research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal-structure determination and Hirshfeld surface analysis of two new thio­phene derivatives: (E)-N-{2-[2-(benzo[b]thio­phen-2-yl)ethen­yl]-5-fluoro­phen­yl}benzene­sulfonamide and (E)-N-{2-[2-(benzo[b]thio­phen-2-yl)ethen­yl]-5-fluoro­phen­yl}-N-(but-2-yn-1-yl)benzene­sulfonamide

crossmark logo

aDepartment of Physics, The New College, Chennai 600 014, University of Madras, Tamil Nadu, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai-600 025, Tamilnadu, India
*Correspondence e-mail: mnizam.new@gmail.com

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 8 May 2023; accepted 10 July 2023; online 21 July 2023)

In the title compounds, C22H16FNO2S2 (I) and C26H20FNO2S2 (II), the benzo­thio­phene rings are essentially planar with maximum deviations of 0.009 (1) and 0.001 (1) Å for the carbon and sulfur atom in compounds I and II, respectively. In I, the thio­phene ring system is almost orthogonal to the phenyl ring attached to the sulfonyl group, with a dihedral angle of 77.7 (1)°. In compound I, the mol­ecular structure is stabilized by weak C—H⋯O intra­molecular inter­actions formed by the sulfone oxygen atoms, which generate two S(5) ring motifs. In the crystal of I, N—H⋯O hydrogen bonds link the mol­ecules into R22(8) rings, which are connected into a C(10) chain via C—H⋯F hydrogen bonds. Inter­molecular C—H⋯π inter­actions are also observed. In compound II, the mol­ecules are linked via C—H⋯O and C—H⋯F hydrogen bonding, generating infinite C(11) and C(13) chains running parallel to [010].

1. Chemical context

Thio­phene, C4H4S, belongs to a class of aromatic five-membered heterocycles comprising one S heteroatom. Thio­phene derivatives possess pharmacological and biological activities including anti­bacterial (Mishra et al., 2012[Mishra, R., Tomer, I. & Kumar, S. (2012). Der Pharmacia Sinica, 3, 332-336.]), anti­allergic (Gillespie et al., 1985[Gillespie, E., Dungan, K. M., Gomoll, A. W. & Seidehamel, R. J. (1985). Int. J. Immunopharmacol. 7, 655-660.]), anti-cancer and anti-toxic (Gewald et al., 1966[Gewald, K., Schinke, E. & Botcher, H. (1966). Chem. Ber. 99, 99-100.]), analgesic (Laddi et al., 1998[Laddi, U. V., Talwar, M. B., Desai, S. R., Somannavar, Y. S., Bennur, R. S. & Bennur, S. C. (1998). Indian Drugs, 35, 509-513.]; Chen et al., 2008[Chen, H. J., Wang, W., l Wang, G. F., Shi, L. P., Gu, M., Ren, Y. D. & Hou, L. F. (2008). Med. Chem. 3, 1316-1321.]), anti-inflammatory (Ferreira et al., 2006[Ferreira, C. F. R., Queiroz, M. R. P., Vilas-Boas, M., Estevinho, L. M., Begouin, A. & Kirsch, G. (2006). Bioorg. Med. Chem. Lett. 16, 1384-1387.]), anti­oxidant (Jarak et al., 2005[Jarak, I., Kralj, M. S., Šuman, L., Pavlović, G., Dogan, J., Piantanida, I. Z., Žinić, M., Pavelić, K. & Karminski-Zamola, G. (2005). J. Med. Chem. 48, 2346-2360.]), anti­tumor (Gadad et al., 1994[Gadad, A. K., Kumar, H., Shishoo, C. J., Mkhazi, I. & Mahajanshetti, C. S. (1994). Ind. J. Chem. Soc. 33, 298-301.]), anti­microbial (Abdel-Rahman et al., 2003[Abdel-Rahman, A. E., Bakhite, A. E. & Al-Taifi, E. A. (2003). Pharmazie, 58, 372-377.]), anti­hypertensive (Monge Vega et al., 1980[Monge Vega, A., Aldana, I., Rabbani, M. M. & Fernandez-Alvarez, E. (1980). Heterocycl. Chem. 17, 77-80.]), anti-diabetes mellitus (Abdelhamid et al., 2009[Abdelhamid, A. O. (2009). J. Heterocycl. Chem. 46, 680-686.]), gonadotropin releasing hormone antagonist (Sabins et al., 1944[Sabins, R. W. (1944). Sulfur Rep. 16, 1.]) and they are building blocks in many agrochemicals (Ansary & Omar, 2001[Ansary, A. K. & Omar, H. A. (2001). Bull. Faculty Pharm. 39, 17.]). Thio­phene possesses promising pharmacological activities, such as anti-HIV PR inhibitor (Bonini et al., 2005[Bonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Berti, F. & Campaner, P. (2005). Tetrahedron, 61, 6580-6589.]) and anti-breast cancer (Brault et al., 2005[Brault, L., Migianu, E., Néguesque, A., Battaglia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757-763.]). Benzo­thio­phenes are biologically energetic mol­ecules. One of the most significant drugs based on the benzo­thio­phene structure is Raloxifine, used to treat osteoporosis in postmenopausal women (Jordan, 2003[Jordan, V. C. (2003). J. Med. Chem. 46, 1081-1111.]). Benzo­thio­phenes are also present in luminescent components used in organic materials (Russell & Press, 1996[Russell, R. K. & Press, J. B. (1996). Comprehensive Heterocyclic Chemistry II, Vol. 2, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven. pp. 679-729. Oxford: Pergamon Press.]). Thio­phene derivatives have a wide variety of applications in optical and electronic systems (Gather et al., 2008[Gather, M. C., Heeney, M., Zhang, W., Whitehead, K. S., Bradley, D. D. C., McCulloch, I. & Campbell, A. J. (2008). Chem. Commun. pp. 1079-1081.]; He et al., 2009[He, M., Li, J., Sorensen, M. L., Zhang, F., Hancock, R. R., Fong, H. H., Pozdin, V. A., Smilgies, D. & Malliaras, G. G. (2009). J. Am. Chem. Soc. 131, 11930-11938.]) and are used extensively in solar cells (Justin Thomas et al., 2008[Justin Thomas, K. R., Hsu, Y. C., Lin, J. T., Lee, K. M., Ho, K. C., Lai, C. H., Cheng, Y. M. & Chou, P. T. (2008). Chem. Mater. 20, 1830-1840.]), organic light-emitting diodes (OLEDs) (Mazzeo et al., 2003[Mazzeo, M., Vitale, V., Della Sala, F., Pisignano, D., Anni, M., Barbarella, G., Favaretto, L., Zanelli, A., Cingolani, R. & Gigli, G. (2003). Adv. Mater. 15, 2060-2063.]), organic field-effect transistors (OFETs) (Zhan et al., 2007[Zhan, X., Tan, Z.-A., Domercq, B., An, Z., Zhang, X., Barlow, S., Li, Y.-F., Zhu, D.-B., Kippelen, B. & Marder, S. R. (2007). J. Am. Chem. Soc. 129, 7246-7247.]) and as NLO devices (Bedworth et al., 1996[Bedworth, P. V., Cai, Y., Jen, A. & Marder, S. R. (1996). J. Org. Chem. 61, 2242-2246.]; Raposo et al., 2011[Raposo, M. M. M., Fonseca, A. M. C., Castro, M. C. R., Belsley, M., Cardoso, M. F. S., Carvalho, L. M. & Coelho, P. J. (2011). Dyes Pigments, 91, 62-73.]). Thieno-pyridine products are used in medicine as allosteric adenosine receptors and in the treatment of adenosine-sensitive cardiac arrhythmias (Tumey et al., 2008[Nathan Tumey, L., Boschelli, D. H., Lee, J. & Chaudhary, D. (2008). Bioorg. Med. Chem. Lett. 18, 4420-4423.]; Grunewald et al., 2008[Grunewald, G. L., Seim, M. R., Bhat, S. R., Wilson, M. E. & Criscione, K. R. (2008). Bioorg. Med. Chem. 16, 542-559.]). Recognizing the importance of such compounds in drug discovery and our ongoing research into the construction of novel thio­phene has prompted us to investigate the title thio­phene derivatives and we report herein their synthesis, crystal structures and Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of compound I, C22H16FNO2S2 (Fig. 1[link]), comprises a benzo­thio­phene ring system (S1/C1–C8) attached to an N-(5-fluoro-2-vinyl­phen­yl)benzene­sulfonamide (C7–C22/N1/S2/O1/O2/F1) while compound II, C26H20FNO2S2 (Fig. 2[link]), comprises a benzo­thio­phene ring system (S1/C1–C8) attached to an N-but-2-yn-1-yl-N-(5-fluoro-2-vinyl­phen­yl)benzene­sulfonamide (C9–C15/N1/S2/O1/O2). In both compounds, the benzo­thio­phene ring systems (S1/C1–C8) are essentially planar with maximum deviations of 0.009 (1) and 0.001 (1) Å for atom C8 and S1 in compounds I and II, respectively. The mean planes of the thio­phene ring system in I make dihedral angles of 1.2 (2), 2.3 (2), 77.7 (2)° with the C1–C6, C11–C16 and C17–C22 phenyl rings. The mean planes of the thio­phene ring system in II make dihedral angles of 0.3 (2), 33.3 (2), 25.2 (2)°, respectively, with the C1–C6, C11–C16 and C17–C22 phenyl rings, The benzo­thio­phene ring system in I is almost orthogonal to the C17–C22 ring attached to sulfonyl group with dihedral angle of 77.7 (1)° in I. For both compounds, the bond lengths and angles are close to those observed for similar structures (Madhan et al., 2022[Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2022). Acta Cryst. E78, 1198-1203.], 2023[Madhan, S., NizamMohideen, M., Pavunkumar, V. & Mohana­Krishnan, A. K. (2023). Acta Cryst. E79, 521-525.]).

[Figure 1]
Figure 1
The mol­ecular structure of compound I, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound II, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

In both compounds, the tetra­hedral configuration is distorted around atom S1. The increase in the O2—S2—O1 angle [118.64 (9) in I and 120.6 (2)° in II], with a simultaneous decrease in the N1—S2—C17 angle [106.35 (9) in I and 108.3 (2)° in II] from the ideal tetra­hedral value (109.5°) are attributed to the Thorpe–Ingold effect (Bassindale, 1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]). The widening of the angles may be due to the repulsive inter­action between the two short S=O bonds. In compound II, the N1—C23 = 1.483 (6) and N1—C16 = 1.450 (5) Å bond lengths in the mol­ecule are longer than the mean Nsp2—Csp2 bond-length value of 1.355 (14) Å [Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]; Cambridge Structural Database (CSD), Version 5.37; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]]. The elongation observed may be due to the electron-withdrawing character of the phenyl­sulfonyl group. In compound II, the sum of the bond angles around N1 (354.1°) indicates sp2 hybridization.

In compound (I), the mol­ecular structure is stabilized by weak C15—H15⋯O1 intra­molecular inter­actions formed by the sulfone oxygen atoms, which generate two S(5) ring motifs (Fig. 1[link]).

3. Supra­molecular features

In the crystal of I, the C10—H10⋯O2i hydrogen bond generates an inversion dimer with an R22(14) ring motif; within the ring, N1—H1N⋯O2ii hydrogen bonds link the mol­ecules into R22(8) ring motifs (Fig. 3[link] and Table 1[link]). These rings are linked by the C(10) chain formed via the C22—H22⋯F1iii hydrogen bonds. No significant C–H⋯π inter­actions with centroid distances of less than 4Å are observed in the structure.

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1 0.93 2.30 2.980 (3) 130
C10—H10⋯02i 0.93 2.51 3.383 (3) 157
N1—H1N⋯O2i 0.83 (2) 2.21 (2) 3.001 (2) 161 (2)
C22—H22⋯F1ii 0.93 2.44 3.116 (3) 130
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of compound I. The hydrogen bonds (Table 1[link]) are shown as dashed lines, and H atoms not involved in hydrogen bonding have been omitted.

In thecrystal of II, mol­ecules are linked via C2—H2⋯O1i and C4⋯H4⋯F1ii inter­molecular hydrogen bonding, which generates infinite C(11) and C(13) chains running parallel to [010] (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). In addition, the crystal packing features inter­molecular C—H⋯π (C23—H23ACg1iii) inter­actions, where the Cg1 is the centroid of the C1–C6 ring (Table 2[link], Fig. 4[link]). No significant ππ inter­actions with inter­centroid distances of less than 4Å are observed in either structure.

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.59 3.483 (7) 162
C4—H4⋯F1ii 0.93 2.52 3.188 (6) 130
C18—H18⋯S1iii 0.93 3.01 3.744 (6) 137
C23—H23ACg1iv 0.93 2.69 3.566 (6) 151
Symmetry codes: (i) [x, y, z-1]; (ii) [x-1, y, z-2]; (iii) x, y, z+1; (iv) x+1, y, z+1.
[Figure 4]
Figure 4
A view along the b axis of the crystal packing of compound II. The hydrogen bonds (Table 2[link]) are shown as dashed lines, and H atoms not involved in hydrogen bonding have been omitted.

4. Hirshfeld surface analysis

A recent article by Tiekink and collaborators (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]) reviews and describes the uses and utility of Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]), and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]), to analyse inter­molecular contacts in crystals. The various calculations (dnorm, curvedness and shape index and 2D fingerprint plots) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]).

The Hirshfeld surfaces of compounds I and II mapped over dnorm are given in Fig. 5[link], and the inter­molecular contacts are illustrated in Fig. 6[link]a for I and Fig. 7[link]a for II. They are colour-mapped with the normalized contact distance, dnorm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The dnorm surface was mapped over a fixed colour scale of −0.434 (red) to 1.449 (blue) for compound I and −0.119 (red) to 1.765 (blue) for compound II, where the red spots indicate the inter­molecular contacts involved in the hydrogen bonding. The electrostatic potential was also mapped on the Hirshfeld surface using a STO-3G basis set and the Hartee–Fock level of theory (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]). The presence of inter­actions is indicated by a red and blue colour on the shape-index surface (Fig. 6[link]b for I and 7b for II). Areas on the Hirshfeld surface with high curvedness tend to divide the surface into contact patches with each neighbouring mol­ecule. The coordination number in the crystal is defined by the curvedness of the Hirshfeld surface (Fig. 6[link]c for I and Fig. 7[link]c for II). The nearest neighbour coordination environment of a mol­ecule is identified from the colour patches on the Hirshfeld surface depending on their closeness to adjacent mol­ecules (Fig. 6[link]d for I and Fig. 7[link]d for II).

[Figure 5]
Figure 5
The Hirshfeld surfaces of compounds I and II, mapped over dnorm.
[Figure 6]
Figure 6
The Hirshfeld surfaces for visualizing the inter­molecular contacts of compound I: (a) dnorm of compound I, showing the various inter­molecular contacts in the crystal, (b) shape index, (d) curvedness and (e) fragment patches.
[Figure 7]
Figure 7
The Hirshfeld surfaces for visualizing the inter­molecular contacts of compound II: (a) dnorm of compound II, showing the various inter­molecular contacts in the crystal, (b) shape index, (d) curvedness and (e) fragment patches.

The fingerprint plots are given in Figs. 8[link] and 9[link]. For compound I, they reveal that the principal inter­molecular contacts are H⋯H contacts at 36.9% (Fig. 8[link]b), H⋯C/C⋯H contacts at 26.1% (Fig. 8[link]c), O⋯H/H⋯O at 15.1% (Fig. 8[link]d), F⋯H/H⋯F at 9.2% (Fig. 8[link]e), C⋯C at 6.7% (Fig. 8[link]f), S⋯C/C⋯S at 2.2% (Fig. 8[link]g), S⋯H/H⋯S contacts at 0.9% (Fig. 8[link]i), F⋯C/C⋯F at 0.8% (Fig. 8[link]j), N⋯C/C⋯N at 0.7% (Fig. 8[link]k) and N⋯H/H⋯N contacts at 0.3% (Fig. 8[link]l).

[Figure 8]
Figure 8
The full two-dimensional fingerprint plot for compound I, and fingerprint plots delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C, (e) C⋯C and (f) N⋯H/H⋯N contacts.
[Figure 9]
Figure 9
The full two-dimensional fingerprint plot for compound II, and fingerprint plots delineated into (b) C⋯C, (c) C⋯H/H⋯C, (d) C⋯·N/N⋯C, (e) C⋯O/O⋯C, (f) H⋯H, (g) N⋯H/H⋯N, (h) O⋯H/H⋯O and (I)[link] S⋯H/H⋯S contacts.

For compound II, they reveal a similar trend, with the principal inter­molecular contacts being H⋯H/H⋯H at 41.4% (Fig. 9[link]b), H⋯C/C⋯H contacts at 25.1% (Fig. 9[link]c), O⋯H/H⋯O at 12.1% (Fig. (9d), F⋯H/H⋯F at 8.1% C⋯C at 4.6% (Fig. 9[link]e), C⋯·C at 4.7% (Fig. 9[link]f), S⋯H/H⋯S contacts at 4.5% (Fig. 9[link]g), S⋯C/C⋯S contacts at 2.1% (Fig. 9[link]h), C⋯O/O⋯C contacts at 1.0% (Fig. 9[link]i), F⋯S/S⋯F at 0.9% (Fig. 9[link]j) and O⋯O contacts at 0.3 (Fig. 9[link]k). In both compounds, the H⋯H inter­molecular contacts predominate, followed by the C⋯H/H⋯C and O⋯H/H⋯O contacts.

5. Synthesis and crystallization

Compound I: To a solution of (E)-2-(2-(benzo[b]thio­phen-2-yl)vin­yl)-5-fluoro­benzenaminium chloride (1.2 g, 3.934 mmol) in dry DCM (10 mL), pyridine (0.47 mL, 5.901 mmol) and PhSO2Cl (0.6 mL, 4.721 mmol) were added and stirred at room temperature for 12 h. After completion of the reaction (monitored by TLC), it was poured into crushed ice (50 g) containing conc. HCl (5 mL), extracted with DCM (2 × 20 mL) then washed with water (2 × 20 mL) and dried (Na2SO4). Removal of solvent in vacuo followed by crystallization from di­ethyl­ether (4 mL) afforded (E)-N-{2-[2-(benzo[b]thio­phen-2-yl)ethen­yl]-5-fluoro­phen­yl}benzene­sulf­onamide as a white solid.

Compound II: To a solution of (E)-N-{2-[2-(benzo[b]thio­phen-2-yl)vin­yl]-5-fluoro­phen­yl}benzene­sulfonamide (0.70 g, 1.711 mmol) in CH3CN (10 mL), K2CO3 (0.35 g, 2.567 mmol) and 1-bromo­but-2-yne (0.22 mL, 2.567 mmol) were added and stirred at room temperature for 12 h. After completion of the reaction (monitored by TLC), it was poured into crushed ice (50 g) containing conc. HCl (5 mL), extracted with ethyl acetate (2 × 20 mL) then washed with water (2 × 20 mL) and dried (Na2SO4). Removal of solvent in vacuo followed by crystallization from methanol (4 mL) afforded (E)-N-{2-[2-(benzo[b]thio­phen-2-yl)ethen­yl]-5-fluoro­phen­yl}-N-(but-2-yn-1-yl)benzene­sulfonamide as a white solid.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For compound I, the NH H atoms were located in difference-Fourier maps and freely refined. For compound II, they were included in calculated positions and refined as riding: N—H = 0.93 Å with Uiso(H) = 1.2Ueq(N). All C-bound H atoms were positioned geometrically and constrained to ride on their parent atoms: C–H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms. In compound I, the thio­phene ring is disordered over two positions with a refined occupancy ratio of 0.756 (4):0.244 (3). The geometries were regularized using soft restraints.

Table 3
Experimental details

  I II
Crystal data
Chemical formula C22H16FNO2S2 C26H20FNO2S2
Mr 409.48 461.55
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 297 297
a, b, c (Å) 7.9588 (1), 25.9840 (4), 9.5178 (2) 9.3517 (3), 31.7075 (11), 8.6063 (3)
β (°) 96.853 (1) 115.179 (2)
V3) 1954.23 (6) 2309.45 (14)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 2.70 2.35
Crystal size (mm) 0.15 × 0.10 × 0.08 0.11 × 0.07 × 0.02
 
Data collection
Diffractometer Bruker D8 Venture Diffractometer Bruker D8 Venture Diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.589, 0.753 0.604, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 44325, 3597, 2964 39443, 4270, 2098
Rint 0.049 0.155
(sin θ/λ)max−1) 0.604 0.605
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.115, 1.03 0.066, 0.232, 1.00
No. of reflections 3597 4270
No. of parameters 272 291
No. of restraints 11 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.28 0.33, −0.38
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2018/3 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS2018/3 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and PLATON (Spek, 2020).

(E)-N-{2-[2-(Benzo[b]thiophen-2-yl)ethenyl]-5-fluorophenyl}benzenesulfonamide (I) top
Crystal data top
C22H16FNO2S2F(000) = 848
Mr = 409.48Dx = 1.392 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 7.9588 (1) ÅCell parameters from 9457 reflections
b = 25.9840 (4) Åθ = 3.4–68.6°
c = 9.5178 (2) ŵ = 2.70 mm1
β = 96.853 (1)°T = 297 K
V = 1954.23 (6) Å3Block, brown
Z = 40.15 × 0.10 × 0.08 mm
Data collection top
Bruker D8 Venture Diffractometer2964 reflections with I > 2σ(I)
Radiation source: micro focus sealed tubeRint = 0.049
ω and φ scansθmax = 68.7°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 99
Tmin = 0.589, Tmax = 0.753k = 3131
44325 measured reflectionsl = 1111
3597 independent reflections
Refinement top
Refinement on F211 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.7846P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3597 reflectionsΔρmax = 0.21 e Å3
272 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7141 (2)0.64416 (6)0.53276 (16)0.0782 (7)
C20.6743 (3)0.69557 (7)0.5055 (2)0.1055 (10)
H20.6114240.7049230.4207040.127*
C30.7286 (3)0.73300 (5)0.6050 (3)0.1127 (11)
H30.7019960.7673930.5868230.135*
C40.8226 (3)0.71902 (7)0.7318 (2)0.1109 (11)
H40.8589020.7440590.7984070.133*
C50.8623 (3)0.66761 (8)0.75906 (17)0.1018 (9)
H50.9252380.6582540.8438720.122*
C60.8081 (2)0.63018 (5)0.65953 (18)0.0788 (7)
S1'0.8669 (7)0.56832 (19)0.7105 (5)0.0855 (14)0.243 (4)
C7'0.709 (3)0.5902 (6)0.4679 (19)0.103 (8)0.243 (4)
H7'0.6499840.5846590.3788330.124*0.243 (4)
C8'0.790 (5)0.5504 (7)0.539 (2)0.051 (5)0.243 (4)
S10.6512 (2)0.59509 (5)0.41950 (14)0.0758 (4)0.757 (4)
C70.8282 (9)0.5758 (2)0.6526 (7)0.0900 (18)0.757 (4)
H70.8933200.5578940.7242780.108*0.757 (4)
C80.7498 (15)0.5511 (3)0.5389 (9)0.067 (3)0.757 (4)
C90.7644 (3)0.49638 (9)0.5064 (3)0.0754 (6)
H90.8082420.4744820.5790010.090*
C100.6922 (3)0.47259 (9)0.3953 (3)0.0741 (6)
H100.6328730.4929880.3259940.089*
C110.6936 (3)0.41711 (8)0.3671 (2)0.0673 (6)
C120.7752 (4)0.38326 (10)0.4678 (3)0.0976 (9)
H120.8291220.3968330.5517080.117*
C130.7790 (5)0.33108 (10)0.4481 (3)0.1019 (10)
H130.8350450.3094750.5161460.122*
C140.6980 (4)0.31212 (9)0.3256 (3)0.0837 (7)
C150.6143 (3)0.34215 (8)0.2231 (3)0.0711 (6)
H150.5579990.3275090.1415570.085*
C160.6145 (3)0.39533 (7)0.2428 (2)0.0578 (5)
C170.6983 (2)0.40434 (7)0.0853 (2)0.0545 (5)
C180.8053 (3)0.44596 (9)0.0912 (3)0.0739 (6)
H180.7707510.4788860.0691610.089*
C190.9636 (3)0.43766 (13)0.1303 (3)0.0927 (8)
H191.0374220.4651990.1345870.111*
C201.0139 (3)0.38892 (15)0.1632 (3)0.0947 (9)
H201.1212590.3837770.1898820.114*
C210.9072 (4)0.34806 (12)0.1569 (3)0.0888 (8)
H210.9422940.3152100.1791190.107*
C220.7481 (3)0.35538 (9)0.1179 (2)0.0689 (6)
H220.6750160.3276570.1136420.083*
N10.5283 (2)0.42741 (6)0.1368 (2)0.0616 (4)
O10.40697 (18)0.36642 (5)0.05058 (18)0.0706 (4)
O20.42235 (19)0.45927 (5)0.09632 (17)0.0674 (4)
F10.6977 (3)0.26050 (5)0.3036 (2)0.1171 (6)
S20.49738 (6)0.41360 (2)0.03136 (6)0.05557 (17)
H1N0.545 (3)0.4587 (6)0.147 (2)0.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0989 (18)0.0723 (15)0.0687 (14)0.0213 (13)0.0318 (13)0.0024 (12)
C20.132 (3)0.0839 (19)0.103 (2)0.0145 (18)0.0231 (19)0.0204 (17)
C30.135 (3)0.0621 (16)0.149 (3)0.0154 (17)0.052 (3)0.0014 (19)
C40.135 (3)0.081 (2)0.126 (3)0.0312 (19)0.054 (2)0.0337 (19)
C50.124 (2)0.099 (2)0.0829 (18)0.0240 (19)0.0139 (17)0.0201 (16)
C60.0929 (17)0.0706 (15)0.0766 (16)0.0123 (13)0.0252 (13)0.0080 (12)
S1'0.104 (3)0.077 (2)0.074 (3)0.0128 (19)0.004 (2)0.0059 (19)
C7'0.127 (16)0.121 (16)0.059 (10)0.069 (13)0.001 (8)0.016 (10)
C8'0.045 (12)0.060 (8)0.050 (8)0.004 (5)0.017 (5)0.001 (6)
S10.1095 (10)0.0607 (5)0.0576 (8)0.0079 (5)0.0109 (6)0.0006 (4)
C70.111 (4)0.077 (3)0.076 (4)0.003 (2)0.010 (3)0.000 (3)
C80.065 (6)0.067 (3)0.071 (3)0.009 (2)0.017 (2)0.003 (2)
C90.0896 (17)0.0647 (14)0.0712 (14)0.0018 (12)0.0068 (12)0.0001 (11)
C100.1028 (18)0.0551 (12)0.0632 (13)0.0022 (12)0.0055 (12)0.0060 (10)
C110.0864 (15)0.0516 (11)0.0647 (13)0.0000 (10)0.0123 (11)0.0086 (10)
C120.142 (3)0.0674 (16)0.0772 (17)0.0011 (16)0.0111 (17)0.0139 (13)
C130.141 (3)0.0651 (16)0.095 (2)0.0093 (16)0.0046 (19)0.0296 (15)
C140.114 (2)0.0459 (12)0.0930 (19)0.0051 (12)0.0186 (16)0.0146 (12)
C150.0888 (16)0.0472 (11)0.0783 (15)0.0022 (11)0.0142 (12)0.0065 (10)
C160.0645 (12)0.0457 (10)0.0658 (12)0.0025 (9)0.0186 (10)0.0083 (9)
C170.0545 (10)0.0502 (10)0.0561 (11)0.0008 (8)0.0041 (8)0.0033 (8)
C180.0654 (13)0.0673 (14)0.0871 (16)0.0139 (11)0.0014 (12)0.0091 (12)
C190.0671 (15)0.116 (2)0.0935 (19)0.0253 (16)0.0020 (14)0.0039 (17)
C200.0562 (14)0.147 (3)0.0796 (17)0.0120 (17)0.0026 (12)0.0036 (18)
C210.0794 (17)0.096 (2)0.0904 (19)0.0269 (15)0.0098 (14)0.0087 (15)
C220.0724 (14)0.0582 (12)0.0752 (14)0.0077 (10)0.0049 (11)0.0050 (11)
N10.0745 (11)0.0401 (8)0.0700 (11)0.0070 (8)0.0081 (9)0.0009 (8)
O10.0613 (8)0.0459 (7)0.1008 (12)0.0087 (6)0.0061 (8)0.0028 (7)
O20.0711 (9)0.0437 (7)0.0826 (10)0.0098 (6)0.0111 (7)0.0015 (7)
F10.1731 (17)0.0454 (8)0.1300 (14)0.0126 (9)0.0067 (12)0.0189 (8)
S20.0546 (3)0.0379 (2)0.0718 (3)0.00112 (18)0.0029 (2)0.0018 (2)
Geometric parameters (Å, º) top
C1—C21.3900C11—C121.402 (3)
C1—C61.3900C12—C131.369 (4)
C1—C7'1.531 (14)C12—H120.9300
C1—S11.7058 (18)C13—C141.356 (4)
C2—C31.3900C13—H130.9300
C2—H20.9300C14—F11.358 (3)
C3—C41.3900C14—C151.360 (3)
C3—H30.9300C15—C161.394 (3)
C4—C51.3900C15—H150.9300
C4—H40.9300C16—N11.421 (3)
C5—C61.3900C17—C221.379 (3)
C5—H50.9300C17—C181.381 (3)
C6—C71.426 (6)C17—S21.754 (2)
C6—S1'1.727 (5)C18—C191.373 (4)
S1'—C8'1.738 (17)C18—H180.9300
C7'—C8'1.356 (18)C19—C201.375 (4)
C7'—H7'0.9300C19—H190.9300
C8'—C91.446 (17)C20—C211.365 (4)
S1—C81.732 (7)C20—H200.9300
C7—C81.345 (8)C21—C221.375 (4)
C7—H70.9300C21—H210.9300
C8—C91.463 (7)C22—H220.9300
C9—C101.298 (3)N1—S21.6301 (19)
C9—H90.9300N1—H1N0.828 (16)
C10—C111.467 (3)O1—S21.4222 (14)
C10—H100.9300O2—S21.4348 (14)
C11—C161.393 (3)
C2—C1—C6120.0C16—C11—C10122.8 (2)
C2—C1—C7'144.2 (7)C12—C11—C10120.3 (2)
C6—C1—C7'95.5 (7)C13—C12—C11122.9 (3)
C2—C1—S1123.88 (12)C13—C12—H12118.5
C6—C1—S1116.11 (12)C11—C12—H12118.5
C3—C2—C1120.0C14—C13—C12117.5 (3)
C3—C2—H2120.0C14—C13—H13121.3
C1—C2—H2120.0C12—C13—H13121.3
C2—C3—C4120.0C13—C14—F1118.9 (2)
C2—C3—H3120.0C13—C14—C15123.4 (2)
C4—C3—H3120.0F1—C14—C15117.7 (3)
C5—C4—C3120.0C14—C15—C16118.6 (2)
C5—C4—H4120.0C14—C15—H15120.7
C3—C4—H4120.0C16—C15—H15120.7
C4—C5—C6120.0C11—C16—C15120.7 (2)
C4—C5—H5120.0C11—C16—N1119.74 (18)
C6—C5—H5120.0C15—C16—N1119.6 (2)
C5—C6—C1120.0C22—C17—C18121.2 (2)
C5—C6—C7134.3 (3)C22—C17—S2119.30 (17)
C1—C6—C7105.7 (3)C18—C17—S2119.49 (17)
C5—C6—S1'114.1 (2)C19—C18—C17118.5 (2)
C1—C6—S1'125.9 (2)C19—C18—H18120.7
C6—S1'—C8'86.1 (6)C17—C18—H18120.7
C8'—C7'—C1120.6 (13)C18—C19—C20120.5 (3)
C8'—C7'—H7'119.7C18—C19—H19119.7
C1—C7'—H7'119.7C20—C19—H19119.7
C7'—C8'—C9126.0 (15)C21—C20—C19120.5 (3)
C7'—C8'—S1'110.9 (13)C21—C20—H20119.8
C9—C8'—S1'119.1 (13)C19—C20—H20119.8
C1—S1—C890.1 (2)C20—C21—C22120.1 (3)
C8—C7—C6117.7 (6)C20—C21—H21119.9
C8—C7—H7121.1C22—C21—H21119.9
C6—C7—H7121.1C21—C22—C17119.2 (2)
C7—C8—C9126.3 (6)C21—C22—H22120.4
C7—C8—S1110.1 (5)C17—C22—H22120.4
C9—C8—S1122.9 (5)C16—N1—S2124.85 (14)
C10—C9—C8'132.4 (8)C16—N1—H1N116.0 (16)
C10—C9—C8126.6 (4)S2—N1—H1N109.5 (16)
C10—C9—H9113.8O1—S2—O2118.64 (9)
C8'—C9—H9113.8O1—S2—N1109.32 (10)
C9—C10—C11127.2 (2)O2—S2—N1104.32 (9)
C9—C10—H10116.4O1—S2—C17108.01 (9)
C11—C10—H10116.4O2—S2—C17109.55 (10)
C16—C11—C12116.8 (2)N1—S2—C17106.35 (9)
C6—C1—C2—C30.0C8'—C9—C10—C11171 (2)
C7'—C1—C2—C3171.5 (14)C8—C9—C10—C11174.3 (7)
S1—C1—C2—C3178.91 (16)C9—C10—C11—C16178.7 (3)
C1—C2—C3—C40.0C9—C10—C11—C122.1 (4)
C2—C3—C4—C50.0C16—C11—C12—C130.1 (5)
C3—C4—C5—C60.0C10—C11—C12—C13179.2 (3)
C4—C5—C6—C10.0C11—C12—C13—C140.7 (5)
C4—C5—C6—C7178.8 (4)C12—C13—C14—F1179.2 (3)
C4—C5—C6—S1'179.6 (2)C12—C13—C14—C150.1 (5)
C2—C1—C6—C50.0C13—C14—C15—C161.5 (4)
C7'—C1—C6—C5175.0 (8)F1—C14—C15—C16179.3 (2)
S1—C1—C6—C5178.99 (15)C12—C11—C16—C151.6 (4)
C2—C1—C6—C7179.1 (3)C10—C11—C16—C15177.7 (2)
S1—C1—C6—C71.9 (3)C12—C11—C16—N1179.5 (2)
C2—C1—C6—S1'179.5 (3)C10—C11—C16—N10.2 (3)
C7'—C1—C6—S1'5.5 (8)C14—C15—C16—C112.3 (4)
C5—C6—S1'—C8'171.8 (13)C14—C15—C16—N1179.8 (2)
C1—C6—S1'—C8'8.7 (14)C22—C17—C18—C190.1 (4)
C2—C1—C7'—C8'171 (2)S2—C17—C18—C19178.41 (19)
C6—C1—C7'—C8'2 (3)C17—C18—C19—C200.2 (4)
C1—C7'—C8'—C9165 (2)C18—C19—C20—C210.2 (4)
C1—C7'—C8'—S1'8 (4)C19—C20—C21—C220.2 (4)
C6—S1'—C8'—C7'8 (2)C20—C21—C22—C170.1 (4)
C6—S1'—C8'—C9167 (3)C18—C17—C22—C210.0 (4)
C2—C1—S1—C8178.8 (5)S2—C17—C22—C21178.48 (19)
C6—C1—S1—C80.1 (5)C11—C16—N1—S2153.99 (18)
C5—C6—C7—C8177.3 (7)C15—C16—N1—S228.1 (3)
C1—C6—C7—C83.8 (9)C16—N1—S2—O158.1 (2)
C6—C7—C8—C9175.1 (8)C16—N1—S2—O2174.05 (17)
C6—C7—C8—S14.0 (11)C16—N1—S2—C1758.28 (19)
C1—S1—C8—C72.2 (8)C22—C17—S2—O18.2 (2)
C1—S1—C8—C9173.7 (9)C18—C17—S2—O1173.24 (18)
C7'—C8'—C9—C1015 (5)C22—C17—S2—O2138.77 (17)
S1'—C8'—C9—C10170.8 (10)C18—C17—S2—O242.7 (2)
C7—C8—C9—C10178.3 (8)C22—C17—S2—N1109.03 (18)
S1—C8—C9—C108.4 (13)C18—C17—S2—N169.51 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O10.932.302.980 (3)130
C10—H10···02i0.932.513.383 (3)157
N1—H1N···O2i0.83 (2)2.21 (2)3.001 (2)161 (2)
C22—H22···F1ii0.932.443.116 (3)130
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1/2, z1/2.
(E)-N-{2-[2-(Benzo[b]thiophen-2-yl)ethenyl]-5-fluorophenyl}-N-(but-2-yn-1-yl)benzenesulfonamide (II) top
Crystal data top
C26H20FNO2S2F(000) = 960
Mr = 461.55Dx = 1.327 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 9.3517 (3) ÅCell parameters from 3616 reflections
b = 31.7075 (11) Åθ = 2.8–65.4°
c = 8.6063 (3) ŵ = 2.35 mm1
β = 115.179 (2)°T = 297 K
V = 2309.45 (14) Å3Solid, white
Z = 40.11 × 0.07 × 0.02 mm
Data collection top
Bruker D8 Venture Diffractometer2098 reflections with I > 2σ(I)
Radiation source: micro focus sealed tubeRint = 0.155
ω and φ scansθmax = 68.8°, θmin = 5.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1111
Tmin = 0.604, Tmax = 0.753k = 3738
39443 measured reflectionsl = 1010
4270 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.066 w = 1/[σ2(Fo2) + (0.1325P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.232(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.33 e Å3
4270 reflectionsΔρmin = 0.37 e Å3
291 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0040 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2549 (6)0.32808 (15)0.0285 (6)0.0669 (12)
C20.2360 (6)0.33934 (17)0.1918 (6)0.0778 (14)
H20.3119000.3555780.2070420.093*
C30.1029 (7)0.32600 (17)0.3309 (7)0.0825 (15)
H30.0890650.3333200.4410410.099*
C40.0110 (6)0.30184 (16)0.3096 (6)0.0763 (14)
H40.1000100.2932490.4056770.092*
C50.0054 (6)0.29044 (15)0.1498 (6)0.0722 (13)
H50.0719510.2743080.1370150.087*
C60.1408 (5)0.30337 (14)0.0042 (5)0.0626 (11)
C70.1836 (6)0.29535 (14)0.1732 (6)0.0673 (12)
H70.1221200.2793210.2120830.081*
C80.3227 (5)0.31338 (13)0.2798 (5)0.0609 (11)
C90.3969 (6)0.31034 (15)0.4648 (6)0.0682 (12)
H90.3503120.2922420.5148470.082*
C100.5265 (6)0.33107 (14)0.5712 (6)0.0633 (12)
H100.5710840.3503310.5231680.076*
C110.6030 (5)0.32555 (13)0.7581 (5)0.0586 (11)
C120.5852 (6)0.28800 (14)0.8336 (6)0.0659 (12)
H120.5212740.2668250.7636000.079*
C130.6595 (6)0.28137 (15)1.0084 (6)0.0702 (13)
H130.6468160.2562231.0567350.084*
C140.7527 (6)0.31322 (16)1.1085 (6)0.0718 (13)
C150.7743 (6)0.35085 (15)1.0435 (6)0.0694 (13)
H150.8363000.3719591.1158420.083*
C160.7016 (5)0.35672 (13)0.8677 (5)0.0585 (11)
C170.6526 (6)0.45543 (14)0.9821 (6)0.0688 (13)
C180.5818 (8)0.43930 (18)1.0789 (7)0.0899 (17)
H180.5055810.4183551.0335460.108*
C190.6226 (9)0.4539 (2)1.2444 (9)0.106 (2)
H190.5745030.4427861.3102780.128*
C200.7344 (9)0.4848 (2)1.3093 (9)0.109 (2)
H200.7629460.4944151.4206230.131*
C210.8042 (9)0.5017 (2)1.2151 (9)0.109 (2)
H210.8786240.5230521.2608680.130*
C220.7647 (7)0.48710 (16)1.0491 (7)0.0872 (16)
H220.8129800.4984740.9838360.105*
C230.8877 (6)0.40504 (16)0.8143 (7)0.0763 (14)
H23A0.9254730.3808350.7736230.092*
H23B0.8826480.4286750.7405000.092*
C241.0039 (6)0.41494 (15)0.9891 (7)0.0764 (14)
C251.0953 (7)0.42202 (17)1.1328 (8)0.0886 (17)
C261.2031 (8)0.4310 (2)1.3114 (8)0.117 (2)
H26A1.1430240.4381141.3745900.175*
H26B1.2703750.4542141.3152340.175*
H26C1.2665160.4065451.3616370.175*
N10.7255 (4)0.39583 (10)0.7947 (5)0.0613 (10)
O10.4505 (4)0.41733 (11)0.7156 (4)0.0851 (11)
O20.6400 (5)0.46681 (11)0.6790 (5)0.0949 (12)
S10.40923 (16)0.34048 (5)0.16627 (16)0.0776 (5)
S20.60508 (16)0.43535 (4)0.77698 (15)0.0715 (4)
F10.8245 (4)0.30760 (10)1.2817 (3)0.0982 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.060 (3)0.078 (3)0.063 (3)0.003 (2)0.026 (2)0.005 (2)
C20.073 (3)0.097 (4)0.066 (3)0.005 (3)0.033 (3)0.000 (3)
C30.080 (4)0.107 (4)0.059 (3)0.005 (3)0.029 (3)0.003 (3)
C40.074 (3)0.089 (3)0.062 (3)0.001 (3)0.025 (3)0.013 (2)
C50.063 (3)0.079 (3)0.066 (3)0.008 (2)0.019 (2)0.013 (2)
C60.060 (3)0.071 (3)0.056 (2)0.001 (2)0.024 (2)0.008 (2)
C70.065 (3)0.072 (3)0.065 (3)0.015 (2)0.028 (2)0.005 (2)
C80.063 (3)0.064 (2)0.057 (2)0.005 (2)0.027 (2)0.003 (2)
C90.068 (3)0.071 (3)0.061 (3)0.007 (2)0.023 (2)0.004 (2)
C100.064 (3)0.065 (3)0.059 (2)0.001 (2)0.025 (2)0.000 (2)
C110.057 (3)0.061 (2)0.057 (2)0.000 (2)0.024 (2)0.0004 (19)
C120.068 (3)0.064 (3)0.066 (3)0.003 (2)0.029 (2)0.000 (2)
C130.076 (3)0.070 (3)0.067 (3)0.000 (3)0.034 (3)0.007 (2)
C140.079 (3)0.081 (3)0.049 (2)0.007 (3)0.021 (2)0.009 (2)
C150.070 (3)0.070 (3)0.060 (3)0.001 (2)0.020 (2)0.001 (2)
C160.062 (3)0.056 (2)0.057 (2)0.002 (2)0.025 (2)0.0017 (18)
C170.076 (3)0.063 (3)0.070 (3)0.003 (2)0.033 (3)0.001 (2)
C180.107 (5)0.085 (3)0.081 (4)0.009 (3)0.044 (3)0.010 (3)
C190.132 (6)0.106 (4)0.096 (5)0.003 (4)0.063 (4)0.003 (4)
C200.134 (6)0.110 (5)0.079 (4)0.016 (5)0.042 (4)0.019 (4)
C210.119 (5)0.096 (4)0.099 (5)0.019 (4)0.034 (4)0.035 (4)
C220.099 (4)0.072 (3)0.088 (4)0.016 (3)0.038 (3)0.014 (3)
C230.074 (3)0.076 (3)0.081 (3)0.009 (3)0.035 (3)0.005 (2)
C240.068 (3)0.068 (3)0.090 (4)0.008 (3)0.031 (3)0.005 (3)
C250.081 (4)0.075 (3)0.101 (4)0.008 (3)0.030 (3)0.008 (3)
C260.102 (5)0.123 (5)0.093 (4)0.012 (4)0.010 (4)0.015 (4)
N10.064 (2)0.0555 (19)0.061 (2)0.0017 (17)0.0238 (18)0.0022 (16)
O10.062 (2)0.084 (2)0.088 (2)0.0006 (18)0.0117 (18)0.0075 (18)
O20.139 (3)0.0680 (19)0.077 (2)0.000 (2)0.045 (2)0.0174 (17)
S10.0655 (8)0.0998 (9)0.0656 (7)0.0180 (7)0.0261 (6)0.0056 (6)
S20.0822 (9)0.0616 (6)0.0625 (7)0.0020 (6)0.0229 (6)0.0030 (5)
F10.114 (2)0.107 (2)0.0552 (16)0.0063 (19)0.0187 (16)0.0166 (15)
Geometric parameters (Å, º) top
C1—C21.387 (7)C15—C161.382 (6)
C1—C61.409 (7)C15—H150.9300
C1—S11.729 (5)C16—N11.450 (5)
C2—C31.376 (7)C17—C181.365 (7)
C2—H20.9300C17—C221.387 (7)
C3—C41.386 (7)C17—S21.747 (5)
C3—H30.9300C18—C191.388 (8)
C4—C51.367 (7)C18—H180.9300
C4—H40.9300C19—C201.368 (9)
C5—C61.411 (6)C19—H190.9300
C5—H50.9300C20—C211.349 (9)
C6—C71.426 (6)C20—H200.9300
C7—C81.358 (6)C21—C221.394 (8)
C7—H70.9300C21—H210.9300
C8—C91.444 (6)C22—H220.9300
C8—S11.738 (5)C23—C241.467 (7)
C9—C101.340 (6)C23—N11.483 (6)
C9—H90.9300C23—H23A0.9700
C10—C111.466 (6)C23—H23B0.9700
C10—H100.9300C24—C251.188 (7)
C11—C121.400 (6)C25—C261.464 (8)
C11—C161.406 (6)C26—H26A0.9600
C12—C131.378 (6)C26—H26B0.9600
C12—H120.9300C26—H26C0.9600
C13—C141.372 (7)N1—S21.648 (4)
C13—H130.9300O1—S21.431 (4)
C14—F11.361 (5)O2—S21.431 (4)
C14—C151.369 (7)
C2—C1—C6121.0 (4)C15—C16—C11121.1 (4)
C2—C1—S1128.2 (4)C15—C16—N1119.7 (4)
C6—C1—S1110.8 (3)C11—C16—N1119.2 (4)
C3—C2—C1118.7 (5)C18—C17—C22119.6 (5)
C3—C2—H2120.6C18—C17—S2119.9 (4)
C1—C2—H2120.6C22—C17—S2120.4 (4)
C2—C3—C4121.1 (5)C17—C18—C19120.6 (6)
C2—C3—H3119.4C17—C18—H18119.7
C4—C3—H3119.4C19—C18—H18119.7
C5—C4—C3121.0 (5)C20—C19—C18119.1 (7)
C5—C4—H4119.5C20—C19—H19120.4
C3—C4—H4119.5C18—C19—H19120.4
C4—C5—C6119.4 (5)C21—C20—C19121.4 (6)
C4—C5—H5120.3C21—C20—H20119.3
C6—C5—H5120.3C19—C20—H20119.3
C1—C6—C5118.7 (4)C20—C21—C22119.9 (6)
C1—C6—C7111.9 (4)C20—C21—H21120.0
C5—C6—C7129.5 (5)C22—C21—H21120.0
C8—C7—C6113.6 (4)C17—C22—C21119.3 (6)
C8—C7—H7123.2C17—C22—H22120.3
C6—C7—H7123.2C21—C22—H22120.3
C7—C8—C9126.1 (4)C24—C23—N1115.7 (4)
C7—C8—S1111.7 (3)C24—C23—H23A108.3
C9—C8—S1122.2 (3)N1—C23—H23A108.3
C10—C9—C8126.3 (5)C24—C23—H23B108.3
C10—C9—H9116.9N1—C23—H23B108.3
C8—C9—H9116.9H23A—C23—H23B107.4
C9—C10—C11124.7 (5)C25—C24—C23177.7 (6)
C9—C10—H10117.7C24—C25—C26177.9 (7)
C11—C10—H10117.7C25—C26—H26A109.5
C12—C11—C16117.4 (4)C25—C26—H26B109.5
C12—C11—C10120.8 (4)H26A—C26—H26B109.5
C16—C11—C10121.8 (4)C25—C26—H26C109.5
C13—C12—C11122.1 (4)H26A—C26—H26C109.5
C13—C12—H12118.9H26B—C26—H26C109.5
C11—C12—H12118.9C16—N1—C23117.3 (4)
C14—C13—C12117.6 (4)C16—N1—S2117.7 (3)
C14—C13—H13121.2C23—N1—S2119.1 (3)
C12—C13—H13121.2C1—S1—C892.1 (2)
F1—C14—C15118.2 (4)O2—S2—O1120.6 (2)
F1—C14—C13118.5 (4)O2—S2—N1105.5 (2)
C15—C14—C13123.3 (4)O1—S2—N1105.9 (2)
C14—C15—C16118.4 (4)O2—S2—C17108.5 (2)
C14—C15—H15120.8O1—S2—C17107.5 (2)
C16—C15—H15120.8N1—S2—C17108.3 (2)
C6—C1—C2—C30.2 (8)C10—C11—C16—N11.5 (7)
S1—C1—C2—C3180.0 (4)C22—C17—C18—C190.9 (9)
C1—C2—C3—C40.1 (8)S2—C17—C18—C19177.7 (5)
C2—C3—C4—C50.1 (8)C17—C18—C19—C200.3 (10)
C3—C4—C5—C60.2 (8)C18—C19—C20—C210.8 (11)
C2—C1—C6—C50.5 (7)C19—C20—C21—C221.1 (11)
S1—C1—C6—C5179.7 (4)C18—C17—C22—C210.6 (9)
C2—C1—C6—C7179.8 (5)S2—C17—C22—C21178.0 (5)
S1—C1—C6—C70.1 (5)C20—C21—C22—C170.5 (10)
C4—C5—C6—C10.5 (7)C15—C16—N1—C2364.9 (6)
C4—C5—C6—C7179.8 (5)C11—C16—N1—C23115.9 (5)
C1—C6—C7—C80.6 (6)C15—C16—N1—S287.9 (5)
C5—C6—C7—C8179.0 (5)C11—C16—N1—S291.3 (5)
C6—C7—C8—C9179.2 (4)C24—C23—N1—C1669.7 (5)
C6—C7—C8—S10.9 (5)C24—C23—N1—S282.7 (5)
C7—C8—C9—C10173.6 (5)C2—C1—S1—C8179.8 (5)
S1—C8—C9—C108.3 (7)C6—C1—S1—C80.4 (4)
C8—C9—C10—C11176.8 (4)C7—C8—S1—C10.7 (4)
C9—C10—C11—C1224.6 (7)C9—C8—S1—C1179.1 (4)
C9—C10—C11—C16158.0 (5)C16—N1—S2—O2171.5 (3)
C16—C11—C12—C130.5 (7)C23—N1—S2—O236.2 (4)
C10—C11—C12—C13178.0 (5)C16—N1—S2—O142.6 (4)
C11—C12—C13—C140.2 (7)C23—N1—S2—O1165.2 (3)
C12—C13—C14—F1178.7 (4)C16—N1—S2—C1772.5 (4)
C12—C13—C14—C150.4 (8)C23—N1—S2—C1779.8 (4)
F1—C14—C15—C16180.0 (4)C18—C17—S2—O2156.6 (5)
C13—C14—C15—C161.6 (8)C22—C17—S2—O224.9 (5)
C14—C15—C16—C112.4 (7)C18—C17—S2—O124.6 (5)
C14—C15—C16—N1178.4 (4)C22—C17—S2—O1156.9 (4)
C12—C11—C16—C151.8 (7)C18—C17—S2—N189.4 (5)
C10—C11—C16—C15179.3 (4)C22—C17—S2—N189.1 (4)
C12—C11—C16—N1179.0 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.593.483 (7)162
C4—H4···F1ii0.932.523.188 (6)130
C18—H18···S1iii0.933.013.744 (6)137
C23—H23A···Cg1iv0.932.693.566 (6)151
Symmetry codes: (i) x, y, z1; (ii) x1, y, z2; (iii) x, y, z+1; (iv) x+1, y, z+1.
 

Acknowledgements

The authors thank the SAIF, IIT, Madras, India, for the data collection.

References

First citationAbdelhamid, A. O. (2009). J. Heterocycl. Chem. 46, 680–686.  Web of Science CrossRef CAS Google Scholar
First citationAbdel-Rahman, A. E., Bakhite, A. E. & Al-Taifi, E. A. (2003). Pharmazie, 58, 372–377.  Web of Science PubMed CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAnsary, A. K. & Omar, H. A. (2001). Bull. Faculty Pharm. 39, 17.  Google Scholar
First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBedworth, P. V., Cai, Y., Jen, A. & Marder, S. R. (1996). J. Org. Chem. 61, 2242–2246.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Berti, F. & Campaner, P. (2005). Tetrahedron, 61, 6580–6589.  Web of Science CrossRef CAS Google Scholar
First citationBrault, L., Migianu, E., Néguesque, A., Battaglia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757–763.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H. J., Wang, W., l Wang, G. F., Shi, L. P., Gu, M., Ren, Y. D. & Hou, L. F. (2008). Med. Chem. 3, 1316–1321.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerreira, C. F. R., Queiroz, M. R. P., Vilas-Boas, M., Estevinho, L. M., Begouin, A. & Kirsch, G. (2006). Bioorg. Med. Chem. Lett. 16, 1384–1387.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGadad, A. K., Kumar, H., Shishoo, C. J., Mkhazi, I. & Mahajanshetti, C. S. (1994). Ind. J. Chem. Soc. 33, 298–301.  Google Scholar
First citationGather, M. C., Heeney, M., Zhang, W., Whitehead, K. S., Bradley, D. D. C., McCulloch, I. & Campbell, A. J. (2008). Chem. Commun. pp. 1079–1081.  Web of Science CrossRef Google Scholar
First citationGewald, K., Schinke, E. & Botcher, H. (1966). Chem. Ber. 99, 99–100.  Google Scholar
First citationGillespie, E., Dungan, K. M., Gomoll, A. W. & Seidehamel, R. J. (1985). Int. J. Immunopharmacol. 7, 655–660.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrunewald, G. L., Seim, M. R., Bhat, S. R., Wilson, M. E. & Criscione, K. R. (2008). Bioorg. Med. Chem. 16, 542–559.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHe, M., Li, J., Sorensen, M. L., Zhang, F., Hancock, R. R., Fong, H. H., Pozdin, V. A., Smilgies, D. & Malliaras, G. G. (2009). J. Am. Chem. Soc. 131, 11930–11938.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJarak, I., Kralj, M. S., Šuman, L., Pavlović, G., Dogan, J., Piantanida, I. Z., Žinić, M., Pavelić, K. & Karminski-Zamola, G. (2005). J. Med. Chem. 48, 2346–2360.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationJordan, V. C. (2003). J. Med. Chem. 46, 1081–1111.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJustin Thomas, K. R., Hsu, Y. C., Lin, J. T., Lee, K. M., Ho, K. C., Lai, C. H., Cheng, Y. M. & Chou, P. T. (2008). Chem. Mater. 20, 1830–1840.  Web of Science CrossRef Google Scholar
First citationLaddi, U. V., Talwar, M. B., Desai, S. R., Somannavar, Y. S., Bennur, R. S. & Bennur, S. C. (1998). Indian Drugs, 35, 509–513.  CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMadhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2022). Acta Cryst. E78, 1198–1203.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMadhan, S., NizamMohideen, M., Pavunkumar, V. & Mohana­Krishnan, A. K. (2023). Acta Cryst. E79, 521–525.  CSD CrossRef IUCr Journals Google Scholar
First citationMazzeo, M., Vitale, V., Della Sala, F., Pisignano, D., Anni, M., Barbarella, G., Favaretto, L., Zanelli, A., Cingolani, R. & Gigli, G. (2003). Adv. Mater. 15, 2060–2063.  Web of Science CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMishra, R., Tomer, I. & Kumar, S. (2012). Der Pharmacia Sinica, 3, 332–336.  CAS Google Scholar
First citationMonge Vega, A., Aldana, I., Rabbani, M. M. & Fernandez-Alvarez, E. (1980). Heterocycl. Chem. 17, 77–80.  CrossRef CAS Web of Science Google Scholar
First citationNathan Tumey, L., Boschelli, D. H., Lee, J. & Chaudhary, D. (2008). Bioorg. Med. Chem. Lett. 18, 4420–4423.  CrossRef CAS Google Scholar
First citationRaposo, M. M. M., Fonseca, A. M. C., Castro, M. C. R., Belsley, M., Cardoso, M. F. S., Carvalho, L. M. & Coelho, P. J. (2011). Dyes Pigments, 91, 62–73.  Web of Science CrossRef CAS Google Scholar
First citationRussell, R. K. & Press, J. B. (1996). Comprehensive Heterocyclic Chemistry II, Vol. 2, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven. pp. 679–729. Oxford: Pergamon Press.  Google Scholar
First citationSabins, R. W. (1944). Sulfur Rep. 16, 1.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhan, X., Tan, Z.-A., Domercq, B., An, Z., Zhang, X., Barlow, S., Li, Y.-F., Zhu, D.-B., Kippelen, B. & Marder, S. R. (2007). J. Am. Chem. Soc. 129, 7246–7247.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds