research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Spectroscopic, crystallographic, and Hirshfeld surface characterization of nine-membered-ring-containing 9-meth­­oxy-3,4,5,6-tetra­hydro-1H-benzo[b]azonine-2,7-dione and its parent tetra­hydro­car­ba­zole

crossmark logo

aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: jotanski@vassar.edu

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 24 July 2023; accepted 17 August 2023; online 23 August 2023)

9-Meth­oxy-3,4,5,6-tetra­hydro-1H-benzo[b]azonine-2,7-dione, C13H15NO3, (I), and 6-meth­oxy-1,2,3,4-tetra­hydro­car­ba­zole, C13H15NO, (II), represent the structures of a benzoazonine that contains a nine-membered ring and its parent tetra­hydro­car­ba­zole. The mol­ecules of (I) pack together via strong amide N—H⋯O hydrogen bonding and weak C—H⋯O inter­actions, whereas the parent tetra­hydro­car­ba­zole (II) packs with C/N—H⋯π inter­actions, as visualized by Hirshfeld surface characterization.

1. Chemical context

The title com­pound 9-meth­oxy-3,4,5,6-tetra­hydro-1H-benzo[b]azonine-2,7-dione, (I)[link], was obtained as a by-product during the synthesis of 6-meth­oxy-1,2,3,4-tetra­hydro­car­ba­zole, (II)[link]. Compound (II)[link] may be prepared by refluxing p-meth­oxy­phenyl­hydrazine hydro­chloride with cyclo­hexa­none in methanol and an anti­mony catalyst (Kumar et al., 2014[Kumar, T. O. S., Mahadevan, K. M. & Kumara, M. N. (2014). Int. J. Pharm. Pharm. Sci. 6, 137-140.]) or in ethanol with 2,4,6-tri­chloro-1,3,5-triazine as a catalyst (Siddalingamurthy et al., 2013[Siddalingamurthy, E., Mahadevan, K. M., Masagalli, J. N. & Harishkumar, H. N. (2013). Tetrahedron Lett. 54, 5591-5596.]). After isolating the tetra­hydro­car­ba­zole, the remaining aqueous methanol was set aside in a refrigerator for several days, from which a batch of light-yellow crystalline material was collected and found by X-ray crystallography, as well as spectroscopy, mass spectrometry and elemental analysis, to be the nine-membered-ring-containing com­pound (I)[link]. Benzo[b]azoninediones have been shown to be accesible via the enzymatic oxidative cleavage of indole carbon–carbon double bonds in the presence of hydrogen peroxide (Takemoto et al., 2004[Takemoto, M., Iwakiri, Y., Suzuki, Y. & Tanaka, K. (2004). Tetrahedron Lett. 45, 8061-8064.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of 9-meth­oxy-3,4,5,6-tetra­hydro-1H-benzo[b]azonine-2,7-dione, (I)[link] (Fig. 1[link]), reveals that the mol­ecule contains a nine-membered ring which includes an organic amide and a ketone group. IR spectroscopy corroborates these functional groups with a ketone C=O stretch at 1676 cm−1, an amide C=O stretch shifted to lower energy at 1637 cm−1, and an amide N—H stretch at 3198 cm−1. The structure of the parent com­pound 6-meth­oxy-1,2,3,4-tetra­hydro­car­ba­zole, (II)[link], is shown in Fig. 2[link]. Unlike related tetra­hydro­car­ba­zoles, such as unsubsituted 1,2,3,4-tetra­hydro­car­ba­zole (McMahon et al., 1997[McMahon, L. P., Yu, H.-T., Vela, M. A., Morales, G. A., Shui, L., Fronczek, F. R., McLaughlin, M. L. & Barkley, M. D. (1997). J. Phys. Chem. B, 101, 3269-3280.]; Murugavel et al., 2008[Murugavel, S., Kannan, P. S., SubbiahPandi, A., Surendiran, T. & Balasubramanian, S. (2008). Acta Cryst. E64, o2433.]; Shukla et al., 2018[Shukla, R., Singh, P., Panini, P. & Chopra, D. (2018). Acta Cryst. B74, 376-384.]), com­pound (II)[link] crystallizes without disorder in the cyclo­hexene ring.

[Figure 1]
Figure 1
A view of 9-meth­oxy-3,4,5,6-tetra­hydro-1H-benzo[b]azonine-2,7-dione, (I)[link], with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2]
Figure 2
A view of 6-meth­oxy-1,2,3,4-tetra­hydro­car­ba­zole, (II)[link], with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

The mol­ecules of (I)[link] are held together in the solid state via a strong inter­molecular amide N—H⋯O hydrogen bond and weak C—H⋯O inter­actions (Figs. 3[link] and 4[link], and Table 1[link]). Specifically, the amide group hydrogen bonds to the O atom of the amide group on a neighboring mol­ecule, i.e. N1—H1⋯O1i with a donor–acceptor distance of 2.8426 (12) Å, extending in a one-dimensional chain with graph-set notation C(4) (Fig. 3[link]). The Hirshfeld surface calculated with CrystalExplorer21 was mapped over dnorm in the range from −0.5838 to 1.1871 a.u. (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The brightest red spot on the surface indicates the N1—H1⋯O1i hydrogen bond, the second most intense spot corresponds to the shorter C5—H5B⋯O2ii inter­action, with a hydrogen–acceptor distance of 2.41 Å and a D—H⋯A angle of 138°, while the least intense spot corresponds to the longer C13—H13B⋯O2iii inter­action at a distance of 2.60 Å and with a D—H⋯A angle of 174° (Fig. 4[link] and Table 1[link]). The two-dimensional fingerprint plots (Fig. 5[link]) reveal that the most important inter­atomic contacts, summing to 97.3%, are H⋯H (51.3%), O⋯H/H⋯O (29.7%), C⋯H/H⋯C (15.2%), and N⋯H/H⋯N (1.1%). The large percentage contribution and forcep-shaped points in Fig. 5[link](c) indicate significant O⋯H inter­actions at less than the sum of the van der Waals radii, consistent with the presence of the conventional hydrogen-bond and C—H⋯O inter­actions being abundant points of contact on the surface.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (1) 1.99 (1) 2.8426 (12) 167 (1)
C5—H5B⋯O2ii 0.99 2.41 3.2085 (14) 138
C13—H13B⋯O2iii 0.98 2.60 3.5793 (15) 174
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
A view of the packing in 9-meth­oxy-3,4,5,6-tetra­hydro-1H-benzo[b]azonine-2,7-dione, (I)[link]. Displacement ellipsoids are shown at the 50% probability level. [Symmetry codes: (i) x, −y + [{1\over 2}], z − [{1\over 2}]; (ii) x, −y + [{3\over 2}], z − [{1\over 2}]; (iii) −x + 1, y − [{1\over 2}], −z + [{3\over 2}].]
[Figure 4]
Figure 4
Hirshfeld surface of 9-meth­oxy-3,4,5,6-tetra­hydro-1H-benzo[b]azonine-2,7-dione, (I)[link], mapped over dnorm, showing the N1—H1⋯O1i hydrogen bond and the weak C5—H5B⋯O2ii and C13—H13B⋯O2iii inter­actions. [Symmetry codes: (i) x, −y + [{1\over 2}], z − [{1\over 2}]; (ii) x, −y + [{3\over 2}], z − [{1\over 2}]; (iii) −x + 1, y − [{1\over 2}], −z + [{3\over 2}].]
[Figure 5]
Figure 5
(a) The full two-dimensional fingerprint plot for 9-meth­oxy-3,4,5,6-tetra­hydro-1H-benzo[b]azonine-2,7-dione, (I)[link], and individual fingerprint plots for (b) H⋯H (51.3%), (c) O⋯H/H⋯O (29.7%), (d) C⋯H/H⋯C (15.2%), and (e) N⋯H/H⋯N (1.1%) contacts.

The mol­ecules of (II)[link] pack with a herringbone motif (Fig. 6[link]). Although (II)[link] contains an acidic proton, the structure does not exhibit conventional hydrogen bonding, nor any meaningful inter­molecular C—H⋯O/N contacts. However, the Hirshfeld surface calculated with CrystalExplorer21, mapped over dnorm in the range from −0.2999 to 1.3163 a.u. (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), reveals that the mol­ecules inter­act via pairwise N—H⋯π and C—H⋯π inter­actions (Fig. 7[link]). The brighter red spot on the top left of the surface indicates the N—H⋯π inter­action N1—H1⋯Cg1i (Table 2[link]), which is directed towards the C7–C12 ring on a neighboring mol­ecule, in an offset fashion from the centroid towards C11, with the shortest contact to the ring being C11⋯H1 at a distance of 2.51 Å. The less intense red spot on the top right of the surface indicates the longer C—H⋯π ineraction C11—H11ACg2i (Table 2[link]), which is directed towards the car­ba­zole ring on a neighboring mol­ecule, in an offset fashion from the centroid towards C1, with a C1⋯H11A distance of 2.65 Å. The Hirshfeld surface for (II)[link] mapped over the shape-index property further confirms the blue bump shapes of the N/C—H⋯π donors on top and the red valleys of the acceptors on the face (Fig. 7[link]) (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). The two-dimensional fiingerprint plots (Fig. 8[link]) show that the most important inter­atomic contacts, summing to 100%, are H⋯H (63.7%), C⋯H/H⋯C (25.5%), O⋯H/H⋯O (7.5%), and N⋯H/H⋯N (3.3%) contacts. The points in the fingerprint plots in Figs. 8[link](b) and 8(c) indicate the significance of H⋯H and C⋯H inter­actions in (II)[link] and the absence of inter­molecular C—H⋯O/N contacts.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 and Cg2 are the centroids of the C7–C12 and N1/C1/C6/C7/C12 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cg1i 0.88 (1) 2.41 (1) 3.2645 (11) 150
C11—H11ACg2i 0.95 2.61 3.5018 (12) 146
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 6]
Figure 6
A view of the packing in 6-meth­oxy-1,2,3,4-tetra­hydro­car­ba­zole, (II)[link], showing via dashed lines the N1—H1⋯πi and C11—H11Aπi inter­actions. Displacement ellipsoids are shown at the 50% probability level. [Symmetry code: (i) −x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}].]
[Figure 7]
Figure 7
Hirshfeld surface of 6-meth­oxy-1,2,3,4-tetra­hydro­car­ba­zole, (II)[link], mapped over dnorm, showing via dashed lines the N1—H1⋯πi and C11—H11Aπi inter­actions (left), and the surface mapped over the shape-index property. [Symmetry code: (i) −x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}].]
[Figure 8]
Figure 8
(a) The full two-dimensional fingerprint plot for 6-meth­oxy-1,2,3,4-tetra­hydro­car­ba­zole, (II)[link], and individual fingerprint plots for (b) H⋯H (63.7%), (c) C⋯H/H⋯C (25.5%), (d) O⋯H/H⋯O (7.5%), and (e) N⋯H/H⋯N (3.3%) contacts.

4. Database survey

A search for com­pounds similar to com­pound (I)[link] in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found a single structure (CSD refcode COMBEO) which contains the nine-membered ring with an additional acetamide-containing group bridging the 3- and 5-position methyl­ene C atoms of the title com­pound (Baranova et al., 2012[Baranova, T. Y., Zefirova, O. N., Banaru, A. M., Khrustalev, V. N., Ivanova, A. A., Ivanov, A. A. & Zefirov, N. S. (2012). Russ. J. Org. Chem. 48, 552-555.]). The additional bridging group in COMBEO positions the amide carbonyl and N—H groups cis to one another, with an O—C—N—H torsion angle of 7.37°, allowing for the formation of an R22(8) graph-set centrosymmetric hydrogen-bonding dimer, whereas in com­pound (I)[link], they are oriented trans, with an O—C—N—H torsion angle of 170.69°, which precludes hydrogen bonding via a similar dimer, and (I)[link] forms a one-dimensional hydrogen-bonding chain.

The structure of the unsubsituted 1,2,3,4-tetra­hydro­car­ba­zole has been reported several times [refcodes LOJCIX01 (McMahon et al., 1997[McMahon, L. P., Yu, H.-T., Vela, M. A., Morales, G. A., Shui, L., Fronczek, F. R., McLaughlin, M. L. & Barkley, M. D. (1997). J. Phys. Chem. B, 101, 3269-3280.]), LOJCIX (Murugavel et al., 2008[Murugavel, S., Kannan, P. S., SubbiahPandi, A., Surendiran, T. & Balasubramanian, S. (2008). Acta Cryst. E64, o2433.]), and LOJCIX02 (Shukla et al., 2018[Shukla, R., Singh, P., Panini, P. & Chopra, D. (2018). Acta Cryst. B74, 376-384.])], together with the simple 1,2,3,4-tetra­hydro­car­ba­zole dervatives substituted at the 6-position with X = –F (PIGWOU), –Cl (PIGWAG) or –Br (PIGVIN) (Shukla et al., 2018[Shukla, R., Singh, P., Panini, P. & Chopra, D. (2018). Acta Cryst. B74, 376-384.]), –CO2Et (AHEMEF; Hökelek et al., 2002[Hökelek, T., Patır, S., Ergün, Y. & Okay, G. (2002). Acta Cryst. E58, o1255-o1257.]), and –NHC(O)Ph (MUDWIS; Laitar et al., 2009[Laitar, D. S., Kramer, J. W., Whiting, B. T., Lobkovsky, E. B. & Coates, G. W. (2009). Chem. Commun. pp. 5704-5706.]). The unsubstituted 1,2,3,4-tetra­hydro­car­ba­zole and its halide derivatives share the same pairwise N—H⋯π and C—H⋯π inter­actions as found in (II)[link], whereas in the –CO2Et (AHEMEF) and –NHC(O)Ph (MUDWIS) derivatives, the car­ba­zole N—H group hydrogen bonds inter­molecularly with the carbonyl O atom.

5. Synthesis and crystallization

In a fashion similar to that reported previously in the literature (Kumar et al., 2014[Kumar, T. O. S., Mahadevan, K. M. & Kumara, M. N. (2014). Int. J. Pharm. Pharm. Sci. 6, 137-140.]), equimolar amounts of (p-meth­oxy­phen­yl)hydrazine hydro­chloride (10 mmol, 1.746 g) and cyclo­hexa­none (10 mmol, 1.04 ml) were added to a round-bottomed flask along with 10 mol% anti­mony trioxide as a catalyst (0.001 mol, 0.291 g) in methanol solvent (40 ml). The resulting mixture was refluxed in a mineral oil bath at 338 K overnight. The reaction mixture was then cooled to room temperature and quenched slowly with 10 ml of water and 10 ml of saturated sodium bicarbonate. The aqueous layer was then extracted with ethyl acetate (3 × 30 ml). The combined organic layer was dried overnight with anhydrous MgSO4, filtered, and evaporated under reduced pressure, yielding 740 mg (37%) of (II)[link]. The 1H NMR data matched those reported previously in the literature. After isolating the tetra­hydro­car­ba­zole, the remaining aqueous methanol was set aside in a refrigerator for several days, from which a batch of faint-yellow crystalline material was collected and found by X-ray crystallography, as well as NMR and IR spectroscopy, mass spectrometry, and elemental analysis, to be the nine-membered-ring com­pound 9-meth­oxy-3,4,5,6-tetra­hydro-1H-benzo[b]azonine-2,7-dione, (I)[link], formed by the oxidative cleavage of the indole carbon–carbon double bond of the parent tetra­hydro­car­ba­zole 6-meth­oxy-1,2,3,4-tetra­hydro­car­ba­zole, (II)[link].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms on C atoms were included in calculated positions and refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aryl H atoms, C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for methyl­ene H atoms. The positions of the amide H atom in (I)[link] and the amine H atom in (II)[link] were found in difference maps and refined semi-freely using a distance restraint of N—H = 0.88 Å and Uiso(H) = 1.2Ueq(N).

Table 3
Experimental details

Experiments were carried out at 125 K with Mo Kα radiation using a Bruker APEXII CCD diffractometer. Absorption was corrected for by multi-scan methods (SADABS; Bruker, 2013[Bruker (2013). SAINT, SADABS, and APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]). Refinement was with 1 restraint. H atoms were treated by a mixture of independent and constrained refinement.

  (I) (II)
Crystal data
Chemical formula C13H15NO3 C13H15NO
Mr 233.26 201.26
Crystal system, space group Monoclinic, P21/c Monoclinic, C2/c
a, b, c (Å) 16.0139 (8), 8.2743 (4), 8.5596 (4) 20.513 (2), 5.6374 (6), 18.783 (2)
β (°) 96.484 (1) 100.757 (2)
V3) 1126.92 (9) 2133.9 (4)
Z 4 8
μ (mm−1) 0.10 0.08
Crystal size (mm) 0.40 × 0.10 × 0.03 0.21 × 0.10 × 0.10
 
Data collection
Tmin, Tmax 0.91, 1.00 0.93, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 27192, 3432, 2685 24248, 3249, 2619
Rint 0.038 0.030
(sin θ/λ)max−1) 0.715 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.04 0.042, 0.117, 1.03
No. of reflections 3432 3249
No. of parameters 158 140
Δρmax, Δρmin (e Å−3) 0.37, −0.19 0.42, −0.18
Computer programs: APEX2 (Bruker, 2013[Bruker (2013). SAINT, SADABS, and APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT, SADABS, and APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

7. Analytical data for (I)

1H NMR (Bruker Avance III HD 400 MHz, CDCl3): δ 1.84 (m, 4H, 2 CH2), 2.25 (m, 2H, CH2), 2.91 (m, 2H, CH2), 3.86 (s, 3H, OCH3), 7.02 (dd, 1H, Car­ylH, Jortho = 8.6 Hz, Jmeta = 3.0 Hz), 7.05 (d, 1H, Car­ylH, Jmeta = 3.0 Hz), 7.16 (d, 1H, Car­ylH, Jortho = 8.6 Hz), 7.19 (br s, 1H, NH). 13C NMR (13C{1H}, 100.6 MHz, CDCl3): δ 24.42 (CH2), 25.45 (CH2), 32.56 (CH2), 41.83 (CH2), 55.72 (OCH3), 112.87 (Car­ylH), 117.99 (Car­ylH), 126.58 (Car­yl), 130.50 (Car­ylH), 140.89 (Car­yl), 159.37 (Car­yl), 176.49 (C=O)NH, 205.76 (C=O). IR (Thermo Nicolet iS50, ATR, cm−1): 3197.85 (m, N—H str), 3004.02 (w, Car­yl—H str), 2936.23 (m, Calk­yl—H str), 2860.88 (w, Calk­yl—H str), 2834.53 (w, Calk­yl—H str), 1675.96 (s, C=O str), 1637.49 (s, amide C=O str), 1606.93 (m), 1586.93 (m), 1519.75 (m), 1494.23 (s), 1449.73 (m), 1436.91 (s), 1411.61 (m), 1334.69 (m), 1274.09 (s), 1255.42 (m), 1227.85 (s), 1208.66 (s), 1189.46 (m), 1166.34 (s), 1139.73 (s), 1108.74 (m), 1046.53 (m), 1031.85 (s), 948.63 (m), 919.84 (m), 895.70 (m), 856.17 (m), 827.82 (s), 811.89 (m), 793.28 (s), 745.79 (m), 718.67 (m), 688.02 (m), 624.27 (m), 604.18 (m), 580.24 (m), 531.09 (m), 497.82 (s), 462.99 (m), 432.18 (m). GC–MS (Agilent Technologies 7890A GC/5975C MS): M+ = 233.1 amu. Elemental analysis (CHN) carried out by Robertson Microlit Laboratories, Ledgewood, NJ, USA. Analysis calculated (%) for C13H15NO3: C 66.94, H 6.48, N 6.00; found: C 66.58, H 6.57, N 5.92.

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: SHELXTL2014 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL2014 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), and Mercury (Macrae et al., 2020).

9-Methoxy-3,4,5,6-tetrahydro-1H-benzo[b]azonine-2,7-dione (I) top
Crystal data top
C13H15NO3F(000) = 496
Mr = 233.26Dx = 1.375 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.0139 (8) ÅCell parameters from 9966 reflections
b = 8.2743 (4) Åθ = 2.6–30.5°
c = 8.5596 (4) ŵ = 0.10 mm1
β = 96.484 (1)°T = 125 K
V = 1126.92 (9) Å3Needle, yellow
Z = 40.40 × 0.10 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
3432 independent reflections
Radiation source: sealed X-ray tube, Bruker APEXII CCD2685 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 8.3333 pixels mm-1θmax = 30.5°, θmin = 2.6°
φ and ω scansh = 2222
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1111
Tmin = 0.91, Tmax = 1.00l = 1212
27192 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.3033P]
where P = (Fo2 + 2Fc2)/3
3432 reflections(Δ/σ)max < 0.001
158 parametersΔρmax = 0.37 e Å3
1 restraintΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.11242 (5)0.38292 (11)0.51840 (9)0.02220 (19)
O20.27855 (6)0.62150 (11)0.56201 (10)0.0280 (2)
O30.47875 (5)0.12590 (10)0.65022 (10)0.0253 (2)
N10.16638 (6)0.25619 (12)0.31640 (10)0.01783 (19)
H10.1564 (9)0.2229 (17)0.2199 (14)0.021*
C10.10773 (7)0.34800 (14)0.37727 (12)0.0177 (2)
C20.04082 (7)0.41965 (15)0.26000 (13)0.0213 (2)
H2A0.0051960.4638920.315330.026*
H2B0.0170520.334840.1863810.026*
C30.07963 (7)0.55581 (15)0.16766 (13)0.0217 (2)
H3A0.1068740.506150.0811810.026*
H3B0.0336170.6257560.1193470.026*
C40.14461 (7)0.66276 (14)0.26519 (13)0.0218 (2)
H4A0.1253940.6818240.3695870.026*
H4B0.1470460.7688290.212390.026*
C50.23445 (7)0.58971 (14)0.28901 (13)0.0204 (2)
H5A0.2364830.4990360.2140730.024*
H5B0.2741810.673160.2597990.024*
C60.26634 (7)0.52791 (14)0.45201 (13)0.0181 (2)
C70.29362 (7)0.35427 (13)0.47129 (12)0.0163 (2)
C80.37105 (7)0.32367 (13)0.55989 (12)0.0181 (2)
H80.4016660.4095460.6131250.022*
C90.40292 (7)0.16727 (14)0.56963 (12)0.0186 (2)
C100.35732 (7)0.04099 (14)0.49279 (13)0.0208 (2)
H100.3799710.0652420.4969160.025*
C110.27931 (7)0.06986 (14)0.41066 (13)0.0196 (2)
H110.2477910.0172010.3615380.024*
C120.24680 (6)0.22611 (13)0.39972 (12)0.0161 (2)
C130.52750 (8)0.25286 (16)0.72746 (15)0.0268 (3)
H13A0.5409450.3328630.6496610.04*
H13B0.5796790.208190.781320.04*
H13C0.4953770.3047820.8044830.04*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0201 (4)0.0315 (5)0.0149 (3)0.0040 (3)0.0016 (3)0.0014 (3)
O20.0317 (5)0.0223 (4)0.0274 (4)0.0051 (3)0.0073 (4)0.0077 (3)
O30.0179 (4)0.0227 (4)0.0332 (5)0.0053 (3)0.0061 (3)0.0022 (3)
N10.0171 (4)0.0211 (5)0.0143 (4)0.0007 (3)0.0023 (3)0.0025 (3)
C10.0147 (5)0.0205 (5)0.0174 (5)0.0031 (4)0.0000 (4)0.0022 (4)
C20.0155 (5)0.0287 (6)0.0188 (5)0.0002 (4)0.0027 (4)0.0017 (4)
C30.0209 (5)0.0249 (6)0.0179 (5)0.0018 (4)0.0032 (4)0.0026 (4)
C40.0209 (5)0.0205 (5)0.0228 (5)0.0027 (4)0.0036 (4)0.0018 (4)
C50.0194 (5)0.0203 (5)0.0212 (5)0.0008 (4)0.0006 (4)0.0032 (4)
C60.0140 (5)0.0186 (5)0.0212 (5)0.0002 (4)0.0008 (4)0.0012 (4)
C70.0162 (5)0.0171 (5)0.0156 (4)0.0013 (4)0.0013 (4)0.0011 (4)
C80.0167 (5)0.0184 (5)0.0187 (5)0.0009 (4)0.0001 (4)0.0023 (4)
C90.0149 (5)0.0214 (5)0.0193 (5)0.0033 (4)0.0007 (4)0.0004 (4)
C100.0211 (5)0.0177 (5)0.0237 (5)0.0032 (4)0.0028 (4)0.0011 (4)
C110.0207 (5)0.0178 (5)0.0202 (5)0.0010 (4)0.0017 (4)0.0029 (4)
C120.0157 (5)0.0194 (5)0.0132 (4)0.0005 (4)0.0013 (3)0.0005 (4)
C130.0196 (5)0.0281 (6)0.0309 (6)0.0020 (5)0.0053 (5)0.0029 (5)
Geometric parameters (Å, º) top
O1—C11.2361 (13)C5—C61.5192 (15)
O2—C61.2177 (13)C5—H5A0.99
O3—C91.3705 (13)C5—H5B0.99
O3—C131.4260 (15)C6—C71.5053 (15)
N1—C11.3570 (14)C7—C121.3995 (15)
N1—C121.4218 (14)C7—C81.4015 (15)
N1—H10.869 (12)C8—C91.3901 (16)
C1—C21.5047 (15)C8—H80.95
C2—C31.5463 (17)C9—C101.3961 (16)
C2—H2A0.99C10—C111.3834 (16)
C2—H2B0.99C10—H100.95
C3—C41.5384 (16)C11—C121.3930 (15)
C3—H3A0.99C11—H110.95
C3—H3B0.99C13—H13A0.98
C4—C51.5526 (16)C13—H13B0.98
C4—H4A0.99C13—H13C0.98
C4—H4B0.99
C9—O3—C13117.19 (9)C4—C5—H5B107.9
C1—N1—C12122.17 (9)H5A—C5—H5B107.2
C1—N1—H1118.8 (9)O2—C6—C7120.19 (10)
C12—N1—H1118.8 (9)O2—C6—C5120.27 (10)
O1—C1—N1122.53 (10)C7—C6—C5119.03 (9)
O1—C1—C2121.33 (10)C12—C7—C8119.84 (10)
N1—C1—C2115.85 (9)C12—C7—C6122.73 (9)
C1—C2—C3109.33 (9)C8—C7—C6117.38 (9)
C1—C2—H2A109.8C9—C8—C7119.81 (10)
C3—C2—H2A109.8C9—C8—H8120.1
C1—C2—H2B109.8C7—C8—H8120.1
C3—C2—H2B109.8O3—C9—C8124.13 (10)
H2A—C2—H2B108.3O3—C9—C10115.90 (10)
C4—C3—C2115.34 (9)C8—C9—C10119.97 (10)
C4—C3—H3A108.4C11—C10—C9120.30 (10)
C2—C3—H3A108.4C11—C10—H10119.9
C4—C3—H3B108.4C9—C10—H10119.9
C2—C3—H3B108.4C10—C11—C12120.24 (10)
H3A—C3—H3B107.5C10—C11—H11119.9
C3—C4—C5114.03 (10)C12—C11—H11119.9
C3—C4—H4A108.7C11—C12—C7119.74 (10)
C5—C4—H4A108.7C11—C12—N1120.44 (10)
C3—C4—H4B108.7C7—C12—N1119.81 (10)
C5—C4—H4B108.7O3—C13—H13A109.5
H4A—C4—H4B107.6O3—C13—H13B109.5
C6—C5—C4117.52 (9)H13A—C13—H13B109.5
C6—C5—H5A107.9O3—C13—H13C109.5
C4—C5—H5A107.9H13A—C13—H13C109.5
C6—C5—H5B107.9H13B—C13—H13C109.5
C12—N1—C1—O115.63 (16)C13—O3—C9—C80.42 (16)
C12—N1—C1—C2158.31 (10)C13—O3—C9—C10178.85 (10)
O1—C1—C2—C3102.43 (12)C7—C8—C9—O3178.48 (10)
N1—C1—C2—C371.59 (13)C7—C8—C9—C100.76 (16)
C1—C2—C3—C438.86 (13)O3—C9—C10—C11178.79 (10)
C2—C3—C4—C582.68 (12)C8—C9—C10—C111.91 (16)
C3—C4—C5—C6108.22 (11)C9—C10—C11—C122.07 (17)
C4—C5—C6—O265.85 (14)C10—C11—C12—C70.44 (16)
C4—C5—C6—C7122.35 (11)C10—C11—C12—N1179.54 (10)
O2—C6—C7—C12142.88 (11)C8—C7—C12—C113.09 (15)
C5—C6—C7—C1245.31 (14)C6—C7—C12—C11174.17 (10)
O2—C6—C7—C839.79 (15)C8—C7—C12—N1176.89 (9)
C5—C6—C7—C8132.02 (10)C6—C7—C12—N15.85 (15)
C12—C7—C8—C93.25 (16)C1—N1—C12—C11132.57 (11)
C6—C7—C8—C9174.16 (10)C1—N1—C12—C747.40 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (1)1.99 (1)2.8426 (12)167 (1)
C5—H5B···O2ii0.992.413.2085 (14)138
C13—H13B···O2iii0.982.603.5793 (15)174
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+3/2, z1/2; (iii) x+1, y1/2, z+3/2.
6-Methoxy-1,2,3,4-tetrahydrocarbazole (II) top
Crystal data top
C13H15NOF(000) = 864
Mr = 201.26Dx = 1.253 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.513 (2) ÅCell parameters from 7271 reflections
b = 5.6374 (6) Åθ = 2.2–30.5°
c = 18.783 (2) ŵ = 0.08 mm1
β = 100.757 (2)°T = 125 K
V = 2133.9 (4) Å3Block, yellow
Z = 80.21 × 0.10 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
3249 independent reflections
Radiation source: sealed X-ray tube, Bruker APEXII CCD2619 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 8.3333 pixels mm-1θmax = 30.5°, θmin = 2.0°
φ and ω scansh = 2929
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 88
Tmin = 0.93, Tmax = 0.99l = 2626
24248 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: mixed
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0616P)2 + 1.016P]
where P = (Fo2 + 2Fc2)/3
3249 reflections(Δ/σ)max = 0.001
140 parametersΔρmax = 0.42 e Å3
1 restraintΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.87890 (4)0.58856 (15)0.58257 (5)0.0314 (2)
N10.68765 (4)1.06336 (16)0.69736 (5)0.02345 (19)
H10.6884 (6)1.180 (2)0.7285 (7)0.028*
C10.63171 (5)0.93481 (17)0.66796 (5)0.0209 (2)
C20.56378 (5)0.97953 (19)0.68306 (6)0.0262 (2)
H2A0.5439711.119830.6555010.031*
H2B0.5662481.0111270.7353410.031*
C30.52072 (5)0.7590 (2)0.66027 (6)0.0269 (2)
H3A0.5337250.6310750.6962250.032*
H3B0.4735840.7982580.6596810.032*
C40.52847 (5)0.6710 (2)0.58520 (6)0.0275 (2)
H4A0.5168610.8008740.5496150.033*
H4B0.4971810.5385070.5704490.033*
C50.59931 (5)0.58670 (19)0.58405 (6)0.0232 (2)
H5A0.6060420.4266960.6059080.028*
H5B0.6060910.576280.5333210.028*
C60.64860 (5)0.75580 (17)0.62552 (5)0.01940 (19)
C70.71886 (5)0.76989 (17)0.62904 (5)0.01899 (19)
C80.76363 (5)0.63638 (18)0.59683 (5)0.0215 (2)
H8A0.748780.5055740.5661860.026*
C90.83002 (5)0.70122 (18)0.61111 (5)0.0229 (2)
C100.85231 (5)0.89428 (19)0.65691 (6)0.0246 (2)
H10A0.8981940.932910.6664060.03*
C110.80883 (5)1.02892 (18)0.68837 (6)0.0241 (2)
H11A0.8240241.1604280.7185720.029*
C120.74189 (5)0.96489 (17)0.67422 (5)0.02058 (19)
C130.85810 (6)0.4022 (2)0.53217 (6)0.0298 (2)
H13A0.8960920.3461170.5120310.045*
H13B0.8236430.4614420.4929060.045*
H13C0.8402750.2710010.5569070.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0224 (4)0.0352 (4)0.0378 (4)0.0034 (3)0.0089 (3)0.0030 (3)
N10.0257 (4)0.0205 (4)0.0244 (4)0.0018 (3)0.0053 (3)0.0051 (3)
C10.0224 (5)0.0199 (4)0.0205 (4)0.0002 (3)0.0037 (3)0.0013 (3)
C20.0260 (5)0.0254 (5)0.0291 (5)0.0012 (4)0.0099 (4)0.0014 (4)
C30.0232 (5)0.0307 (5)0.0280 (5)0.0024 (4)0.0080 (4)0.0010 (4)
C40.0211 (5)0.0348 (6)0.0259 (5)0.0015 (4)0.0025 (4)0.0021 (4)
C50.0212 (4)0.0255 (5)0.0223 (5)0.0025 (4)0.0024 (4)0.0027 (4)
C60.0199 (4)0.0204 (4)0.0174 (4)0.0001 (3)0.0021 (3)0.0011 (3)
C70.0208 (4)0.0187 (4)0.0168 (4)0.0006 (3)0.0018 (3)0.0016 (3)
C80.0220 (5)0.0212 (4)0.0207 (4)0.0008 (4)0.0028 (3)0.0002 (3)
C90.0207 (5)0.0248 (5)0.0235 (5)0.0022 (4)0.0049 (4)0.0042 (4)
C100.0201 (4)0.0267 (5)0.0260 (5)0.0040 (4)0.0018 (4)0.0059 (4)
C110.0256 (5)0.0220 (5)0.0233 (5)0.0052 (4)0.0010 (4)0.0009 (4)
C120.0227 (4)0.0191 (4)0.0194 (4)0.0010 (3)0.0025 (3)0.0013 (3)
C130.0307 (5)0.0322 (6)0.0282 (5)0.0082 (4)0.0097 (4)0.0025 (4)
Geometric parameters (Å, º) top
O1—C91.3772 (12)C5—C61.4979 (14)
O1—C131.4251 (15)C5—H5A0.99
N1—C11.3822 (13)C5—H5B0.99
N1—C121.3841 (13)C6—C71.4327 (13)
N1—H10.878 (12)C7—C81.4083 (13)
C1—C61.3700 (14)C7—C121.4150 (13)
C1—C21.4944 (14)C8—C91.3870 (14)
C2—C31.5387 (15)C8—H8A0.95
C2—H2A0.99C9—C101.4096 (15)
C2—H2B0.99C10—C111.3848 (15)
C3—C41.5309 (15)C10—H10A0.95
C3—H3A0.99C11—C121.3964 (14)
C3—H3B0.99C11—H11A0.95
C4—C51.5329 (15)C13—H13A0.98
C4—H4A0.99C13—H13B0.98
C4—H4B0.99C13—H13C0.98
C9—O1—C13116.68 (8)C4—C5—H5B109.6
C1—N1—C12108.69 (8)H5A—C5—H5B108.1
C1—N1—H1124.7 (9)C1—C6—C7107.08 (8)
C12—N1—H1126.4 (9)C1—C6—C5123.50 (9)
C6—C1—N1109.72 (9)C7—C6—C5129.41 (9)
C6—C1—C2125.50 (9)C8—C7—C12120.09 (9)
N1—C1—C2124.73 (9)C8—C7—C6132.97 (9)
C1—C2—C3108.54 (9)C12—C7—C6106.93 (8)
C1—C2—H2A110.0C9—C8—C7118.14 (9)
C3—C2—H2A110.0C9—C8—H8A120.9
C1—C2—H2B110.0C7—C8—H8A120.9
C3—C2—H2B110.0O1—C9—C8124.27 (10)
H2A—C2—H2B108.4O1—C9—C10114.63 (9)
C4—C3—C2111.42 (9)C8—C9—C10121.09 (9)
C4—C3—H3A109.3C11—C10—C9121.49 (9)
C2—C3—H3A109.3C11—C10—H10A119.3
C4—C3—H3B109.3C9—C10—H10A119.3
C2—C3—H3B109.3C10—C11—C12117.76 (10)
H3A—C3—H3B108.0C10—C11—H11A121.1
C3—C4—C5112.03 (9)C12—C11—H11A121.1
C3—C4—H4A109.2N1—C12—C11131.00 (10)
C5—C4—H4A109.2N1—C12—C7107.57 (9)
C3—C4—H4B109.2C11—C12—C7121.42 (9)
C5—C4—H4B109.2O1—C13—H13A109.5
H4A—C4—H4B107.9O1—C13—H13B109.5
C6—C5—C4110.18 (9)H13A—C13—H13B109.5
C6—C5—H5A109.6O1—C13—H13C109.5
C4—C5—H5A109.6H13A—C13—H13C109.5
C6—C5—H5B109.6H13B—C13—H13C109.5
C12—N1—C1—C60.59 (11)C12—C7—C8—C90.33 (14)
C12—N1—C1—C2177.03 (9)C6—C7—C8—C9178.98 (10)
C6—C1—C2—C314.48 (14)C13—O1—C9—C83.57 (15)
N1—C1—C2—C3162.77 (10)C13—O1—C9—C10175.98 (9)
C1—C2—C3—C446.60 (12)C7—C8—C9—O1179.13 (9)
C2—C3—C4—C563.94 (12)C7—C8—C9—C100.40 (15)
C3—C4—C5—C642.77 (12)O1—C9—C10—C11178.46 (9)
N1—C1—C6—C70.80 (11)C8—C9—C10—C111.11 (16)
C2—C1—C6—C7176.80 (9)C9—C10—C11—C121.03 (15)
N1—C1—C6—C5178.39 (9)C1—N1—C12—C11179.80 (10)
C2—C1—C6—C54.01 (16)C1—N1—C12—C70.13 (11)
C4—C5—C6—C110.21 (14)C10—C11—C12—N1179.93 (10)
C4—C5—C6—C7168.79 (10)C10—C11—C12—C70.29 (15)
C1—C6—C7—C8179.49 (10)C8—C7—C12—N1179.32 (9)
C5—C6—C7—C80.36 (18)C6—C7—C12—N10.36 (11)
C1—C6—C7—C120.71 (11)C8—C7—C12—C110.39 (15)
C5—C6—C7—C12178.41 (9)C6—C7—C12—C11179.36 (9)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C7–C12 and N1/C1/C6/C7/C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···Cg1i0.88 (1)2.41 (1)3.2645 (11)150
C11—H11A···Cg2i0.952.613.5018 (12)146
Symmetry code: (i) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by Vassar College. X-ray facilities were provided by the U.S. National Science Foundation.

Funding information

Funding for this research was provided by: National Science Foundation (grant Nos. 0521237 and 0911324 to J. M. Tanski).

References

First citationBaranova, T. Y., Zefirova, O. N., Banaru, A. M., Khrustalev, V. N., Ivanova, A. A., Ivanov, A. A. & Zefirov, N. S. (2012). Russ. J. Org. Chem. 48, 552–555.  CSD CrossRef CAS Google Scholar
First citationBruker (2013). SAINT, SADABS, and APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Patır, S., Ergün, Y. & Okay, G. (2002). Acta Cryst. E58, o1255–o1257.  CSD CrossRef IUCr Journals Google Scholar
First citationKumar, T. O. S., Mahadevan, K. M. & Kumara, M. N. (2014). Int. J. Pharm. Pharm. Sci. 6, 137–140.  Google Scholar
First citationLaitar, D. S., Kramer, J. W., Whiting, B. T., Lobkovsky, E. B. & Coates, G. W. (2009). Chem. Commun. pp. 5704–5706.  CSD CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcMahon, L. P., Yu, H.-T., Vela, M. A., Morales, G. A., Shui, L., Fronczek, F. R., McLaughlin, M. L. & Barkley, M. D. (1997). J. Phys. Chem. B, 101, 3269–3280.  CSD CrossRef CAS Google Scholar
First citationMurugavel, S., Kannan, P. S., SubbiahPandi, A., Surendiran, T. & Balasubramanian, S. (2008). Acta Cryst. E64, o2433.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShukla, R., Singh, P., Panini, P. & Chopra, D. (2018). Acta Cryst. B74, 376–384.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddalingamurthy, E., Mahadevan, K. M., Masagalli, J. N. & Harishkumar, H. N. (2013). Tetrahedron Lett. 54, 5591–5596.  CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakemoto, M., Iwakiri, Y., Suzuki, Y. & Tanaka, K. (2004). Tetrahedron Lett. 45, 8061–8064.  CrossRef CAS Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds