research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of a copper(II) complex involving 3-methyl­benzoate and 2,2′-bi­pyridine ligands

crossmark logo

aDepartment of Chemistry, College of Science, Salahaddin University, Erbil 44001, Iraq
*Correspondence e-mail: adnan.qadir@su.edu.krd

Edited by G. Diaz de Delgado, Universidad de Los Andes Mérida, Venezuela (Received 24 January 2023; accepted 5 August 2023; online 15 August 2023)

3-Methyl­benzoic acid (3-mbH) and 2,2′-bi­pyridine (bipy) reacted with a cop­per(II) salt forming a new mixed ligand complex, aqua­(2,2′-bi­pyridine-κ2N,N′)bis­(3-methyl­benzoato)-κ2O,O′;κO-copper(II) 0.68-hydrate, [Cu(C8H7O2)2(C10H8N2)(H2O)]·0.68H2O or [Cu(3-mb)2(bipy)(H2O)]·0.68H2O. The coord­ination environment of CuII is a distorted octa­hedron. The metal atom is attached to two 3-mb moieties, which bind in monodentate and bidentate fashions. One of the 3-mb units is disordered. The coordination environment is completed by one bipy ligand and a water mol­ecule. A second water mol­ecule is outside the coordination sphere of the CuII atom and its occupancy refined to 0.68. The structure consists of chains along the b-axis direction formed by complex units joined via hydrogen bonds between the coordinated water mol­ecule and an O atom of a coordinated 3-mb unit. Hirshfeld surface analysis indicates that the most abundant contacts are H⋯H (56.8%), H⋯C/C⋯H (21.7%) and H⋯O/O⋯H (13.7%).

1. Chemical context

The coordination chemistry of mixed-ligand copper(II) complexes continues to be of inter­est. Copper is an important part of various metalloenzymes. It takes part in many metabolic processes such as iron metabolism, mitochondrial oxidative phospho­rylation and catecholamine production (Chen et al., 2020[Chen, J., Jiang, Y., Shi, H., Peng, Y., Fan, X. & Li, C. (2020). Eur. J. Physiol. 472, 1415-1429.]; De Freitas et al., 2003[De Freitas, J., Wintz, H., Hyoun Kim, J., Poynton, H., Fox, T. & Vulpe, C. (2003). BioMetals, 16, 185-197.]). Mixed-ligand copper(II) carboxyl­ates containing nitro­gen donor ligands have been reported to display a variety of pharmacological and superoxide dismutase activities. For example, the bis­(acetato)­bis­(imidazole)­copper(II) complex exhibits anti­tumor activity (Tamura et al., 1987[Tamura, H., Imai, H., Kuwahara, J. & Sugiura, Y. (1987). J. Am. Chem. Soc. 109, 6870-6871.]) and copper(II) salicylate with imidazoles have dismutase activities (Abuhijleh, 2010[Abuhijleh, A. L. (2010). J. Mol. Struct. 980, 201-207.]). Incorporating nitro­gen donor ligands in metal complexes has resulted in enhancement of the biological activity of these complexes (Patel et al., 2012[Patel, M. N., Dosi, P. A. & Bhatt, B. S. (2012). J. Coord. Chem. 65, 3833-3844.]). It has been reported that the steric effect of a substituent on the phenyl group of carboxyl­ate ligands in metal complexes affects the coordination number of the metal, the geometry of the complex and the coordination mode of the ligand (Saini et al., 2015[Saini, A., Sharma, R. P., Kumar, S., Venugopalan, P., Gubanov, A. I. & Smolentsev, A. I. (2015). Polyhedron, 100, 155-163.]). In our previous contribution, the CuII complex with 3-mb and N,N,N,N-tetra­methylethyl­enedi­amine (tmeda), [Cu(3-mb)2(tmeda)(H2O)2], was prepared and characterized by single-crystal X-ray diffraction. The complex was octa­hedral with 3-mb acting as monodentate (Kansız et al., 2021[Kansız, S., Qadir, M. Q., Dege, N. & Faizi, S. H. (2021). J. Mol. Struct. 1230, 129916-129916.]). In view of the above information, a new CuII carboxyl­ate containing 2,2′-bi­pyridine was synthesized, characterized by X-ray crystallographic analysis and studied by Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

Complex 1 (Fig. 1[link]) crystallizes in the monoclinic system in the P21/c space group. The CuII atom has a distorted octa­hedral environment with the central copper atom coordinated by N2O4 donor sets. The Cu—N bond lengths range from 2.0071 (18) to 2.0131 (18) Å and the N1—Cu1—N2 angle is 80.58 (7)° (Table 1[link]). The Cu1—Ocarboxyl­ate distances are 1.842 (17)–2.2988 (18) Å. The Cu—O and Cu—N values are very close to those reported for copper(II) complexes involving benzoate (BZA) as a ligand, for example [Cu(BZA)2(bipy)(H2O)] [Cu—O = 1.9951 (12)–1.9633 (12) Å and Cu—N = 2.0064 (14)–2.0111 (13) Å; Devereux et al., 2007[Devereux, M., O'Shea, D., O'Connor, M., Grehan, H., Connor, G., McCann, M., Rosair, G., Lyng, F., Kellett, A., Walsh, M., Egan, D. & Thati, B. (2007). Polyhedron, 26, 4073-4084.]]. This indicates that the presence of the methyl substituent has little or no effect on the Cu—O and Cu—N bond lengths. The 3-mb ligand defined by O3/O4/C9–C16 is disordered over two orientations related by an approximately 180° rotation.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O2 0.85 1.93 2.643 (3) 140
O5—H5B⋯O4ai 0.85 2.09 2.694 (10) 128
C20—H20⋯O4aii 0.93 2.40 3.324 (10) 171
C23—H23⋯O4aii 0.93 2.51 3.405 (7) 163
C18—H18⋯O2iii 0.93 2.51 3.371 (4) 154
C24—H24⋯O6ii 0.93 2.36 3.200 (5) 151
C26—H26⋯O3a 0.93 2.48 2.984 (13) 115
C17—H17⋯O1 0.93 2.59 3.093 (3) 115
C7—H7⋯O6 0.93 2.72 3.405 (6) 131
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, -y+2, -z+1].
[Figure 1]
Figure 1
Mol­ecular structure of complex 1 with ellipsoids drawn at the 50% probability level. Only the major component of disorder is shown.

3. Supra­molecular features

In the crystal, hydrogen bonding between H atoms of the coord­in­ated water mol­ecule and the O atoms of the coordinated 3-mb (O5—H5B⋯O4) leads to the formation of a linear chain in the b-axis direction (Fig. 2[link] and Table 1[link]). The chains inter­digitate with other chains related by a screw-axis, connected via C—H⋯O inter­actions between O atoms of the 3-mb ligand and H atoms of the bipy ligand (Table 1[link]), further consolidating the crystal. The occupancy of the solvent water (H6A—O6—H6B) refined to 0.68, which seems to be due to water escaping the crystal through the channels that run along the b-axis direction.

[Figure 2]
Figure 2
Partial view of the packing arrangement in compound 1 showing O—H⋯O inter­actions along the b-axis direction.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for compounds containing only Cu, O, N, C, and H resulted in 634 compounds containing bipy and 15 compounds containing 3-mb. In both lists, a dimeric compound containing bipy and 3-mb was identified (refcode PIGZAH; Li et al., 2007[Li, W., Li, C.-H., Yang, Y.-Q. & Kuang, Y.-F. (2007). Wuji Huaxue Xuebao, 23, 1264.]). Other related compounds are AJEFEB (Wen, 2009[Wen, G.-L. (2009). Z. Krist. New Cryst. Struct. 224, 495-497.]), DUDYIN (He et al., 2019[He, X., Chen, F., Zhang, D., Li, Y., Yang, H.-L. & Zhang, X.-Q. (2019). Z. Anorg. Allg. Chem. 645, 1341-1348.]), FERCOV (Wang et al., 2005[Wang, P., Moorefield, C. N., Panzer, M. & Newkome, G. R. (2005). Chem. Commun. pp. 465-467.]), GELXAX (Stephenson & Hardie, 2006[Stephenson, M. D. & Hardie, M. J. (2006). Dalton Trans. pp. 3407-3417.]), LEBOR (Tian et al., 2011[Tian, D., Zhou, Y., Guan, L. & Zhang, H. (2011). J. Coord. Chem. 64, 565-573.]), QETNEJ (Chen et al., 2006[Chen, P.-K., Che, Y.-X. & Zheng, J. M. (2006). Chin. J. Struct. Chem. (Jiegou Huaxue) 25, 1427-1430.]) and TOFZIZ (Gopalakrishnan et al., 2014[Gopalakrishnan, M., Senthilkumar, K., Rao, P. R., Siva, R. & Palanisami, N. (2014). Inorg. Chem. Commun. 46, 54-59.]).

5. Hirshfeld surface analysis

CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal­Explorer17. The University of Western Australia.]) was used for Hirshfeld surface analysis and to generate the fingerprint plots. The purpose of using Hirshfeld surfaces, mapped onto dnorm, is to provide additional insight into inter­molecular inter­actions. Close contacts shorter than van der Waals radii are shown as red spots on the surface. The closest contacts are responsible for directional supra­molecular inter­actions. The blue areas in the surface map represent weak contacts that are longer than the sum of the van der Waals radii. The Hirshfeld surface mapped onto dnorm, is presented in Fig. 3[link]. It displays several red spots due to O—H⋯O and C—H⋯O contacts. The intense spot near the coordinated water mol­ecule in the complex is assigned to the O5—H5⋯O hydrogen bond, as confirmed by the X-ray analysis (Table 1[link]). Fingerprint plots for the contacts are shown in Fig. 4[link]. The contributions of the H⋯H (Fig. 4[link]b), H⋯C/C⋯H (Fig. 4[link]c) and H⋯O/O⋯H (Fig. 4[link]d) contacts are 56.8, 21.7 and 13.7%, respectively.

[Figure 3]
Figure 3
Hirshfeld surface map for the title complex.
[Figure 4]
Figure 4
Fingerprint plot of the title compound showing all inter­actions and delineated into the most important inter­molecular contacts.

6. Synthesis and crystallization

3-Methyl­benzoic acid (4 mmol, 0.54 g) and sodium hydroxide (4 mmol, 0.16 g) in water (20 ml) were added to a solution of Cu(NO3)2·3H2O (2 mmol, 0.48 g) in water (20 ml) under stirring. A solution of 2,2′-bi­pyridine (2 mmol, 0.3 g) in EtOH (25 ml) was added and the color changed from greenish blue to blue. The precipitate was filtered off, washed with water and dried. Blue single crystals of the title complex suitable for X-ray diffraction studies were obtained after evaporation of an ethanol solution after several days.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. One of the 3-methyl­benzoates (O3/O4/C9–C16) is disordered over two positions related by a 180° rotation. The occupancies of the two components refined to 0.664 (4):0.336 (4). The occupancy of the water mol­ecule H6A–O6–H6B refined to 0.680 (10). The coordinates of the ordered water atom were refined with Uiso(H) = 1.5Ueq(O). All other H atoms were positioned geometrically and refined as riding with Uiso(H) = 1.2–1.5Ueq(parent atom).

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C8HH7O2)2(C10H8N2)(H2O)]·0.68H2O
Mr 520.26
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 16.754 (3), 7.0021 (12), 22.103 (4)
β (°) 106.522 (6)
V3) 2485.9 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.92
Crystal size (mm) 0.20 × 0.15 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 63716, 6171, 4874
Rint 0.035
(sin θ/λ)max−1) 0.670
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.106, 1.09
No. of reflections 6171
No. of parameters 418
No. of restraints 347
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.40
Computer programs: APEX2 (Bruker, 2013[Bruker (2013). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: APEX2 (Bruker, 2013); data reduction: APEX2 (Bruker, 2013); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020).

Aqua(2,2'-bipyridineκ2N,N')bis(3-methylbenzoato)-κ2O,O';κO-copper(II) 0.68-hydrate, top
Crystal data top
[Cu(C8HH7O2)2(C10H8N2)(H2O)]·0.68H2OF(000) = 1079
Mr = 520.26Dx = 1.390 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.754 (3) ÅCell parameters from 9233 reflections
b = 7.0021 (12) Åθ = 2.5–26.6°
c = 22.103 (4) ŵ = 0.92 mm1
β = 106.522 (6)°T = 293 K
V = 2485.9 (8) Å3Block, blue
Z = 40.20 × 0.15 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.035
φ and ω scansθmax = 28.5°, θmin = 2.5°
63716 measured reflectionsh = 2222
6171 independent reflectionsk = 99
4874 reflections with I > 2σ(I)l = 2929
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0389P)2 + 1.6967P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
6171 reflectionsΔρmax = 0.30 e Å3
418 parametersΔρmin = 0.40 e Å3
347 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.34763 (2)0.84495 (4)0.31767 (2)0.03879 (9)
O10.32781 (10)0.7602 (3)0.39681 (8)0.0519 (4)
O20.26638 (14)1.0161 (2)0.42229 (9)0.0664 (5)
N10.47164 (11)0.8619 (2)0.35426 (8)0.0391 (4)
N20.38047 (11)0.8817 (2)0.23762 (8)0.0377 (4)
C10.27773 (13)0.8419 (3)0.42213 (10)0.0392 (4)
C20.23017 (13)0.7151 (3)0.45422 (9)0.0372 (4)
C30.18273 (14)0.7973 (3)0.48953 (10)0.0422 (5)
H30.1823680.9294630.4935190.051*
C40.13590 (17)0.6878 (4)0.51900 (12)0.0563 (6)
C50.1379 (2)0.4918 (5)0.51221 (15)0.0735 (9)
H50.1071670.4151280.5316720.088*
C60.1844 (2)0.4077 (4)0.47736 (17)0.0801 (10)
H60.1847820.2755250.4734850.096*
C70.23037 (18)0.5186 (4)0.44812 (13)0.0571 (6)
H70.2615030.4614300.4243350.069*
C80.0844 (2)0.7820 (6)0.55660 (18)0.0969 (12)
H8A0.1134290.7750740.6007510.145*
H8B0.0318600.7173510.5487800.145*
H8C0.0749980.9133250.5441710.145*
O30.2315 (6)0.7725 (11)0.2675 (5)0.0456 (16)0.664 (4)
O40.2993 (4)0.4976 (13)0.2761 (4)0.0443 (13)0.664 (4)
C90.2338 (3)0.5930 (10)0.2581 (4)0.0401 (12)0.664 (4)
C100.1531 (2)0.4981 (6)0.2230 (2)0.0427 (9)0.664 (4)
C110.0787 (3)0.5949 (7)0.21325 (19)0.0493 (9)0.664 (4)
H110.0792300.7176970.2293880.059*0.664 (4)
C120.0028 (3)0.5143 (9)0.1799 (2)0.0644 (12)0.664 (4)
C130.0051 (3)0.3318 (9)0.1573 (3)0.0746 (14)0.664 (4)
H130.0445310.2738150.1350030.090*0.664 (4)
C140.0781 (3)0.2330 (8)0.1666 (2)0.0792 (13)0.664 (4)
H140.0773310.1100270.1505370.095*0.664 (4)
C150.1529 (3)0.3148 (7)0.1996 (2)0.0616 (11)0.664 (4)
H150.2024200.2474400.2060670.074*0.664 (4)
C160.0769 (3)0.6241 (10)0.1687 (3)0.099 (2)0.664 (4)
H16A0.1009220.6426190.1241640.148*0.664 (4)
H16B0.0657800.7459720.1892420.148*0.664 (4)
H16C0.1150800.5539470.1854220.148*0.664 (4)
O3'0.2373 (12)0.789 (2)0.2796 (10)0.040 (2)0.336 (4)
O4'0.2799 (8)0.498 (3)0.2621 (9)0.047 (3)0.336 (4)
C9'0.2241 (6)0.618 (2)0.2594 (9)0.042 (2)0.336 (4)
C10'0.1349 (5)0.5677 (11)0.2262 (4)0.0430 (16)0.336 (4)
C11'0.1173 (5)0.3862 (12)0.2021 (4)0.0552 (16)0.336 (4)
H11'0.1602500.2980710.2070600.066*0.336 (4)
C12'0.0359 (6)0.3330 (15)0.1703 (6)0.068 (2)0.336 (4)
C13'0.0260 (6)0.4669 (14)0.1651 (5)0.067 (2)0.336 (4)
H13'0.0809120.4328290.1454360.081*0.336 (4)
C14'0.0089 (5)0.6484 (14)0.1879 (4)0.0641 (19)0.336 (4)
H14'0.0517040.7373270.1820210.077*0.336 (4)
C15'0.0720 (4)0.7003 (13)0.2197 (4)0.0503 (16)0.336 (4)
H15'0.0837410.8224340.2363690.060*0.336 (4)
C16'0.0144 (7)0.1356 (13)0.1463 (5)0.090 (3)0.336 (4)
H16D0.0021350.1368100.1010070.135*0.336 (4)
H16E0.0305390.0883140.1609790.135*0.336 (4)
H16F0.0621170.0543950.1614280.135*0.336 (4)
C170.51321 (16)0.8587 (4)0.41546 (12)0.0524 (6)
H170.4834010.8449100.4448390.063*
C180.59886 (18)0.8753 (4)0.43692 (14)0.0647 (7)
H180.6263260.8731960.4798760.078*
C190.64208 (17)0.8947 (4)0.39341 (15)0.0650 (8)
H190.6997770.9054570.4066640.078*
C200.60063 (14)0.8983 (3)0.33014 (13)0.0507 (6)
H200.6296580.9119900.3002500.061*
C210.51485 (13)0.8811 (3)0.31178 (11)0.0369 (4)
C220.46312 (13)0.8851 (3)0.24534 (10)0.0370 (4)
C230.49461 (16)0.8923 (3)0.19373 (12)0.0492 (6)
H230.5517760.8933920.1993850.059*
C240.4399 (2)0.8979 (4)0.13391 (13)0.0593 (7)
H240.4598560.9014300.0987530.071*
C250.35603 (19)0.8982 (4)0.12654 (12)0.0591 (7)
H250.3183960.9046440.0865190.071*
C260.32842 (16)0.8888 (3)0.17930 (11)0.0501 (6)
H260.2713930.8873480.1742600.060*
O50.33408 (13)1.1632 (2)0.33836 (11)0.0676 (5)
H5A0.3110591.1742600.3679350.101*
H5B0.2998851.2150720.3065760.101*
O60.4289 (3)0.4219 (8)0.4465 (3)0.119 (2)0.680 (10)
H6A0.441 (6)0.309 (10)0.446 (4)0.178*0.680 (10)
H6B0.435 (6)0.490 (13)0.478 (4)0.178*0.680 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03652 (14)0.03638 (15)0.04663 (16)0.00129 (11)0.01693 (11)0.00307 (11)
O10.0532 (9)0.0548 (10)0.0559 (10)0.0099 (8)0.0286 (8)0.0131 (8)
O20.1003 (15)0.0395 (10)0.0768 (13)0.0003 (9)0.0534 (12)0.0043 (9)
N10.0404 (9)0.0344 (9)0.0418 (10)0.0003 (7)0.0107 (8)0.0015 (7)
N20.0392 (9)0.0334 (9)0.0409 (9)0.0016 (7)0.0118 (7)0.0026 (7)
C10.0423 (11)0.0412 (12)0.0339 (10)0.0002 (9)0.0105 (8)0.0004 (9)
C20.0405 (11)0.0386 (11)0.0321 (10)0.0017 (9)0.0095 (8)0.0013 (8)
C30.0492 (12)0.0418 (12)0.0359 (11)0.0028 (10)0.0126 (9)0.0023 (9)
C40.0593 (15)0.0674 (18)0.0479 (14)0.0020 (13)0.0244 (12)0.0018 (12)
C50.088 (2)0.0661 (19)0.080 (2)0.0222 (16)0.0450 (17)0.0024 (16)
C60.120 (3)0.0390 (14)0.097 (2)0.0164 (16)0.056 (2)0.0061 (15)
C70.0755 (17)0.0394 (13)0.0652 (16)0.0015 (12)0.0343 (14)0.0083 (12)
C80.104 (3)0.112 (3)0.102 (3)0.003 (2)0.073 (2)0.006 (2)
O30.0315 (18)0.047 (2)0.055 (4)0.0020 (17)0.007 (2)0.005 (2)
O40.035 (3)0.0400 (18)0.057 (4)0.002 (2)0.011 (2)0.006 (2)
C90.038 (2)0.044 (2)0.044 (2)0.006 (2)0.0222 (19)0.007 (2)
C100.0408 (19)0.051 (2)0.0411 (17)0.0051 (17)0.0202 (15)0.0005 (18)
C110.0437 (19)0.063 (2)0.0424 (18)0.005 (2)0.0149 (15)0.0017 (19)
C120.049 (2)0.092 (3)0.049 (2)0.014 (2)0.0094 (19)0.002 (2)
C130.066 (3)0.096 (3)0.058 (3)0.029 (3)0.011 (2)0.010 (2)
C140.088 (3)0.077 (3)0.072 (3)0.023 (3)0.023 (2)0.022 (2)
C150.064 (2)0.059 (2)0.065 (2)0.010 (2)0.024 (2)0.0119 (19)
C160.041 (2)0.159 (6)0.085 (3)0.001 (3)0.000 (2)0.008 (4)
O3'0.035 (4)0.046 (4)0.041 (5)0.001 (3)0.015 (3)0.006 (3)
O4'0.032 (5)0.050 (4)0.054 (7)0.001 (4)0.005 (4)0.010 (4)
C9'0.036 (3)0.048 (4)0.044 (3)0.000 (3)0.018 (3)0.005 (3)
C10'0.038 (3)0.053 (4)0.043 (3)0.007 (3)0.020 (3)0.000 (3)
C11'0.051 (3)0.065 (3)0.053 (3)0.009 (3)0.021 (3)0.003 (3)
C12'0.058 (4)0.084 (4)0.060 (4)0.019 (4)0.016 (3)0.005 (3)
C13'0.054 (4)0.089 (4)0.055 (4)0.024 (4)0.010 (3)0.002 (4)
C14'0.046 (3)0.087 (4)0.058 (4)0.002 (4)0.012 (3)0.000 (4)
C15'0.038 (3)0.066 (4)0.048 (3)0.002 (3)0.014 (2)0.003 (3)
C16'0.088 (6)0.093 (7)0.084 (6)0.028 (5)0.017 (5)0.025 (5)
C170.0596 (15)0.0513 (14)0.0447 (13)0.0019 (12)0.0123 (11)0.0024 (11)
C180.0619 (16)0.0594 (17)0.0576 (16)0.0058 (13)0.0075 (13)0.0029 (13)
C190.0416 (13)0.0574 (16)0.085 (2)0.0084 (12)0.0003 (13)0.0048 (15)
C200.0394 (12)0.0397 (12)0.0741 (17)0.0039 (9)0.0179 (12)0.0059 (11)
C210.0387 (10)0.0227 (9)0.0512 (12)0.0009 (8)0.0160 (9)0.0010 (8)
C220.0446 (11)0.0198 (9)0.0494 (12)0.0021 (8)0.0177 (9)0.0015 (8)
C230.0557 (14)0.0368 (12)0.0641 (16)0.0040 (10)0.0312 (12)0.0008 (11)
C240.094 (2)0.0431 (13)0.0502 (15)0.0102 (13)0.0362 (15)0.0023 (11)
C250.0802 (19)0.0492 (14)0.0423 (13)0.0130 (13)0.0084 (13)0.0026 (11)
C260.0501 (13)0.0444 (13)0.0507 (14)0.0057 (10)0.0061 (11)0.0054 (10)
O50.0899 (14)0.0395 (9)0.0894 (14)0.0115 (9)0.0516 (12)0.0108 (9)
O60.103 (3)0.113 (4)0.157 (5)0.023 (3)0.064 (3)0.043 (4)
Geometric parameters (Å, º) top
Cu1—O3'1.842 (17)C16—H16A0.9600
Cu1—O11.9628 (16)C16—H16B0.9600
Cu1—N12.0072 (18)C16—H16C0.9600
Cu1—O32.011 (8)O3'—C9'1.275 (8)
Cu1—N22.0131 (18)O4'—C9'1.248 (8)
Cu1—O52.2988 (18)C9'—C10'1.509 (7)
O1—C11.269 (3)C10'—C11'1.377 (8)
O2—C11.235 (3)C10'—C15'1.381 (8)
N1—C171.334 (3)C11'—C12'1.396 (9)
N1—C211.346 (3)C11'—H11'0.9300
N2—C261.336 (3)C12'—C13'1.378 (9)
N2—C221.346 (3)C12'—C16'1.488 (10)
C1—C21.499 (3)C13'—C14'1.367 (10)
C2—C71.382 (3)C13'—H13'0.9300
C2—C31.387 (3)C14'—C15'1.387 (8)
C3—C41.385 (3)C14'—H14'0.9300
C3—H30.9300C15'—H15'0.9300
C4—C51.382 (4)C16'—H16D0.9600
C4—C81.510 (4)C16'—H16E0.9600
C5—C61.373 (4)C16'—H16F0.9600
C5—H50.9300C17—C181.382 (4)
C6—C71.377 (4)C17—H170.9300
C6—H60.9300C18—C191.365 (4)
C7—H70.9300C18—H180.9300
C8—H8A0.9600C19—C201.373 (4)
C8—H8B0.9600C19—H190.9300
C8—H8C0.9600C20—C211.383 (3)
O3—C91.277 (5)C20—H200.9300
O4—C91.250 (5)C21—C221.478 (3)
C9—C101.508 (5)C22—C231.387 (3)
C10—C111.380 (5)C23—C241.379 (4)
C10—C151.384 (5)C23—H230.9300
C11—C121.395 (6)C24—C251.367 (4)
C11—H110.9300C24—H240.9300
C12—C131.377 (7)C25—C261.373 (4)
C12—C161.499 (7)C25—H250.9300
C13—C141.369 (7)C26—H260.9300
C13—H130.9300O5—H5A0.8517
C14—C151.383 (6)O5—H5B0.8515
C14—H140.9300O6—H6A0.82 (7)
C15—H150.9300O6—H6B0.82 (7)
O3'—Cu1—O186.6 (7)C10—C15—H15120.4
O3'—Cu1—N1170.4 (5)C12—C16—H16A109.5
O1—Cu1—N194.41 (7)C12—C16—H16B109.5
O1—Cu1—O391.9 (4)H16A—C16—H16B109.5
N1—Cu1—O3164.9 (3)C12—C16—H16C109.5
O3'—Cu1—N296.6 (7)H16A—C16—H16C109.5
O1—Cu1—N2168.42 (7)H16B—C16—H16C109.5
N1—Cu1—N280.58 (7)C9'—O3'—Cu1114.1 (12)
O3—Cu1—N290.7 (3)O4'—C9'—O3'124.5 (10)
O3'—Cu1—O598.8 (5)O4'—C9'—C10'119.3 (9)
O1—Cu1—O593.69 (7)O3'—C9'—C10'116.1 (9)
N1—Cu1—O590.69 (7)C11'—C10'—C15'120.5 (7)
O3—Cu1—O5102.7 (2)C11'—C10'—C9'118.6 (7)
N2—Cu1—O596.79 (7)C15'—C10'—C9'120.9 (7)
C1—O1—Cu1123.87 (15)C10'—C11'—C12'120.8 (8)
C17—N1—C21118.7 (2)C10'—C11'—H11'119.6
C17—N1—Cu1126.13 (17)C12'—C11'—H11'119.6
C21—N1—Cu1115.18 (14)C13'—C12'—C11'117.7 (8)
C26—N2—C22119.2 (2)C13'—C12'—C16'120.1 (8)
C26—N2—Cu1125.89 (16)C11'—C12'—C16'122.0 (9)
C22—N2—Cu1114.78 (14)C14'—C13'—C12'121.9 (8)
O2—C1—O1124.6 (2)C14'—C13'—H13'119.1
O2—C1—C2118.7 (2)C12'—C13'—H13'119.1
O1—C1—C2116.66 (19)C13'—C14'—C15'120.1 (8)
C7—C2—C3119.0 (2)C13'—C14'—H14'119.9
C7—C2—C1121.8 (2)C15'—C14'—H14'119.9
C3—C2—C1119.2 (2)C10'—C15'—C14'118.9 (8)
C4—C3—C2121.8 (2)C10'—C15'—H15'120.5
C4—C3—H3119.1C14'—C15'—H15'120.5
C2—C3—H3119.1C12'—C16'—H16D109.5
C5—C4—C3117.6 (2)C12'—C16'—H16E109.5
C5—C4—C8121.9 (3)H16D—C16'—H16E109.5
C3—C4—C8120.4 (3)C12'—C16'—H16F109.5
C6—C5—C4121.5 (3)H16D—C16'—H16F109.5
C6—C5—H5119.3H16E—C16'—H16F109.5
C4—C5—H5119.3N1—C17—C18122.6 (3)
C5—C6—C7120.2 (3)N1—C17—H17118.7
C5—C6—H6119.9C18—C17—H17118.7
C7—C6—H6119.9C19—C18—C17118.3 (3)
C6—C7—C2119.9 (2)C19—C18—H18120.9
C6—C7—H7120.1C17—C18—H18120.9
C2—C7—H7120.1C18—C19—C20120.2 (2)
C4—C8—H8A109.5C18—C19—H19119.9
C4—C8—H8B109.5C20—C19—H19119.9
H8A—C8—H8B109.5C19—C20—C21118.7 (2)
C4—C8—H8C109.5C19—C20—H20120.7
H8A—C8—H8C109.5C21—C20—H20120.7
H8B—C8—H8C109.5N1—C21—C20121.6 (2)
C9—O3—Cu1105.6 (6)N1—C21—C22114.54 (18)
O4—C9—O3122.6 (5)C20—C21—C22123.8 (2)
O4—C9—C10120.4 (5)N2—C22—C23121.0 (2)
O3—C9—C10117.0 (5)N2—C22—C21114.65 (18)
C11—C10—C15119.4 (4)C23—C22—C21124.4 (2)
C11—C10—C9120.1 (4)C24—C23—C22119.0 (2)
C15—C10—C9120.5 (4)C24—C23—H23120.5
C10—C11—C12122.1 (5)C22—C23—H23120.5
C10—C11—H11119.0C25—C24—C23119.7 (2)
C12—C11—H11119.0C25—C24—H24120.2
C13—C12—C11116.9 (5)C23—C24—H24120.2
C13—C12—C16122.1 (5)C24—C25—C26118.8 (2)
C11—C12—C16121.0 (5)C24—C25—H25120.6
C14—C13—C12122.0 (5)C26—C25—H25120.6
C14—C13—H13119.0N2—C26—C25122.4 (2)
C12—C13—H13119.0N2—C26—H26118.8
C13—C14—C15120.5 (5)C25—C26—H26118.8
C13—C14—H14119.8Cu1—O5—H5A109.4
C15—C14—H14119.8Cu1—O5—H5B109.3
C14—C15—C10119.2 (5)H5A—O5—H5B104.4
C14—C15—H15120.4H6A—O6—H6B126 (9)
Cu1—O1—C1—O236.8 (3)O4'—C9'—C10'—C15'176.9 (19)
Cu1—O1—C1—C2143.68 (16)O3'—C9'—C10'—C15'1 (2)
O2—C1—C2—C7170.4 (2)C15'—C10'—C11'—C12'0.4 (13)
O1—C1—C2—C710.0 (3)C9'—C10'—C11'—C12'179.2 (10)
O2—C1—C2—C37.7 (3)C10'—C11'—C12'—C13'1.1 (17)
O1—C1—C2—C3171.8 (2)C10'—C11'—C12'—C16'177.2 (10)
C7—C2—C3—C40.3 (4)C11'—C12'—C13'—C14'2.3 (19)
C1—C2—C3—C4178.4 (2)C16'—C12'—C13'—C14'178.5 (11)
C2—C3—C4—C50.1 (4)C12'—C13'—C14'—C15'2.7 (17)
C2—C3—C4—C8179.4 (3)C11'—C10'—C15'—C14'0.7 (13)
C3—C4—C5—C60.2 (5)C9'—C10'—C15'—C14'178.9 (9)
C8—C4—C5—C6179.3 (3)C13'—C14'—C15'—C10'1.9 (14)
C4—C5—C6—C70.0 (6)C21—N1—C17—C180.3 (3)
C5—C6—C7—C20.4 (5)Cu1—N1—C17—C18178.59 (19)
C3—C2—C7—C60.5 (4)N1—C17—C18—C190.3 (4)
C1—C2—C7—C6178.6 (3)C17—C18—C19—C200.3 (4)
Cu1—O3—C9—O42.8 (14)C18—C19—C20—C210.3 (4)
Cu1—O3—C9—C10177.9 (6)C17—N1—C21—C200.3 (3)
O4—C9—C10—C11168.3 (9)Cu1—N1—C21—C20178.71 (16)
O3—C9—C10—C1112.4 (11)C17—N1—C21—C22179.34 (19)
O4—C9—C10—C1512.5 (11)Cu1—N1—C21—C220.3 (2)
O3—C9—C10—C15166.7 (9)C19—C20—C21—N10.3 (3)
C15—C10—C11—C120.5 (7)C19—C20—C21—C22179.3 (2)
C9—C10—C11—C12178.6 (5)C26—N2—C22—C231.2 (3)
C10—C11—C12—C130.4 (8)Cu1—N2—C22—C23174.20 (16)
C10—C11—C12—C16178.6 (5)C26—N2—C22—C21178.66 (18)
C11—C12—C13—C140.2 (9)Cu1—N2—C22—C215.9 (2)
C16—C12—C13—C14178.7 (6)N1—C21—C22—N24.1 (2)
C12—C13—C14—C150.2 (10)C20—C21—C22—N2174.88 (19)
C13—C14—C15—C100.2 (8)N1—C21—C22—C23175.98 (19)
C11—C10—C15—C140.4 (7)C20—C21—C22—C235.0 (3)
C9—C10—C15—C14178.7 (5)N2—C22—C23—C240.6 (3)
O1—Cu1—O3'—C9'89.7 (18)C21—C22—C23—C24179.2 (2)
N2—Cu1—O3'—C9'79.1 (18)C22—C23—C24—C250.7 (4)
O5—Cu1—O3'—C9'177.1 (17)C23—C24—C25—C261.4 (4)
Cu1—O3'—C9'—O4'3 (3)C22—N2—C26—C250.5 (3)
Cu1—O3'—C9'—C10'178.4 (11)Cu1—N2—C26—C25174.38 (19)
O4'—C9'—C10'—C11'3 (2)C24—C25—C26—N20.8 (4)
O3'—C9'—C10'—C11'178.4 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O20.851.932.643 (3)140
O5—H5B···O4ai0.852.092.694 (10)128
C20—H20···O4aii0.932.403.324 (10)171
C23—H23···O4aii0.932.513.405 (7)163
C18—H18···O2iii0.932.513.371 (4)154
C24—H24···O6ii0.932.363.200 (5)151
C26—H26···O3a0.932.482.984 (13)115
C17—H17···O10.932.593.093 (3)115
C7—H7···O60.932.723.405 (6)131
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+2, z+1.
 

Acknowledgements

The author acknowledges the Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker APEXII CCD diffractometer.

Funding information

Funding for this research was provided by: Salahaddin University-Erbil.

References

First citationAbuhijleh, A. L. (2010). J. Mol. Struct. 980, 201–207.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2013). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, J., Jiang, Y., Shi, H., Peng, Y., Fan, X. & Li, C. (2020). Eur. J. Physiol. 472, 1415–1429.  Web of Science CrossRef CAS Google Scholar
First citationChen, P.-K., Che, Y.-X. & Zheng, J. M. (2006). Chin. J. Struct. Chem. (Jiegou Huaxue) 25, 1427-1430.  Google Scholar
First citationDe Freitas, J., Wintz, H., Hyoun Kim, J., Poynton, H., Fox, T. & Vulpe, C. (2003). BioMetals, 16, 185–197.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDevereux, M., O'Shea, D., O'Connor, M., Grehan, H., Connor, G., McCann, M., Rosair, G., Lyng, F., Kellett, A., Walsh, M., Egan, D. & Thati, B. (2007). Polyhedron, 26, 4073–4084.  Web of Science CSD CrossRef CAS Google Scholar
First citationGopalakrishnan, M., Senthilkumar, K., Rao, P. R., Siva, R. & Palanisami, N. (2014). Inorg. Chem. Commun. 46, 54–59.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHe, X., Chen, F., Zhang, D., Li, Y., Yang, H.-L. & Zhang, X.-Q. (2019). Z. Anorg. Allg. Chem. 645, 1341–1348.  Web of Science CSD CrossRef CAS Google Scholar
First citationKansız, S., Qadir, M. Q., Dege, N. & Faizi, S. H. (2021). J. Mol. Struct. 1230, 129916–129916.  Google Scholar
First citationLi, W., Li, C.-H., Yang, Y.-Q. & Kuang, Y.-F. (2007). Wuji Huaxue Xuebao, 23, 1264.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPatel, M. N., Dosi, P. A. & Bhatt, B. S. (2012). J. Coord. Chem. 65, 3833–3844.  Web of Science CrossRef CAS Google Scholar
First citationSaini, A., Sharma, R. P., Kumar, S., Venugopalan, P., Gubanov, A. I. & Smolentsev, A. I. (2015). Polyhedron, 100, 155–163.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStephenson, M. D. & Hardie, M. J. (2006). Dalton Trans. pp. 3407–3417.  Web of Science CSD CrossRef Google Scholar
First citationTamura, H., Imai, H., Kuwahara, J. & Sugiura, Y. (1987). J. Am. Chem. Soc. 109, 6870–6871.  CrossRef CAS Web of Science Google Scholar
First citationTian, D., Zhou, Y., Guan, L. & Zhang, H. (2011). J. Coord. Chem. 64, 565–573.  Web of Science CSD CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal­Explorer17. The University of Western Australia.  Google Scholar
First citationWang, P., Moorefield, C. N., Panzer, M. & Newkome, G. R. (2005). Chem. Commun. pp. 465–467.  Web of Science CSD CrossRef Google Scholar
First citationWen, G.-L. (2009). Z. Krist. New Cryst. Struct. 224, 495–497.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds