research communications
Spectroscopic, crystallographic, and Hirshfeld surface characterization of nine-membered-ring-containing 9-methoxy-3,4,5,6-tetrahydro-1H-benzo[b]azonine-2,7-dione and its parent tetrahydrocarbazole
aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: jotanski@vassar.edu
9-Methoxy-3,4,5,6-tetrahydro-1H-benzo[b]azonine-2,7-dione, C13H15NO3, (I), and 6-methoxy-1,2,3,4-tetrahydrocarbazole, C13H15NO, (II), represent the structures of a benzoazonine that contains a nine-membered ring and its parent tetrahydrocarbazole. The molecules of (I) pack together via strong amide N—H⋯O hydrogen bonding and weak C—H⋯O interactions, whereas the parent tetrahydrocarbazole (II) packs with C/N—H⋯π interactions, as visualized by Hirshfeld surface characterization.
1. Chemical context
The title compound 9-methoxy-3,4,5,6-tetrahydro-1H-benzo[b]azonine-2,7-dione, (I), was obtained as a by-product during the synthesis of 6-methoxy-1,2,3,4-tetrahydrocarbazole, (II). Compound (II) may be prepared by refluxing p-methoxyphenylhydrazine hydrochloride with cyclohexanone in methanol and an antimony catalyst (Kumar et al., 2014) or in ethanol with 2,4,6-trichloro-1,3,5-triazine as a catalyst (Siddalingamurthy et al., 2013). After isolating the tetrahydrocarbazole, the remaining aqueous methanol was set aside in a refrigerator for several days, from which a batch of light-yellow crystalline material was collected and found by X-ray crystallography, as well as spectroscopy, and elemental analysis, to be the nine-membered-ring-containing compound (I). Benzo[b]azoninediones have been shown to be accesible via the enzymatic oxidative cleavage of indole carbon–carbon double bonds in the presence of hydrogen peroxide (Takemoto et al., 2004).
2. Structural commentary
The molecular structure of 9-methoxy-3,4,5,6-tetrahydro-1H-benzo[b]azonine-2,7-dione, (I) (Fig. 1), reveals that the molecule contains a nine-membered ring which includes an organic amide and a ketone group. IR spectroscopy corroborates these functional groups with a ketone C=O stretch at 1676 cm−1, an amide C=O stretch shifted to lower energy at 1637 cm−1, and an amide N—H stretch at 3198 cm−1. The structure of the parent compound 6-methoxy-1,2,3,4-tetrahydrocarbazole, (II), is shown in Fig. 2. Unlike related tetrahydrocarbazoles, such as unsubsituted 1,2,3,4-tetrahydrocarbazole (McMahon et al., 1997; Murugavel et al., 2008; Shukla et al., 2018), compound (II) crystallizes without disorder in the cyclohexene ring.
3. Supramolecular features and Hirshfeld surface analysis
The molecules of (I) are held together in the solid state via a strong intermolecular amide N—H⋯O hydrogen bond and weak C—H⋯O interactions (Figs. 3 and 4, and Table 1). Specifically, the amide group hydrogen bonds to the O atom of the amide group on a neighboring molecule, i.e. N1—H1⋯O1i with a donor–acceptor distance of 2.8426 (12) Å, extending in a one-dimensional chain with graph-set notation C(4) (Fig. 3). The Hirshfeld surface calculated with CrystalExplorer21 was mapped over dnorm in the range from −0.5838 to 1.1871 a.u. (Spackman et al., 2021). The brightest red spot on the surface indicates the N1—H1⋯O1i hydrogen bond, the second most intense spot corresponds to the shorter C5—H5B⋯O2ii interaction, with a hydrogen–acceptor distance of 2.41 Å and a D—H⋯A angle of 138°, while the least intense spot corresponds to the longer C13—H13B⋯O2iii interaction at a distance of 2.60 Å and with a D—H⋯A angle of 174° (Fig. 4 and Table 1). The two-dimensional fingerprint plots (Fig. 5) reveal that the most important interatomic contacts, summing to 97.3%, are H⋯H (51.3%), O⋯H/H⋯O (29.7%), C⋯H/H⋯C (15.2%), and N⋯H/H⋯N (1.1%). The large percentage contribution and forcep-shaped points in Fig. 5(c) indicate significant O⋯H interactions at less than the sum of the van der Waals radii, consistent with the presence of the conventional hydrogen-bond and C—H⋯O interactions being abundant points of contact on the surface.
|
The molecules of (II) pack with a herringbone motif (Fig. 6). Although (II) contains an acidic proton, the structure does not exhibit conventional hydrogen bonding, nor any meaningful intermolecular C—H⋯O/N contacts. However, the Hirshfeld surface calculated with CrystalExplorer21, mapped over dnorm in the range from −0.2999 to 1.3163 a.u. (Spackman et al., 2021), reveals that the molecules interact via pairwise N—H⋯π and C—H⋯π interactions (Fig. 7). The brighter red spot on the top left of the surface indicates the N—H⋯π interaction N1—H1⋯Cg1i (Table 2), which is directed towards the C7–C12 ring on a neighboring molecule, in an offset fashion from the centroid towards C11, with the shortest contact to the ring being C11⋯H1 at a distance of 2.51 Å. The less intense red spot on the top right of the surface indicates the longer C—H⋯π ineraction C11—H11A⋯Cg2i (Table 2), which is directed towards the carbazole ring on a neighboring molecule, in an offset fashion from the centroid towards C1, with a C1⋯H11A distance of 2.65 Å. The Hirshfeld surface for (II) mapped over the shape-index property further confirms the blue bump shapes of the N/C—H⋯π donors on top and the red valleys of the acceptors on the face (Fig. 7) (Tan et al., 2019). The two-dimensional fiingerprint plots (Fig. 8) show that the most important interatomic contacts, summing to 100%, are H⋯H (63.7%), C⋯H/H⋯C (25.5%), O⋯H/H⋯O (7.5%), and N⋯H/H⋯N (3.3%) contacts. The points in the fingerprint plots in Figs. 8(b) and 8(c) indicate the significance of H⋯H and C⋯H interactions in (II) and the absence of intermolecular C—H⋯O/N contacts.
4. Database survey
A search for compounds similar to compound (I) in the Cambridge Structural Database (Groom et al., 2016) found a single structure (CSD refcode COMBEO) which contains the nine-membered ring with an additional acetamide-containing group bridging the 3- and 5-position methylene C atoms of the title compound (Baranova et al., 2012). The additional bridging group in COMBEO positions the amide carbonyl and N—H groups cis to one another, with an O—C—N—H torsion angle of 7.37°, allowing for the formation of an R22(8) graph-set centrosymmetric hydrogen-bonding dimer, whereas in compound (I), they are oriented trans, with an O—C—N—H torsion angle of 170.69°, which precludes hydrogen bonding via a similar dimer, and (I) forms a one-dimensional hydrogen-bonding chain.
The structure of the unsubsituted 1,2,3,4-tetrahydrocarbazole has been reported several times [refcodes LOJCIX01 (McMahon et al., 1997), LOJCIX (Murugavel et al., 2008), and LOJCIX02 (Shukla et al., 2018)], together with the simple 1,2,3,4-tetrahydrocarbazole dervatives substituted at the 6-position with X = –F (PIGWOU), –Cl (PIGWAG) or –Br (PIGVIN) (Shukla et al., 2018), –CO2Et (AHEMEF; Hökelek et al., 2002), and –NHC(O)Ph (MUDWIS; Laitar et al., 2009). The unsubstituted 1,2,3,4-tetrahydrocarbazole and its halide derivatives share the same pairwise N—H⋯π and C—H⋯π interactions as found in (II), whereas in the –CO2Et (AHEMEF) and –NHC(O)Ph (MUDWIS) derivatives, the carbazole N—H group hydrogen bonds intermolecularly with the carbonyl O atom.
5. Synthesis and crystallization
In a fashion similar to that reported previously in the literature (Kumar et al., 2014), equimolar amounts of (p-methoxyphenyl)hydrazine hydrochloride (10 mmol, 1.746 g) and cyclohexanone (10 mmol, 1.04 ml) were added to a round-bottomed flask along with 10 mol% antimony trioxide as a catalyst (0.001 mol, 0.291 g) in methanol solvent (40 ml). The resulting mixture was refluxed in a mineral oil bath at 338 K overnight. The reaction mixture was then cooled to room temperature and quenched slowly with 10 ml of water and 10 ml of saturated sodium bicarbonate. The aqueous layer was then extracted with ethyl acetate (3 × 30 ml). The combined organic layer was dried overnight with anhydrous MgSO4, filtered, and evaporated under reduced pressure, yielding 740 mg (37%) of (II). The 1H NMR data matched those reported previously in the literature. After isolating the tetrahydrocarbazole, the remaining aqueous methanol was set aside in a refrigerator for several days, from which a batch of faint-yellow crystalline material was collected and found by X-ray crystallography, as well as NMR and IR spectroscopy, and elemental analysis, to be the nine-membered-ring compound 9-methoxy-3,4,5,6-tetrahydro-1H-benzo[b]azonine-2,7-dione, (I), formed by the oxidative cleavage of the indole carbon–carbon double bond of the parent tetrahydrocarbazole 6-methoxy-1,2,3,4-tetrahydrocarbazole, (II).
6. Refinement
Crystal data, data collection and structure . H atoms on C atoms were included in calculated positions and refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aryl H atoms, C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms. The positions of the amide H atom in (I) and the amine H atom in (II) were found in difference maps and refined semi-freely using a distance restraint of N—H = 0.88 Å and Uiso(H) = 1.2Ueq(N).
details are summarized in Table 37. Analytical data for (I)
1H NMR (Bruker Avance III HD 400 MHz, CDCl3): δ 1.84 (m, 4H, 2 CH2), 2.25 (m, 2H, CH2), 2.91 (m, 2H, CH2), 3.86 (s, 3H, OCH3), 7.02 (dd, 1H, CarylH, Jortho = 8.6 Hz, Jmeta = 3.0 Hz), 7.05 (d, 1H, CarylH, Jmeta = 3.0 Hz), 7.16 (d, 1H, CarylH, Jortho = 8.6 Hz), 7.19 (br s, 1H, NH). 13C NMR (13C{1H}, 100.6 MHz, CDCl3): δ 24.42 (CH2), 25.45 (CH2), 32.56 (CH2), 41.83 (CH2), 55.72 (OCH3), 112.87 (CarylH), 117.99 (CarylH), 126.58 (Caryl), 130.50 (CarylH), 140.89 (Caryl), 159.37 (Caryl), 176.49 (C=O)NH, 205.76 (C=O). IR (Thermo Nicolet iS50, ATR, cm−1): 3197.85 (m, N—H str), 3004.02 (w, Caryl—H str), 2936.23 (m, Calkyl—H str), 2860.88 (w, Calkyl—H str), 2834.53 (w, Calkyl—H str), 1675.96 (s, C=O str), 1637.49 (s, amide C=O str), 1606.93 (m), 1586.93 (m), 1519.75 (m), 1494.23 (s), 1449.73 (m), 1436.91 (s), 1411.61 (m), 1334.69 (m), 1274.09 (s), 1255.42 (m), 1227.85 (s), 1208.66 (s), 1189.46 (m), 1166.34 (s), 1139.73 (s), 1108.74 (m), 1046.53 (m), 1031.85 (s), 948.63 (m), 919.84 (m), 895.70 (m), 856.17 (m), 827.82 (s), 811.89 (m), 793.28 (s), 745.79 (m), 718.67 (m), 688.02 (m), 624.27 (m), 604.18 (m), 580.24 (m), 531.09 (m), 497.82 (s), 462.99 (m), 432.18 (m). GC–MS (Agilent Technologies 7890A GC/5975C MS): M+ = 233.1 amu. Elemental analysis (CHN) carried out by Robertson Microlit Laboratories, Ledgewood, NJ, USA. Analysis calculated (%) for C13H15NO3: C 66.94, H 6.48, N 6.00; found: C 66.58, H 6.57, N 5.92.
Supporting information
https://doi.org/10.1107/S2056989023007259/dx2054sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023007259/dx2054Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989023007259/dx2054IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989023007259/dx2054Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989023007259/dx2054IIsup5.cml
For both structures, data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: SHELXTL2014 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL2014 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), and Mercury (Macrae et al., 2020).C13H15NO3 | F(000) = 496 |
Mr = 233.26 | Dx = 1.375 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 16.0139 (8) Å | Cell parameters from 9966 reflections |
b = 8.2743 (4) Å | θ = 2.6–30.5° |
c = 8.5596 (4) Å | µ = 0.10 mm−1 |
β = 96.484 (1)° | T = 125 K |
V = 1126.92 (9) Å3 | Needle, yellow |
Z = 4 | 0.40 × 0.10 × 0.03 mm |
Bruker APEXII CCD diffractometer | 3432 independent reflections |
Radiation source: sealed X-ray tube, Bruker APEXII CCD | 2685 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 30.5°, θmin = 2.6° |
φ and ω scans | h = −22→22 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | k = −11→11 |
Tmin = 0.91, Tmax = 1.00 | l = −12→12 |
27192 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: mixed |
wR(F2) = 0.110 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0545P)2 + 0.3033P] where P = (Fo2 + 2Fc2)/3 |
3432 reflections | (Δ/σ)max < 0.001 |
158 parameters | Δρmax = 0.37 e Å−3 |
1 restraint | Δρmin = −0.19 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.11242 (5) | 0.38292 (11) | 0.51840 (9) | 0.02220 (19) | |
O2 | 0.27855 (6) | 0.62150 (11) | 0.56201 (10) | 0.0280 (2) | |
O3 | 0.47875 (5) | 0.12590 (10) | 0.65022 (10) | 0.0253 (2) | |
N1 | 0.16638 (6) | 0.25619 (12) | 0.31640 (10) | 0.01783 (19) | |
H1 | 0.1564 (9) | 0.2229 (17) | 0.2199 (14) | 0.021* | |
C1 | 0.10773 (7) | 0.34800 (14) | 0.37727 (12) | 0.0177 (2) | |
C2 | 0.04082 (7) | 0.41965 (15) | 0.26000 (13) | 0.0213 (2) | |
H2A | −0.005196 | 0.463892 | 0.31533 | 0.026* | |
H2B | 0.017052 | 0.33484 | 0.186381 | 0.026* | |
C3 | 0.07963 (7) | 0.55581 (15) | 0.16766 (13) | 0.0217 (2) | |
H3A | 0.106874 | 0.50615 | 0.081181 | 0.026* | |
H3B | 0.033617 | 0.625756 | 0.119347 | 0.026* | |
C4 | 0.14461 (7) | 0.66276 (14) | 0.26519 (13) | 0.0218 (2) | |
H4A | 0.125394 | 0.681824 | 0.369587 | 0.026* | |
H4B | 0.147046 | 0.768829 | 0.21239 | 0.026* | |
C5 | 0.23445 (7) | 0.58971 (14) | 0.28901 (13) | 0.0204 (2) | |
H5A | 0.236483 | 0.499036 | 0.214073 | 0.024* | |
H5B | 0.274181 | 0.67316 | 0.259799 | 0.024* | |
C6 | 0.26634 (7) | 0.52791 (14) | 0.45201 (13) | 0.0181 (2) | |
C7 | 0.29362 (7) | 0.35427 (13) | 0.47129 (12) | 0.0163 (2) | |
C8 | 0.37105 (7) | 0.32367 (13) | 0.55989 (12) | 0.0181 (2) | |
H8 | 0.401666 | 0.409546 | 0.613125 | 0.022* | |
C9 | 0.40292 (7) | 0.16727 (14) | 0.56963 (12) | 0.0186 (2) | |
C10 | 0.35732 (7) | 0.04099 (14) | 0.49279 (13) | 0.0208 (2) | |
H10 | 0.379971 | −0.065242 | 0.496916 | 0.025* | |
C11 | 0.27931 (7) | 0.06986 (14) | 0.41066 (13) | 0.0196 (2) | |
H11 | 0.247791 | −0.017201 | 0.361538 | 0.024* | |
C12 | 0.24680 (6) | 0.22611 (13) | 0.39972 (12) | 0.0161 (2) | |
C13 | 0.52750 (8) | 0.25286 (16) | 0.72746 (15) | 0.0268 (3) | |
H13A | 0.540945 | 0.332863 | 0.649661 | 0.04* | |
H13B | 0.579679 | 0.20819 | 0.78132 | 0.04* | |
H13C | 0.495377 | 0.304782 | 0.804483 | 0.04* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0201 (4) | 0.0315 (5) | 0.0149 (3) | 0.0040 (3) | 0.0016 (3) | 0.0014 (3) |
O2 | 0.0317 (5) | 0.0223 (4) | 0.0274 (4) | 0.0051 (3) | −0.0073 (4) | −0.0077 (3) |
O3 | 0.0179 (4) | 0.0227 (4) | 0.0332 (5) | 0.0053 (3) | −0.0061 (3) | −0.0022 (3) |
N1 | 0.0171 (4) | 0.0211 (5) | 0.0143 (4) | −0.0007 (3) | −0.0023 (3) | −0.0025 (3) |
C1 | 0.0147 (5) | 0.0205 (5) | 0.0174 (5) | −0.0031 (4) | 0.0000 (4) | 0.0022 (4) |
C2 | 0.0155 (5) | 0.0287 (6) | 0.0188 (5) | 0.0002 (4) | −0.0027 (4) | 0.0017 (4) |
C3 | 0.0209 (5) | 0.0249 (6) | 0.0179 (5) | 0.0018 (4) | −0.0032 (4) | 0.0026 (4) |
C4 | 0.0209 (5) | 0.0205 (5) | 0.0228 (5) | 0.0027 (4) | −0.0036 (4) | 0.0018 (4) |
C5 | 0.0194 (5) | 0.0203 (5) | 0.0212 (5) | 0.0008 (4) | 0.0006 (4) | 0.0032 (4) |
C6 | 0.0140 (5) | 0.0186 (5) | 0.0212 (5) | 0.0002 (4) | −0.0008 (4) | −0.0012 (4) |
C7 | 0.0162 (5) | 0.0171 (5) | 0.0156 (4) | 0.0013 (4) | 0.0013 (4) | −0.0011 (4) |
C8 | 0.0167 (5) | 0.0184 (5) | 0.0187 (5) | 0.0009 (4) | 0.0001 (4) | −0.0023 (4) |
C9 | 0.0149 (5) | 0.0214 (5) | 0.0193 (5) | 0.0033 (4) | 0.0007 (4) | 0.0004 (4) |
C10 | 0.0211 (5) | 0.0177 (5) | 0.0237 (5) | 0.0032 (4) | 0.0028 (4) | −0.0011 (4) |
C11 | 0.0207 (5) | 0.0178 (5) | 0.0202 (5) | −0.0010 (4) | 0.0017 (4) | −0.0029 (4) |
C12 | 0.0157 (5) | 0.0194 (5) | 0.0132 (4) | 0.0005 (4) | 0.0013 (3) | −0.0005 (4) |
C13 | 0.0196 (5) | 0.0281 (6) | 0.0309 (6) | 0.0020 (5) | −0.0053 (5) | −0.0029 (5) |
O1—C1 | 1.2361 (13) | C5—C6 | 1.5192 (15) |
O2—C6 | 1.2177 (13) | C5—H5A | 0.99 |
O3—C9 | 1.3705 (13) | C5—H5B | 0.99 |
O3—C13 | 1.4260 (15) | C6—C7 | 1.5053 (15) |
N1—C1 | 1.3570 (14) | C7—C12 | 1.3995 (15) |
N1—C12 | 1.4218 (14) | C7—C8 | 1.4015 (15) |
N1—H1 | 0.869 (12) | C8—C9 | 1.3901 (16) |
C1—C2 | 1.5047 (15) | C8—H8 | 0.95 |
C2—C3 | 1.5463 (17) | C9—C10 | 1.3961 (16) |
C2—H2A | 0.99 | C10—C11 | 1.3834 (16) |
C2—H2B | 0.99 | C10—H10 | 0.95 |
C3—C4 | 1.5384 (16) | C11—C12 | 1.3930 (15) |
C3—H3A | 0.99 | C11—H11 | 0.95 |
C3—H3B | 0.99 | C13—H13A | 0.98 |
C4—C5 | 1.5526 (16) | C13—H13B | 0.98 |
C4—H4A | 0.99 | C13—H13C | 0.98 |
C4—H4B | 0.99 | ||
C9—O3—C13 | 117.19 (9) | C4—C5—H5B | 107.9 |
C1—N1—C12 | 122.17 (9) | H5A—C5—H5B | 107.2 |
C1—N1—H1 | 118.8 (9) | O2—C6—C7 | 120.19 (10) |
C12—N1—H1 | 118.8 (9) | O2—C6—C5 | 120.27 (10) |
O1—C1—N1 | 122.53 (10) | C7—C6—C5 | 119.03 (9) |
O1—C1—C2 | 121.33 (10) | C12—C7—C8 | 119.84 (10) |
N1—C1—C2 | 115.85 (9) | C12—C7—C6 | 122.73 (9) |
C1—C2—C3 | 109.33 (9) | C8—C7—C6 | 117.38 (9) |
C1—C2—H2A | 109.8 | C9—C8—C7 | 119.81 (10) |
C3—C2—H2A | 109.8 | C9—C8—H8 | 120.1 |
C1—C2—H2B | 109.8 | C7—C8—H8 | 120.1 |
C3—C2—H2B | 109.8 | O3—C9—C8 | 124.13 (10) |
H2A—C2—H2B | 108.3 | O3—C9—C10 | 115.90 (10) |
C4—C3—C2 | 115.34 (9) | C8—C9—C10 | 119.97 (10) |
C4—C3—H3A | 108.4 | C11—C10—C9 | 120.30 (10) |
C2—C3—H3A | 108.4 | C11—C10—H10 | 119.9 |
C4—C3—H3B | 108.4 | C9—C10—H10 | 119.9 |
C2—C3—H3B | 108.4 | C10—C11—C12 | 120.24 (10) |
H3A—C3—H3B | 107.5 | C10—C11—H11 | 119.9 |
C3—C4—C5 | 114.03 (10) | C12—C11—H11 | 119.9 |
C3—C4—H4A | 108.7 | C11—C12—C7 | 119.74 (10) |
C5—C4—H4A | 108.7 | C11—C12—N1 | 120.44 (10) |
C3—C4—H4B | 108.7 | C7—C12—N1 | 119.81 (10) |
C5—C4—H4B | 108.7 | O3—C13—H13A | 109.5 |
H4A—C4—H4B | 107.6 | O3—C13—H13B | 109.5 |
C6—C5—C4 | 117.52 (9) | H13A—C13—H13B | 109.5 |
C6—C5—H5A | 107.9 | O3—C13—H13C | 109.5 |
C4—C5—H5A | 107.9 | H13A—C13—H13C | 109.5 |
C6—C5—H5B | 107.9 | H13B—C13—H13C | 109.5 |
C12—N1—C1—O1 | −15.63 (16) | C13—O3—C9—C8 | −0.42 (16) |
C12—N1—C1—C2 | 158.31 (10) | C13—O3—C9—C10 | 178.85 (10) |
O1—C1—C2—C3 | 102.43 (12) | C7—C8—C9—O3 | 178.48 (10) |
N1—C1—C2—C3 | −71.59 (13) | C7—C8—C9—C10 | −0.76 (16) |
C1—C2—C3—C4 | −38.86 (13) | O3—C9—C10—C11 | 178.79 (10) |
C2—C3—C4—C5 | 82.68 (12) | C8—C9—C10—C11 | −1.91 (16) |
C3—C4—C5—C6 | −108.22 (11) | C9—C10—C11—C12 | 2.07 (17) |
C4—C5—C6—O2 | −65.85 (14) | C10—C11—C12—C7 | 0.44 (16) |
C4—C5—C6—C7 | 122.35 (11) | C10—C11—C12—N1 | −179.54 (10) |
O2—C6—C7—C12 | 142.88 (11) | C8—C7—C12—C11 | −3.09 (15) |
C5—C6—C7—C12 | −45.31 (14) | C6—C7—C12—C11 | 174.17 (10) |
O2—C6—C7—C8 | −39.79 (15) | C8—C7—C12—N1 | 176.89 (9) |
C5—C6—C7—C8 | 132.02 (10) | C6—C7—C12—N1 | −5.85 (15) |
C12—C7—C8—C9 | 3.25 (16) | C1—N1—C12—C11 | 132.57 (11) |
C6—C7—C8—C9 | −174.16 (10) | C1—N1—C12—C7 | −47.40 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.87 (1) | 1.99 (1) | 2.8426 (12) | 167 (1) |
C5—H5B···O2ii | 0.99 | 2.41 | 3.2085 (14) | 138 |
C13—H13B···O2iii | 0.98 | 2.60 | 3.5793 (15) | 174 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+3/2, z−1/2; (iii) −x+1, y−1/2, −z+3/2. |
C13H15NO | F(000) = 864 |
Mr = 201.26 | Dx = 1.253 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 20.513 (2) Å | Cell parameters from 7271 reflections |
b = 5.6374 (6) Å | θ = 2.2–30.5° |
c = 18.783 (2) Å | µ = 0.08 mm−1 |
β = 100.757 (2)° | T = 125 K |
V = 2133.9 (4) Å3 | Block, yellow |
Z = 8 | 0.21 × 0.10 × 0.10 mm |
Bruker APEXII CCD diffractometer | 3249 independent reflections |
Radiation source: sealed X-ray tube, Bruker APEXII CCD | 2619 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 30.5°, θmin = 2.0° |
φ and ω scans | h = −29→29 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | k = −8→8 |
Tmin = 0.93, Tmax = 0.99 | l = −26→26 |
24248 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: mixed |
wR(F2) = 0.117 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0616P)2 + 1.016P] where P = (Fo2 + 2Fc2)/3 |
3249 reflections | (Δ/σ)max = 0.001 |
140 parameters | Δρmax = 0.42 e Å−3 |
1 restraint | Δρmin = −0.18 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.87890 (4) | 0.58856 (15) | 0.58257 (5) | 0.0314 (2) | |
N1 | 0.68765 (4) | 1.06336 (16) | 0.69736 (5) | 0.02345 (19) | |
H1 | 0.6884 (6) | 1.180 (2) | 0.7285 (7) | 0.028* | |
C1 | 0.63171 (5) | 0.93481 (17) | 0.66796 (5) | 0.0209 (2) | |
C2 | 0.56378 (5) | 0.97953 (19) | 0.68306 (6) | 0.0262 (2) | |
H2A | 0.543971 | 1.11983 | 0.655501 | 0.031* | |
H2B | 0.566248 | 1.011127 | 0.735341 | 0.031* | |
C3 | 0.52072 (5) | 0.7590 (2) | 0.66027 (6) | 0.0269 (2) | |
H3A | 0.533725 | 0.631075 | 0.696225 | 0.032* | |
H3B | 0.473584 | 0.798258 | 0.659681 | 0.032* | |
C4 | 0.52847 (5) | 0.6710 (2) | 0.58520 (6) | 0.0275 (2) | |
H4A | 0.516861 | 0.800874 | 0.549615 | 0.033* | |
H4B | 0.497181 | 0.538507 | 0.570449 | 0.033* | |
C5 | 0.59931 (5) | 0.58670 (19) | 0.58405 (6) | 0.0232 (2) | |
H5A | 0.606042 | 0.426696 | 0.605908 | 0.028* | |
H5B | 0.606091 | 0.57628 | 0.533321 | 0.028* | |
C6 | 0.64860 (5) | 0.75580 (17) | 0.62552 (5) | 0.01940 (19) | |
C7 | 0.71886 (5) | 0.76989 (17) | 0.62904 (5) | 0.01899 (19) | |
C8 | 0.76363 (5) | 0.63638 (18) | 0.59683 (5) | 0.0215 (2) | |
H8A | 0.74878 | 0.505574 | 0.566186 | 0.026* | |
C9 | 0.83002 (5) | 0.70122 (18) | 0.61111 (5) | 0.0229 (2) | |
C10 | 0.85231 (5) | 0.89428 (19) | 0.65691 (6) | 0.0246 (2) | |
H10A | 0.898194 | 0.93291 | 0.666406 | 0.03* | |
C11 | 0.80883 (5) | 1.02892 (18) | 0.68837 (6) | 0.0241 (2) | |
H11A | 0.824024 | 1.160428 | 0.718572 | 0.029* | |
C12 | 0.74189 (5) | 0.96489 (17) | 0.67422 (5) | 0.02058 (19) | |
C13 | 0.85810 (6) | 0.4022 (2) | 0.53217 (6) | 0.0298 (2) | |
H13A | 0.896092 | 0.346117 | 0.512031 | 0.045* | |
H13B | 0.823643 | 0.461442 | 0.492906 | 0.045* | |
H13C | 0.840275 | 0.271001 | 0.556907 | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0224 (4) | 0.0352 (4) | 0.0378 (4) | 0.0034 (3) | 0.0089 (3) | −0.0030 (3) |
N1 | 0.0257 (4) | 0.0205 (4) | 0.0244 (4) | −0.0018 (3) | 0.0053 (3) | −0.0051 (3) |
C1 | 0.0224 (5) | 0.0199 (4) | 0.0205 (4) | −0.0002 (3) | 0.0037 (3) | 0.0013 (3) |
C2 | 0.0260 (5) | 0.0254 (5) | 0.0291 (5) | 0.0012 (4) | 0.0099 (4) | −0.0014 (4) |
C3 | 0.0232 (5) | 0.0307 (5) | 0.0280 (5) | −0.0024 (4) | 0.0080 (4) | −0.0010 (4) |
C4 | 0.0211 (5) | 0.0348 (6) | 0.0259 (5) | −0.0015 (4) | 0.0025 (4) | −0.0021 (4) |
C5 | 0.0212 (4) | 0.0255 (5) | 0.0223 (5) | −0.0025 (4) | 0.0024 (4) | −0.0027 (4) |
C6 | 0.0199 (4) | 0.0204 (4) | 0.0174 (4) | −0.0001 (3) | 0.0021 (3) | 0.0011 (3) |
C7 | 0.0208 (4) | 0.0187 (4) | 0.0168 (4) | −0.0006 (3) | 0.0018 (3) | 0.0016 (3) |
C8 | 0.0220 (5) | 0.0212 (4) | 0.0207 (4) | 0.0008 (4) | 0.0028 (3) | −0.0002 (3) |
C9 | 0.0207 (5) | 0.0248 (5) | 0.0235 (5) | 0.0022 (4) | 0.0049 (4) | 0.0042 (4) |
C10 | 0.0201 (4) | 0.0267 (5) | 0.0260 (5) | −0.0040 (4) | 0.0018 (4) | 0.0059 (4) |
C11 | 0.0256 (5) | 0.0220 (5) | 0.0233 (5) | −0.0052 (4) | 0.0010 (4) | 0.0009 (4) |
C12 | 0.0227 (4) | 0.0191 (4) | 0.0194 (4) | −0.0010 (3) | 0.0025 (3) | 0.0013 (3) |
C13 | 0.0307 (5) | 0.0322 (6) | 0.0282 (5) | 0.0082 (4) | 0.0097 (4) | 0.0025 (4) |
O1—C9 | 1.3772 (12) | C5—C6 | 1.4979 (14) |
O1—C13 | 1.4251 (15) | C5—H5A | 0.99 |
N1—C1 | 1.3822 (13) | C5—H5B | 0.99 |
N1—C12 | 1.3841 (13) | C6—C7 | 1.4327 (13) |
N1—H1 | 0.878 (12) | C7—C8 | 1.4083 (13) |
C1—C6 | 1.3700 (14) | C7—C12 | 1.4150 (13) |
C1—C2 | 1.4944 (14) | C8—C9 | 1.3870 (14) |
C2—C3 | 1.5387 (15) | C8—H8A | 0.95 |
C2—H2A | 0.99 | C9—C10 | 1.4096 (15) |
C2—H2B | 0.99 | C10—C11 | 1.3848 (15) |
C3—C4 | 1.5309 (15) | C10—H10A | 0.95 |
C3—H3A | 0.99 | C11—C12 | 1.3964 (14) |
C3—H3B | 0.99 | C11—H11A | 0.95 |
C4—C5 | 1.5329 (15) | C13—H13A | 0.98 |
C4—H4A | 0.99 | C13—H13B | 0.98 |
C4—H4B | 0.99 | C13—H13C | 0.98 |
C9—O1—C13 | 116.68 (8) | C4—C5—H5B | 109.6 |
C1—N1—C12 | 108.69 (8) | H5A—C5—H5B | 108.1 |
C1—N1—H1 | 124.7 (9) | C1—C6—C7 | 107.08 (8) |
C12—N1—H1 | 126.4 (9) | C1—C6—C5 | 123.50 (9) |
C6—C1—N1 | 109.72 (9) | C7—C6—C5 | 129.41 (9) |
C6—C1—C2 | 125.50 (9) | C8—C7—C12 | 120.09 (9) |
N1—C1—C2 | 124.73 (9) | C8—C7—C6 | 132.97 (9) |
C1—C2—C3 | 108.54 (9) | C12—C7—C6 | 106.93 (8) |
C1—C2—H2A | 110.0 | C9—C8—C7 | 118.14 (9) |
C3—C2—H2A | 110.0 | C9—C8—H8A | 120.9 |
C1—C2—H2B | 110.0 | C7—C8—H8A | 120.9 |
C3—C2—H2B | 110.0 | O1—C9—C8 | 124.27 (10) |
H2A—C2—H2B | 108.4 | O1—C9—C10 | 114.63 (9) |
C4—C3—C2 | 111.42 (9) | C8—C9—C10 | 121.09 (9) |
C4—C3—H3A | 109.3 | C11—C10—C9 | 121.49 (9) |
C2—C3—H3A | 109.3 | C11—C10—H10A | 119.3 |
C4—C3—H3B | 109.3 | C9—C10—H10A | 119.3 |
C2—C3—H3B | 109.3 | C10—C11—C12 | 117.76 (10) |
H3A—C3—H3B | 108.0 | C10—C11—H11A | 121.1 |
C3—C4—C5 | 112.03 (9) | C12—C11—H11A | 121.1 |
C3—C4—H4A | 109.2 | N1—C12—C11 | 131.00 (10) |
C5—C4—H4A | 109.2 | N1—C12—C7 | 107.57 (9) |
C3—C4—H4B | 109.2 | C11—C12—C7 | 121.42 (9) |
C5—C4—H4B | 109.2 | O1—C13—H13A | 109.5 |
H4A—C4—H4B | 107.9 | O1—C13—H13B | 109.5 |
C6—C5—C4 | 110.18 (9) | H13A—C13—H13B | 109.5 |
C6—C5—H5A | 109.6 | O1—C13—H13C | 109.5 |
C4—C5—H5A | 109.6 | H13A—C13—H13C | 109.5 |
C6—C5—H5B | 109.6 | H13B—C13—H13C | 109.5 |
C12—N1—C1—C6 | −0.59 (11) | C12—C7—C8—C9 | 0.33 (14) |
C12—N1—C1—C2 | 177.03 (9) | C6—C7—C8—C9 | 178.98 (10) |
C6—C1—C2—C3 | 14.48 (14) | C13—O1—C9—C8 | 3.57 (15) |
N1—C1—C2—C3 | −162.77 (10) | C13—O1—C9—C10 | −175.98 (9) |
C1—C2—C3—C4 | −46.60 (12) | C7—C8—C9—O1 | −179.13 (9) |
C2—C3—C4—C5 | 63.94 (12) | C7—C8—C9—C10 | 0.40 (15) |
C3—C4—C5—C6 | −42.77 (12) | O1—C9—C10—C11 | 178.46 (9) |
N1—C1—C6—C7 | 0.80 (11) | C8—C9—C10—C11 | −1.11 (16) |
C2—C1—C6—C7 | −176.80 (9) | C9—C10—C11—C12 | 1.03 (15) |
N1—C1—C6—C5 | −178.39 (9) | C1—N1—C12—C11 | 179.80 (10) |
C2—C1—C6—C5 | 4.01 (16) | C1—N1—C12—C7 | 0.13 (11) |
C4—C5—C6—C1 | 10.21 (14) | C10—C11—C12—N1 | −179.93 (10) |
C4—C5—C6—C7 | −168.79 (10) | C10—C11—C12—C7 | −0.29 (15) |
C1—C6—C7—C8 | −179.49 (10) | C8—C7—C12—N1 | 179.32 (9) |
C5—C6—C7—C8 | −0.36 (18) | C6—C7—C12—N1 | 0.36 (11) |
C1—C6—C7—C12 | −0.71 (11) | C8—C7—C12—C11 | −0.39 (15) |
C5—C6—C7—C12 | 178.41 (9) | C6—C7—C12—C11 | −179.36 (9) |
Cg1 and Cg2 are the centroids of the C7–C12 and N1/C1/C6/C7/C12 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cg1i | 0.88 (1) | 2.41 (1) | 3.2645 (11) | 150 |
C11—H11A···Cg2i | 0.95 | 2.61 | 3.5018 (12) | 146 |
Symmetry code: (i) −x+3/2, y+1/2, −z+3/2. |
Acknowledgements
This work was supported by Vassar College. X-ray facilities were provided by the U.S. National Science Foundation.
Funding information
Funding for this research was provided by: National Science Foundation (grant Nos. 0521237 and 0911324 to J. M. Tanski).
References
Baranova, T. Y., Zefirova, O. N., Banaru, A. M., Khrustalev, V. N., Ivanova, A. A., Ivanov, A. A. & Zefirov, N. S. (2012). Russ. J. Org. Chem. 48, 552–555. CSD CrossRef CAS Google Scholar
Bruker (2013). SAINT, SADABS, and APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hökelek, T., Patır, S., Ergün, Y. & Okay, G. (2002). Acta Cryst. E58, o1255–o1257. CSD CrossRef IUCr Journals Google Scholar
Kumar, T. O. S., Mahadevan, K. M. & Kumara, M. N. (2014). Int. J. Pharm. Pharm. Sci. 6, 137–140. Google Scholar
Laitar, D. S., Kramer, J. W., Whiting, B. T., Lobkovsky, E. B. & Coates, G. W. (2009). Chem. Commun. pp. 5704–5706. CSD CrossRef Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
McMahon, L. P., Yu, H.-T., Vela, M. A., Morales, G. A., Shui, L., Fronczek, F. R., McLaughlin, M. L. & Barkley, M. D. (1997). J. Phys. Chem. B, 101, 3269–3280. CSD CrossRef CAS Google Scholar
Murugavel, S., Kannan, P. S., SubbiahPandi, A., Surendiran, T. & Balasubramanian, S. (2008). Acta Cryst. E64, o2433. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shukla, R., Singh, P., Panini, P. & Chopra, D. (2018). Acta Cryst. B74, 376–384. Web of Science CSD CrossRef IUCr Journals Google Scholar
Siddalingamurthy, E., Mahadevan, K. M., Masagalli, J. N. & Harishkumar, H. N. (2013). Tetrahedron Lett. 54, 5591–5596. CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takemoto, M., Iwakiri, Y., Suzuki, Y. & Tanaka, K. (2004). Tetrahedron Lett. 45, 8061–8064. CrossRef CAS Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.