—H8B···O2 | 0.99 | 2.55 | 3.5022 (17) | 160 |
C10—H10B···O3iii | 0.98 | 2.59 | 3.3633 (16) | 136 |
C10—H10C···O2i | 0.98 | 2.58 | 3.5408 (18) | 168 |
Symmetry codes: (i) x, y−1, z; (ii) −x+2, y−1/2, −z+3/2; (iii) x, −y+1/2, z−1/2. |
Funding information
Funding for this research was provided by: National Science Foundation (grant No. 2155127 to MMM); Hamilton College Edward and Virginia Taylor Fund (grant to MMM); Organic Syntheses (scholarship to MCFC).
References
Arens, J. F., Bouman, J. G. & Koerts, D. H. (1955). Recl Trav. Chim. Pays Bas, 74, 1040–1044. CrossRef CAS Google Scholar
Barnes, H. M., Kundiger, D. & McElvain, S. M. (1940). J. Am. Chem. Soc. 62, 1281–1287. CrossRef CAS Google Scholar
Bruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Filippova, A. K., Kashik, T. V., Lyashenko, G. S., Ponomareva, S. M., Kalikhman, I. D. & Vyazankin, N. S. (1983). Zh. Obshch. Khim. 53, 1141–1145. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Herkes, F. E. & Simmons, H. E. (1973). J. Org. Chem. 38, 2845–2851. CrossRef CAS Web of Science Google Scholar
Kantlehner, N. (2006). Science of Synthesis, edited by A. de Meijere, pp. 337–440. Germany: Thieme. Google Scholar
Klages, F. & Drerup, E. (1941). Justus Liebigs Ann. Chem. 547, 65–72. CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lehn, J. M. & Seher, R. (1966). Chem. Commun. pp. 847–849. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Matsumoto, S., Sumida, R. & Akazome, M. (2022). J. Mol. Struct. 1264, 133306. Web of Science CSD CrossRef Google Scholar
Matsumoto, S., Sumida, R., Er Tan, S. & Akazome, M. (2018). Heterocycles, 97, 755–775. Web of Science CSD CrossRef CAS Google Scholar
McConnell, D. L., Blades, A. M., Rodrigues, D. G., Keyes, P. V., Sonberg, J. C., Anthony, C. E., Rachad, S., Simone, O. M., Sullivan, C. F., Shapiro, J. D., Williams, C. C., Schafer, B. C., Glanzer, A. G., Hutchinson, H. H., Thayaparan, A. T., Krevlin, Z. A., Bote, I. C., Haffary, Y. A., Bhandari, S., Goodman, J. A. & Majireck, M. M. (2021). J. Org. Chem. 86, 13025–13040. Web of Science CrossRef CAS PubMed Google Scholar
Otsuru, M., Tori, K., Lehn, J.-M. & Seher, R. (1969). J. Am. Chem. Soc. 91, 1187–1194. CrossRef CAS Google Scholar
Shapiro, J. D., Sonberg, J. C., Schafer, B. C., Williams, C. C., Ferris, H. R., Reinheimer, E. W., Van Wynsberghe, A. W., Kriley, C. E. & Majireck, M. M. (2018). Molecules, 23, 412. Web of Science CSD CrossRef PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.