research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The unusual (syn-/anti-)2 conformation of a di­meth­­oxy­pyrimidyl-based tennimide

crossmark logo

aSchool of Chemical Sciences, Dublin City University, Dublin 9, Ireland, and bFakultät für Chemie und Mineralogie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Sachsen, Germany
*Correspondence e-mail: john.gallagher@dcu.ie

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 25 May 2023; accepted 3 August 2023; online 23 August 2023)

The tennimide macrocycle, (I) (C52H40N16O16.0.167H2O), was synthesized from 2-amino-4,6-di­meth­oxy­pyrimidine and pyridine-2,6-dicarbonyl dichloride. Compound (I) represents the first tennimide incorporating pyridine rings in the macrocycle scaffold. In the macrocycle ring, the carbonyl groups at each successive dicarbon­yl(pyridine) moiety adopt the (syn/anti)2 conformation. This contrasts with all previously reported tetra­imide macrocycles, which exhibit the (syn)4 conformation. The effect is to close any potential cavity or niche by having two of the central pyridine C5N rings aligned close to each other [with closest pyridine CgCg ring centroid separations of 3.5775 (19) Å; closest C⋯C = 3.467 (5) Å]. A partial occupancy water mol­ecule (with s.o.f. = 0.167), resides with its oxygen atom on a twofold axis at hydrogen-bonding distances to the carbonyl O atom, in a mol­ecular niche between two pyridine rings. Macrocyles of (I) have all six C=O groups and all eight meth­oxy O atoms present on the macrocycle surface. However, all twelve N atoms are effectively shielded on steric grounds from any potential inter­molecular inter­actions. The remaining two C=O O atoms inter­act with the partial occupancy water mol­ecule via two O—H⋯O=C hydrogen bonds. Macrocycles of (I) stack as one-dimensional chains along the b-axis direction with primary inter­molecular inter­actions involving weak C—H⋯O=C/OCH3/H2O contacts. Chains inter­lock weakly via meth­oxy–meth­oxy C—H⋯O inter­actions into two-dimensional sheets.

1. Chemical context

Developments in macrocyclic chemistry continue with an emphasis on structure, function and developing new architectures with pendant functional groups. An aim is to achieve new applications in coordination chemistry, nanoscience, natural products, medicinal chemistry and applied sciences (Böhmer, 1995[Böhmer, V. (1995). Angew. Chem. Int. Ed. Engl. 34, 713-745.]; Vicens & Harrowfield, 2007[Vicens, J. & Harrowfield, J. (2007). Calixarenes in the Nanoworld. Dordrecht: Springer.]). Macrocyclic science now spans several scientific fields and finds applications across a vast range of chemical, physical and biomedicinal sciences (Gloe, 2005[Gloe, K. (2005). Macrocyclic Chemistry, Current Trends and Future Perspectives. Dordrecht: Springer.]; Davis & Higson, 2011[Davis, F. & Higson, S. (2011). Macrocycles, Construction, Chemistry and Nanotechnology Applications. New York: John Wiley & Sons Inc.]).

Macrocycles usually contain donor atoms such as O, N, S and P and are utilized with a wide variety of aliphatic groups (e.g. in crown ethers) and/or aromatic rings (e.g. in calixarenes, porphyrins) (Böhmer, 1995[Böhmer, V. (1995). Angew. Chem. Int. Ed. Engl. 34, 713-745.]; Gloe, 2005[Gloe, K. (2005). Macrocyclic Chemistry, Current Trends and Future Perspectives. Dordrecht: Springer.]). An objective is that particular functional groups are incorporated onto a scaffold to accommodate a wide range of metals, their oxidation states and coordination chemistry geometries. This originates from the initial crown ethers, through macrocycles such as calix[n]arenes (Böhmer, 1995[Böhmer, V. (1995). Angew. Chem. Int. Ed. Engl. 34, 713-745.]) to macromolecular macrocycles (Davis & Higson, 2011[Davis, F. & Higson, S. (2011). Macrocycles, Construction, Chemistry and Nanotechnology Applications. New York: John Wiley & Sons Inc.]). Constituent functional groups now span a relatively large range of types as incorporated into many macrocycles in the form of amides, pyridines, imides etc. (Pappalardo et al., 1992a[Pappalardo, S., Ferguson, G. & Gallagher, J. F. (1992a). J. Org. Chem. 57, 7102-7109.],b[Pappalardo, S., Giunta, L., Foti, M., Ferguson, G., Gallagher, J. F. & Kaitner, B. (1992b). J. Org. Chem. 57, 2611-2624.]; Böhmer, 1995[Böhmer, V. (1995). Angew. Chem. Int. Ed. Engl. 34, 713-745.]; Vicens & Harrowfield, 2007[Vicens, J. & Harrowfield, J. (2007). Calixarenes in the Nanoworld. Dordrecht: Springer.]). Recently, considerable effort has been made to incorporate biological moieties (e.g. peptide chains) for a range of applications including artificial ion channels and transport (Xin et al., 2015[Xin, P. Y., Zhang, L., Su, P., Hou, J.-L. & Li, Z.-T. (2015). Chem. Commun. 51, 4819-4822.]; Legrand & Barboiu, 2013[Legrand, Y.-M. & Barboiu, M. (2013). Chem. Rec. 13, 524-538.]).

In terms of macrocyclic conformations, there are many examples where a macrocycle is isolated in a defined, stable geometry and subsequently shown to adopt alternate conformations. Usually these can be structurally characterized and the different conformations may or may not be inter­convertible in solution or even in the solid state. For example, the cone conformation of calix[4]arenes has been well described (Andreetti et al., 1979[Andreetti, G. D., Ungaro, R. & Pochini, A. (1979). J. Chem. Soc. Chem. Commun. pp. 1005-1007.]; Gutsche, 1983[Gutsche, C. D. (1983). Acc. Chem. Res. 16, 161-170.]). In addition, the partial cone, syn-distal and syn-proximal conformations have been studied in many different calix[4]arene derivatives (Gutsche et al., 1983[Gutsche, C. D., Dhawan, B., Levine, J. A., Hyun No, K. & Bauer, L. J. (1983). Tetrahedron, 39, 409-426.]; Ferguson et al., 1992[Ferguson, G., Gallagher, J. F. & Pappalardo, S. (1992). J. Incl Phenom. Macrocycl Chem. 14, 349-356.], 1993[Ferguson, G., Gallagher, J. F. & Pappalardo, S. (1993). Acta Cryst. C49, 1537-1540.]; Pappalardo et al., 1992a[Pappalardo, S., Ferguson, G. & Gallagher, J. F. (1992a). J. Org. Chem. 57, 7102-7109.],b[Pappalardo, S., Giunta, L., Foti, M., Ferguson, G., Gallagher, J. F. & Kaitner, B. (1992b). J. Org. Chem. 57, 2611-2624.]; Shinkai, 1993[Shinkai, S. (1993). Tetrahedron, 49, 8933-8968.]). Even in tennimide chemistry, we were fortunate to isolate a tennimide known as (26IO)4 with three distinct solid-state geometries (Mocilac & Gallagher, 2013[Mocilac, P. & Gallagher, J. F. (2013). J. Org. Chem. 78, 2355-2361.]), though these are inter­convertible in solution. The three (26IO)4 conformations differ in terms of the size and apertures of the mol­ecular cavity. For the smaller trezimide (trimer) systems, two conformations have been isolated as the distinct P and R conformations (Mocilac & Gallagher, 2013[Mocilac, P. & Gallagher, J. F. (2013). J. Org. Chem. 78, 2355-2361.]). Therefore, isolation and characterization of a new macrocyclic conformation in a class of imide-based macrocycles is of inter­est to researchers studying imide-based and related macrocycles. Furthermore, researchers have continued to advance conformational analysis and especially with respect to non-rigid macrocycles (Bohle & Grimme, 2022[Bohle, F. & Grimme, S. (2022). Angew. Chem. Int. Ed. 61, e202113905.]). Their study utilized the automated generation of macrocyclic conformers using computational methods as applied to 13C-NMR data of flexible cyclo­alkanes. With such developments, new macrocyclic conformations will be postulated for a range of macrocycle types in tandem with synthetic experimental studies. In addition, it has recently been shown using synthetic strategies, the engineering of mol­ecular topology in pseudopeptidic macrocycles (Sharma et al., 2017[Sharma, S., Thorat, S. H., Gonnade, R. G., Jasinski, J. P., Butcher, R. & Haridas, V. (2017). Eur. J. Org. Chem. 2017, 1120-1124.]).

Of particular note is that Balakrishna and co-workers have studied phospho­rus-based systems using >PCH3 and >PC6H5 as linker groups between the isophthaloyl moieties (Balakrishna, 2018[Balakrishna, M. S. (2018). Polyhedron, 143, 2-10.]; Kashid et al., 2017[Kashid, V. S., Radhakrishna, L. & Balakrishna, M. S. (2017). Dalton Trans. 46, 6510-6513.]). This contrasts with the >N(pyridine) and >N(pyrimidine) linkers that we have studied to date. Structural examples of the P-based crystal structures as VAWVIB and VAWVOH are available on the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). In addition, the highly constrained butterfly structures as `dimers' have been reported as RAYFII and ZAFJAV (Saunders et al., 2012[Saunders, A. J., Crossley, I. R., Coles, M. P. & Roe, S. M. (2012). Chem. Commun. 48, 5766-5768.]; Pearce & Crossley, 2020[Pearce, K. G. & Crossley, I. R. (2020). J. Org. Chem. 85, 14697-14707.]). He and co-workers in their structures NUKZIF, NULHOU, NULHUA (Wang et al., 2020[Wang, Z., Song, R., Zhang, Y., Zhang, T., Zhu, X., Zeng, J., Zhang, W., Zhao, Z., Yan, N. & He, G. (2020). ChemPhotoChem, 4, 59-67.]) noted that such di­imides and polyimides are still relatively rare (Wang et al., 2020[Wang, Z., Song, R., Zhang, Y., Zhang, T., Zhu, X., Zeng, J., Zhang, W., Zhao, Z., Yan, N. & He, G. (2020). ChemPhotoChem, 4, 59-67.]). These systems are more closely related to the well-explored planar di­imides such as napththalene di­imide (Takenaka, 2021[Takenaka, S. (2021). Polym. J. 53, 415-427.]).

From previous benzamide studies (Donnelly et al., 2008[Donnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335-o340.]), we reported macrocyclic trimers (trezimides) and tetra­mers (tennimides) based on the isophthaloyl residue and imide linker group (Evans & Gale, 2004[Evans, L. S. & Gale, P. A. (2004). Chem. Commun. pp. 1286-1287.]; Mocilac & Gallagher, 2013[Mocilac, P. & Gallagher, J. F. (2013). J. Org. Chem. 78, 2355-2361.], 2014[Mocilac, P. & Gallagher, J. F. (2014). CrystEngComm, 16, 1893-1903.], 2016[Mocilac, P. & Gallagher, J. F. (2016). CrystEngComm, 18, 2375-2384.]; Gallagher & Mocilac, 2021[Gallagher, J. F. & Mocilac, P. (2021). J. Mol. Struct. 1234, 130149.]). These macrocycles with pendant pyridine, pyrimidine and pyridinyl ester groups are attached to the central scaffold and have potential to bind to metal complexes. Trimers and tetra­mers are typically synthesized and isolated in modest yields, together with oligomers and polymers from which they have to be carefully separated by column chromatography. We herein report a new pyridine-based tennimide macrocycle derived from 2-amino-4,6-di­meth­oxy­pyrimidine and pyridine-2,6-di­carbonyl­dichloride (Fig. 1[link]) with an unusual (syn/anti)2 tennimide conformation (Fig. 2[link]). The isolation of a new conformation using a pyridine-based scaffold demonstrates that these macrocycles can be investigated to exploit this new mol­ecular conformation.

[Scheme 1]
[Figure 1]
Figure 1
Schematic diagrams of (top) the tennimide (I) with the relative geometries depicted to minimize atom/group overlap and (bottom) the relative differences between the (syn)4 and (syn/anti-)2 conformations. The X and Y labels refer to: X = C or N and Y = H, CH3 or halogen atom (F, Cl, Br).
[Figure 2]
Figure 2
A view of (I) with the atomic-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level for clarity. The partial occupancy water mol­ecule O1W is depicted with dashed lines representing the hydrogen bonding to (I). Symmetry code: (a) −x, y, −z +  [{1\over 2}].

2. Structural commentary

The macrocycle (I), as synthesized from the condensation reaction of 2-amino-4,6-di­meth­oxy­pyrimidine with pyridine-2,6-di­carbonyl­dichloride, adopts a different (syn/anti)2 conformation to the (syn)4 seen in all reported tennimides (Evans & Gale, 2004[Evans, L. S. & Gale, P. A. (2004). Chem. Commun. pp. 1286-1287.]; Mocilac & Gallagher, 2013[Mocilac, P. & Gallagher, J. F. (2013). J. Org. Chem. 78, 2355-2361.], 2014[Mocilac, P. & Gallagher, J. F. (2014). CrystEngComm, 16, 1893-1903.], 2016[Mocilac, P. & Gallagher, J. F. (2016). CrystEngComm, 18, 2375-2384.]) (Figs. 1[link], 2[link], 3[link]). (I) represents the first tennimide synthesized using pyridine-2,6-dicarbonyl dichloride (in comparison to benzene di­carbonyl­dichloride) and thus has four pyridines incorporated into the scaffold. It comprises four pyridine N donor, eight pyrimidine N, eight carbonyl O donor atoms, together with eight meth­oxy groups and four aliphatic imide N atoms. However, the orientation of most aromatic N donors is not suitable for coordination due to shielding from the eight meth­oxy groups on the external surface of the macrocycle. There is no inner macrocyclic cavity because of the spatial arrangement of the pyridine rings in the (syn/anti)2 conformation. However, a partial occupancy water mol­ecule is observed in a macrocyclic niche at hydrogen-bonding distances to two imide carbonyl oxygen atoms (Fig. 2[link]).

[Figure 3]
Figure 3
Two views of (I) with all atoms drawn as their van der Waals spheres and the central pyridine backbone drawn in black using the Mercury program (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

In all tennimides (Evans & Gale, 2004[Evans, L. S. & Gale, P. A. (2004). Chem. Commun. pp. 1286-1287.]; Mocilac & Gallagher, 2013[Mocilac, P. & Gallagher, J. F. (2013). J. Org. Chem. 78, 2355-2361.], 2014[Mocilac, P. & Gallagher, J. F. (2014). CrystEngComm, 16, 1893-1903.], 2016[Mocilac, P. & Gallagher, J. F. (2016). CrystEngComm, 18, 2375-2384.]; Gallagher & Mocilac, 2021[Gallagher, J. F. & Mocilac, P. (2021). J. Mol. Struct. 1234, 130149.]) the carbonyl group conformations with respect to the isophthaloyl residues is noted as syn-. Therefore, these macrocycles are classed as having a (syn)4 conformation (Mocilac & Gallagher, 2013[Mocilac, P. & Gallagher, J. F. (2013). J. Org. Chem. 78, 2355-2361.], 2014[Mocilac, P. & Gallagher, J. F. (2014). CrystEngComm, 16, 1893-1903.], 2016[Mocilac, P. & Gallagher, J. F. (2016). CrystEngComm, 18, 2375-2384.]; Gallagher & Mocilac, 2021[Gallagher, J. F. & Mocilac, P. (2021). J. Mol. Struct. 1234, 130149.]). In (I), the pyridine conformation with respect to the carbonyl groups alternates as syn- and anti- and is defined as (syn/anti)2. This (syn/anti)2 conformation has no inter­nal cavity available to incorporate an ion or small mol­ecule (although a small niche is present). The geometric details are: two of the pyridine C5N rings are positioned close to each other [with closest pyridine ring centroid CgCg separations = 3.5775 (19) Å; with closest C24⋯C24a = 3.467 (5) Å across the twofold axis; where a = −x, y, [{1\over 2}] −  z]. In the macrocycle, the imide `(O=C)N' hinge O=C⋯C=O torsion angles are oriented at −92.5 (4) and −91.59 (5)° for O1=C1⋯C2=O2 and O3=C3⋯C4=O4, respectively, which are typical of imide conformations in tennimides. However, the pyridine dicarbonyl moiety torsion angles differ with 87.0 (5)° for the syn-conformation (in O1=C1⋯C3=O3) and −144.89 (5)° for the anti-conformation (in O2=C2⋯C4=O4). The syn- torsion data is close to the average isophthaloyl (O=C)C6H4(C=O) torsion angle noted previously (Evans & Gale, 2004[Evans, L. S. & Gale, P. A. (2004). Chem. Commun. pp. 1286-1287.]; Mocilac & Gallagher, 2013[Mocilac, P. & Gallagher, J. F. (2013). J. Org. Chem. 78, 2355-2361.], 2014[Mocilac, P. & Gallagher, J. F. (2014). CrystEngComm, 16, 1893-1903.], 2016[Mocilac, P. & Gallagher, J. F. (2016). CrystEngComm, 18, 2375-2384.]; Gallagher & Mocilac, 2021[Gallagher, J. F. & Mocilac, P. (2021). J. Mol. Struct. 1234, 130149.]). In the four di­meth­oxy­pyrimidine rings, the meth­oxy groups all adopt similar conformations, as noted previously (Gallagher et al., 2001[Gallagher, J. F., Hanlon, K. & Howarth, J. (2001). Acta Cryst. C57, 1410-1414.]). The proximally related pyridine rings are almost orthogonal to one another at 87.00 (10), 87.09 (10)° and with the opposite (distal-related) pyridine rings almost parallel at 9.25 (11), 0.97 (11)°. For symmetry-related pyridine rings, the C=O groups are positioned anti- with respect to one another.

A partial occupancy water mol­ecule O1W (site occupancy of 0.167) occupies a niche between two distal pyridines (with syn-related C=O groups), separated by ca 6 Å. The water mol­ecule O1W forms O—H⋯O=C hydrogen bonds [O⋯O = 2.97 (3) Å] with two symmetry-related carbonyl O2 atoms and two weaker C—H⋯O complete the hydrogen bonding (H⋯O = 2.49 Å).

3. Supra­molecular features

The primary inter­actions involving the macrocycle are a range of rather weak aliphatic/aromatic C—H⋯O contacts (Table 1[link]) in the absence of strong hydrogen-bond donors. This arises in a system with a vast excess of potentially strong acceptor groups on the tennimide surface. Mol­ecules of (I) aggregate as 1D chains along the b-axis direction with primary inter­molecular inter­actions involving weak C—H⋯O=C/OCH3/H2O contacts (Fig. 4[link]). Chains inter­lock weakly via meth­oxy⋯meth­oxy C—H⋯O inter­actions into 2D sheets. This type of 1D aggregation is quite common for this class of tennimide macrocycle. It was noted in the 1D macrocyclic stacking driven by C—Br⋯O=C/Npyridine halogen bonding between mol­ecules in brominated tennimides (Mocilac & Gallagher, 2013[Mocilac, P. & Gallagher, J. F. (2013). J. Org. Chem. 78, 2355-2361.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O3i 0.93 2.47 3.148 (4) 130
C15—H15⋯O4ii 0.93 2.42 3.084 (4) 129
C18A—H18C⋯O23A 0.96 2.47 3.393 (6) 160
C24—H24⋯O1Wiii 0.93 2.49 3.14 (2) 127
C26—H26⋯N22A 0.93 2.62 3.325 (4) 133
C27A—H27B⋯O23Aiv 0.96 2.57 3.144 (4) 119
O1W—H1W⋯O2 0.85 2.32 2.97 (3) 134 (5)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x, y-1, z]; (iii) x, y+1, z; (iv) [-x, -y+2, -z+1].
[Figure 4]
Figure 4
A view of the primary stacking in the crystal structure of (I) along the b-axis direction with atoms drawn as their van der Waals spheres and partial occupancy water O1W in green.

4. Synthesis and crystallization

Synthetic reaction conditions:

Pyridine-2,6-dicarbonyl dichloride (2.041 g, 10 mmol, 1 eq.) was dissolved in 100 ml of dry CH2Cl2 (DCM) and a catalytic qu­antity of 14.4 mg 4-di­methyl­amino­pyridine (DMAP) with 4 ml (29.4 mmol, 3 eq.) of Et3N were added to the solution under N2. This solution was cooled to 255 K and 1.64 g (10 mmol, 1 eq.) of 4,6-di­meth­oxy­pyrimidin-2-amine dissolved in 40 ml dry of DCM were added. The solution was stirred for 72 h and thin layer chromatography (TLC: CH2Cl2/ethyl acetate, 4:1) indicated that conversion was incomplete (the related amino­pyridine reactants show full conversion within 24 h). The solution was then diluted to 250 ml with technical grade CH2Cl2, washed four times with 100 ml of NH4Cl solution (pH 4), dried using MgSO4 and the solvent mixture removed at reduced pressure. Filtration through silica gel (CH2Cl2/ethyl acetate, 2:1) was performed before final purification was attempted by column chromatography. The expected products were the acyclic (2:1), (3:2) and (4:3) mixed imide benzamides as well as longer chain oligomers and some polymeric materials. TLC indicated four bands (one of which was the pyrimidin-2-amine starting material) in addition to polymeric material at the bottom of the TLC plate. The polymer was mostly removed by preliminary filtration. Further attempts at purification again involved multiple steps of column chromatography. The first column (using n-hexa­ne/ethyl acetate, 2:1) resulted in poor separation and merely eliminated the remaining starting material. A subsequent column (CH2Cl2/ethyl acetate, 10:1) gave some separation and two products were isolated. The first product is the (2:1) pyridine-2,6-dicarboxamide and the second was shown to be a (4:4) macrocyclic tennimide (I) isolated in a relatively low yield of ca 5%. The final major product could not be isolated and purified.

N2,N6-bis­(4,6-di­meth­oxy­pyrimidin-2-yl)pyridine-2,6-dicarb­oxamide (2:1 product) 1H-NMR (400 MHz, CDCl3): δ = 10.24 (s, 2H, NH), 8.50 (d, J = 7.8 Hz, 2H, Ar—H), 8.12 (t, J = 7.8 Hz, 1H, Ar—H), 5.81 (s, 2H, Ar—H), 3.94 (s, 2H, O—CH3). 13C-NMR (100 MHz, CDCl3): δ = 172.1 (4C, Ar—Cq), 160.5 (2C, Carbonyl-Cq), 155.8 (2C, Ar—Cq), 148.5 (2C, Ar—Cq), 139.8 (1C, Ar—C—H), 126.4 (2C, Ar—C—H), 86.0 (2C, Ar—C—H), 54.2 (4C, O—CH3). IR: 3460, 3386, 3245, 3101, 3052, 2996, 2924, 2854, 2580, 2163, 1708, 1598, 1573, 1509, 1478, 1455, 1424, 1365, 1300, 1256, 1217, 1190, 1162, 1141, 1094, 1063, 1041, 1000, 987, 958, 909, 879, 856, 834, 777, 754, 696, 663 cm−1.

Tennimide macrocycle [4:4 product or (I)] 1H-NMR (400 MHz, CDCl3): δ = 8.13 (m, 2H, Ar—H), 8.03 (m, 2H, Ar—H), 7.96 (s, 4H, Ar—H), 7.80 (m, 2H, Ar—H), 7.72 (m, 2H, Ar—H), 5.67 (s, 2H, Ar—H), 5.63 (s, 2H, Ar—H), 3.58 (s, 12H, O—CH3), 3.50 (s, 12H, O—CH3). IR: 3100, 2957, 2924, 2853, 1733, 1711, 1586, 1557, 1467, 1402, 1363, 1309, 1282, 1192, 1157, 1086, 1077, 1054, 995, 937, 923, 842, 824, 778, 741, 709, 652 cm−1.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms attached to C atoms were treated as riding using the SHELXL14 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) defaults at 294 (1) K with C—H = 0.93 Å (aromatic) and Uiso(H) = 1.2Ueq(C) (aromatic): the methyl C—H = 0.96 Å (aliphatic) and Uiso(H) = 1.5Ueq(C). The H atoms of the partial occupancy water mol­ecule were treated using three DFIX restraints at chemically sensible positions and directed towards the closest O=C acceptor groups. The presence of the water in this location is similar to that noted in a 26(BrIO)4 structure (XOCHUU; Mocilac & Gallagher, 2014[Mocilac, P. & Gallagher, J. F. (2014). CrystEngComm, 16, 1893-1903.]) where a hemihydrate spans a pyridine N atom and a carbonyl O=C by inter­molecular hydrogen bonding at the macrocycle cavity entrance.

Table 2
Experimental details

Crystal data
Chemical formula C52H40N16O16·0.167H2O
Mr 1148.02
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 294
a, b, c (Å) 18.8065 (10), 10.0745 (6), 28.847 (3)
V3) 5465.6 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.91
Crystal size (mm) 0.39 × 0.30 × 0.04
 
Data collection
Diffractometer Xcalibur, Sapphire3, Gemini Ultra
Absorption correction Analytical (ABSFAC; Clark & Reid, 1998[Clark, R. C. & Reid, J. S. (1998). Comput. Phys. Commun. 111, 243-257.])
Tmin, Tmax 0.778, 0.973
No. of measured, independent and observed [I > 2σ(I)] reflections 14675, 4439, 3036
Rint 0.038
(sin θ/λ)max−1) 0.581
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.159, 1.03
No. of reflections 4439
No. of parameters 392
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.18
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT14/6 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL14/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Structural analysis in the penultimate stages of refinement demonstrates that by omitting the partial occupancy water mol­ecule, the R-factor increases from 0.054 to 0.056. The residual electron density increases from +0.19 to 0.58 e A−3, resulting in a single peak of residual electron density on the twofold axis. This is where the partial occupancy water mol­ecule is located. The WGHT card increases from 0.067 to 0.081. There is no other atom or group disorder in the structure of (I).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT14/6 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL14/6 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL14/6 (Sheldrick, 2015b).

3,11,19,27-Tetrakis(4,6-dimethoxypyrimidin-2-yl)-3,11,19,27,33,34,35,36-\ octaazapentacyclo[27.3.1.15,9.113,17.121,25]hexatriaconta-\ 1(33),5,7,9(36),13(35),14,16,21(34),22,24,29,31-dodecaen-\ 2,4,10,12,18,20,26,28-octone 0.167-hydrate top
Crystal data top
C52H40N16O16·0.167H2ODx = 1.395 Mg m3
Mr = 1148.02Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcnCell parameters from 2330 reflections
a = 18.8065 (10) Åθ = 2.8–63.6°
b = 10.0745 (6) ŵ = 0.91 mm1
c = 28.847 (3) ÅT = 294 K
V = 5465.6 (7) Å3Plate, colourless
Z = 40.39 × 0.30 × 0.04 mm
F(000) = 2374.7
Data collection top
Xcalibur, Sapphire3, Gemini Ultra
diffractometer
3036 reflections with I > 2σ(I)
Radiation source: Enhance Ultra (Cu) X-ray SourceRint = 0.038
Mirror monochromatorθmax = 63.6°, θmin = 3.1°
ω scansh = 1921
Absorption correction: analytical
(ABSFAC; Clark & Reid, 1998)
k = 611
Tmin = 0.778, Tmax = 0.973l = 3330
14675 measured reflections2330 standard reflections every 60 min
4439 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: inferred from neighbouring sites
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0686P)2 + 1.3472P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4439 reflectionsΔρmax = 0.19 e Å3
392 parametersΔρmin = 0.18 e Å3
3 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00055 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.05721 (12)0.3212 (2)0.40663 (8)0.0750 (6)
C10.03715 (15)0.3931 (3)0.37594 (10)0.0543 (7)
N10.07837 (12)0.4970 (2)0.35800 (8)0.0544 (6)
O20.06477 (11)0.43970 (19)0.28185 (7)0.0598 (5)
C20.07302 (13)0.5274 (3)0.30973 (10)0.0504 (7)
O30.22174 (11)0.6319 (2)0.29594 (7)0.0652 (6)
C30.16807 (15)0.6223 (3)0.31815 (10)0.0527 (7)
N30.13350 (13)0.7385 (2)0.33702 (8)0.0548 (6)
O40.11289 (15)0.9585 (2)0.32596 (8)0.0876 (8)
C40.11694 (17)0.8484 (3)0.31003 (11)0.0619 (8)
C110.13402 (14)0.4934 (3)0.33012 (10)0.0499 (6)
N120.06713 (11)0.4984 (2)0.34536 (7)0.0487 (5)
C130.03634 (14)0.3830 (3)0.35609 (9)0.0487 (6)
C140.07002 (16)0.2620 (3)0.35217 (11)0.0621 (8)
H140.04690.18390.36050.074*
C150.13824 (17)0.2597 (3)0.33575 (13)0.0738 (10)
H150.16220.17940.33240.089*
C160.17103 (16)0.3770 (3)0.32431 (12)0.0655 (8)
H160.21730.37760.31290.079*
C11A0.13160 (16)0.5612 (3)0.38435 (10)0.0612 (8)
N12A0.18786 (13)0.5977 (3)0.36019 (9)0.0684 (7)
C13A0.2347 (2)0.6711 (4)0.38399 (14)0.0897 (12)
C14A0.2263 (2)0.6991 (5)0.43042 (14)0.1027 (14)
H14A0.26000.74750.44690.123*
C15A0.1659 (2)0.6523 (4)0.45107 (12)0.0858 (11)
N16A0.11615 (15)0.5832 (3)0.42871 (9)0.0714 (8)
O13A0.29127 (15)0.7190 (4)0.36166 (12)0.1228 (11)
C17A0.2926 (3)0.7082 (6)0.31264 (19)0.1275 (18)
H17A0.25520.76130.29960.191*
H17B0.33770.73870.30120.191*
H17C0.28580.61710.30390.191*
O15A0.15514 (19)0.6812 (3)0.49625 (9)0.1107 (10)
C18A0.0908 (3)0.6365 (5)0.51825 (14)0.1134 (15)
H18A0.08290.54490.51080.170*
H18B0.09520.64620.55120.170*
H18C0.05150.68870.50740.170*
C210.07603 (14)0.6707 (3)0.29661 (9)0.0504 (7)
N220.09433 (12)0.6954 (2)0.25293 (8)0.0502 (6)
C230.09991 (17)0.8212 (3)0.23984 (10)0.0581 (7)
C240.0874 (2)0.9276 (3)0.26911 (13)0.0771 (10)
H240.09371.01460.25910.093*
C250.0652 (2)0.9002 (3)0.31365 (13)0.0816 (11)
H250.05470.96890.33410.098*
C260.05880 (17)0.7711 (3)0.32738 (11)0.0670 (8)
H260.04300.75080.35710.080*
C21A0.12724 (17)0.7424 (3)0.38590 (10)0.0580 (8)
N22A0.07257 (14)0.8089 (2)0.40337 (9)0.0644 (7)
C23A0.06838 (19)0.8052 (3)0.44966 (11)0.0704 (9)
C24A0.1147 (2)0.7351 (3)0.47695 (12)0.0773 (10)
H24A0.10970.73120.50900.093*
C25A0.1687 (2)0.6709 (3)0.45415 (12)0.0705 (9)
N26A0.17692 (14)0.6744 (2)0.40795 (9)0.0630 (7)
O23A0.01530 (15)0.8719 (2)0.47037 (8)0.0903 (8)
C27A0.0336 (2)0.9460 (4)0.44195 (14)0.1050 (14)
H27A0.00761.00710.42280.158*
H27B0.06590.99440.46140.158*
H27C0.05990.88600.42260.158*
O25A0.21549 (15)0.6015 (3)0.47933 (8)0.0899 (8)
C28A0.2726 (2)0.5372 (5)0.45500 (16)0.1113 (15)
H28A0.25350.47170.43430.167*
H28B0.30370.49500.47690.167*
H28C0.29880.60190.43760.167*
O1W0.00000.187 (3)0.25000.180 (15)0.167
H1W0.0358 (4)0.238 (3)0.248 (3)0.100*0.167
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0701 (14)0.0827 (15)0.0721 (14)0.0008 (12)0.0112 (12)0.0203 (12)
C10.0507 (17)0.0590 (17)0.0533 (17)0.0002 (14)0.0006 (13)0.0020 (14)
N10.0467 (13)0.0683 (15)0.0483 (13)0.0126 (12)0.0028 (10)0.0008 (11)
O20.0654 (13)0.0597 (12)0.0544 (12)0.0076 (10)0.0001 (10)0.0033 (10)
C20.0391 (15)0.0606 (17)0.0515 (16)0.0028 (13)0.0011 (12)0.0036 (14)
O30.0487 (12)0.0717 (14)0.0752 (14)0.0099 (10)0.0037 (10)0.0028 (10)
C30.0463 (16)0.0493 (16)0.0625 (18)0.0019 (13)0.0076 (14)0.0046 (13)
N30.0650 (15)0.0426 (12)0.0567 (14)0.0054 (11)0.0084 (12)0.0050 (10)
O40.129 (2)0.0410 (12)0.0928 (17)0.0117 (13)0.0023 (15)0.0104 (11)
C40.072 (2)0.0402 (16)0.073 (2)0.0086 (14)0.0004 (16)0.0058 (14)
C110.0437 (15)0.0464 (15)0.0596 (16)0.0008 (13)0.0039 (13)0.0072 (12)
N120.0469 (13)0.0459 (12)0.0532 (13)0.0028 (11)0.0017 (10)0.0055 (10)
C130.0459 (15)0.0459 (15)0.0541 (16)0.0008 (12)0.0036 (12)0.0004 (12)
C140.0559 (18)0.0419 (15)0.088 (2)0.0023 (14)0.0000 (16)0.0003 (14)
C150.0575 (19)0.0411 (16)0.123 (3)0.0085 (15)0.0102 (19)0.0078 (17)
C160.0487 (17)0.0519 (17)0.096 (2)0.0026 (14)0.0069 (16)0.0086 (15)
C11A0.0531 (18)0.072 (2)0.0581 (19)0.0104 (16)0.0079 (14)0.0033 (15)
N12A0.0498 (15)0.0873 (19)0.0681 (17)0.0140 (14)0.0091 (12)0.0036 (14)
C13A0.068 (2)0.110 (3)0.091 (3)0.029 (2)0.015 (2)0.007 (2)
C14A0.095 (3)0.133 (4)0.080 (3)0.038 (3)0.025 (2)0.019 (2)
C15A0.101 (3)0.095 (3)0.061 (2)0.016 (2)0.015 (2)0.0103 (19)
N16A0.0756 (18)0.0832 (19)0.0553 (16)0.0099 (15)0.0056 (13)0.0074 (13)
O13A0.0773 (19)0.177 (3)0.114 (2)0.062 (2)0.0076 (17)0.011 (2)
C17A0.092 (3)0.164 (5)0.126 (4)0.048 (3)0.036 (3)0.026 (4)
O15A0.147 (3)0.124 (2)0.0608 (16)0.022 (2)0.0187 (17)0.0204 (15)
C18A0.145 (4)0.128 (4)0.067 (3)0.002 (3)0.006 (3)0.008 (2)
C210.0460 (15)0.0531 (16)0.0520 (16)0.0005 (13)0.0010 (12)0.0060 (13)
N220.0504 (13)0.0455 (13)0.0547 (14)0.0051 (10)0.0002 (10)0.0015 (10)
C230.0652 (19)0.0432 (16)0.0660 (19)0.0025 (14)0.0029 (15)0.0047 (14)
C240.097 (3)0.0496 (18)0.085 (3)0.0003 (18)0.004 (2)0.0084 (16)
C250.105 (3)0.064 (2)0.076 (2)0.013 (2)0.003 (2)0.0195 (18)
C260.069 (2)0.071 (2)0.0607 (19)0.0050 (17)0.0029 (16)0.0110 (15)
C21A0.067 (2)0.0444 (15)0.0626 (19)0.0084 (15)0.0097 (16)0.0120 (13)
N22A0.0752 (18)0.0561 (15)0.0617 (16)0.0021 (13)0.0107 (13)0.0155 (12)
C23A0.086 (2)0.0623 (19)0.063 (2)0.0023 (18)0.0076 (18)0.0193 (16)
C24A0.100 (3)0.074 (2)0.058 (2)0.000 (2)0.0156 (19)0.0111 (17)
C25A0.082 (2)0.0599 (19)0.070 (2)0.0039 (17)0.0193 (19)0.0057 (16)
N26A0.0690 (17)0.0546 (14)0.0654 (16)0.0052 (13)0.0150 (13)0.0086 (12)
O23A0.110 (2)0.0919 (17)0.0689 (15)0.0239 (16)0.0025 (14)0.0257 (13)
C27A0.112 (3)0.111 (3)0.091 (3)0.039 (3)0.015 (3)0.039 (2)
O25A0.0992 (19)0.0954 (18)0.0752 (16)0.0111 (15)0.0286 (15)0.0032 (13)
C28A0.103 (3)0.121 (4)0.110 (3)0.033 (3)0.026 (3)0.004 (3)
O1W0.17 (3)0.085 (19)0.28 (4)0.0000.06 (3)0.000
Geometric parameters (Å, º) top
O1—C11.205 (3)C17A—H17B0.9600
C1—N11.402 (3)C17A—H17C0.9600
C1—C131.499 (4)O15A—C18A1.438 (5)
N1—C11A1.414 (3)C18A—H18A0.9600
N1—C21.429 (3)C18A—H18B0.9600
O2—C21.205 (3)C18A—H18C0.9600
C2—C211.494 (4)C21—N221.330 (3)
O3—C31.200 (3)C21—C261.384 (4)
C3—N31.446 (4)N22—C231.327 (3)
C3—C111.488 (4)C23—C241.385 (4)
N3—C41.389 (4)C23—C4i1.499 (4)
N3—C21A1.416 (4)C24—C251.379 (5)
O4—C41.203 (3)C24—H240.9300
C4—C23i1.499 (4)C25—C261.365 (5)
C11—N121.333 (3)C25—H250.9300
C11—C161.374 (4)C26—H260.9300
N12—C131.335 (3)C21A—N26A1.322 (4)
C13—C141.378 (4)C21A—N22A1.326 (4)
C14—C151.368 (4)N22A—C23A1.338 (4)
C14—H140.9300C23A—O23A1.343 (4)
C15—C161.373 (4)C23A—C24A1.370 (5)
C15—H150.9300C24A—C25A1.373 (5)
C16—H160.9300C24A—H24A0.9300
C11A—N12A1.319 (4)C25A—O25A1.338 (4)
C11A—N16A1.331 (4)C25A—N26A1.342 (4)
N12A—C13A1.339 (4)O23A—C27A1.441 (4)
C13A—O13A1.334 (4)C27A—H27A0.9600
C13A—C14A1.378 (5)C27A—H27B0.9600
C14A—C15A1.367 (5)C27A—H27C0.9600
C14A—H14A0.9300O25A—C28A1.438 (5)
C15A—N16A1.332 (4)C28A—H28A0.9600
C15A—O15A1.351 (4)C28A—H28B0.9600
O13A—C17A1.418 (5)C28A—H28C0.9600
C17A—H17A0.9600O1W—H1W0.850 (5)
O1—C1—N1123.2 (3)H17A—C17A—H17C109.5
O1—C1—C13121.9 (3)H17B—C17A—H17C109.5
N1—C1—C13114.8 (2)C15A—O15A—C18A119.0 (3)
C1—N1—C11A122.3 (2)O15A—C18A—H18A109.5
C1—N1—C2118.7 (2)O15A—C18A—H18B109.5
C11A—N1—C2118.4 (2)H18A—C18A—H18B109.5
O2—C2—N1120.1 (3)O15A—C18A—H18C109.5
O2—C2—C21123.0 (3)H18A—C18A—H18C109.5
N1—C2—C21116.8 (2)H18B—C18A—H18C109.5
O3—C3—N3120.9 (3)N22—C21—C26122.1 (3)
O3—C3—C11123.8 (3)N22—C21—C2115.5 (2)
N3—C3—C11115.2 (3)C26—C21—C2122.3 (3)
C4—N3—C21A121.2 (2)C23—N22—C21117.9 (2)
C4—N3—C3122.4 (2)N22—C23—C24123.6 (3)
C21A—N3—C3115.8 (2)N22—C23—C4i117.7 (2)
O4—C4—N3122.3 (3)C24—C23—C4i118.7 (3)
O4—C4—C23i121.4 (3)C25—C24—C23117.7 (3)
N3—C4—C23i116.1 (2)C25—C24—H24121.2
N12—C11—C16123.4 (3)C23—C24—H24121.2
N12—C11—C3116.7 (2)C26—C25—C24119.2 (3)
C16—C11—C3119.9 (3)C26—C25—H25120.4
C11—N12—C13116.9 (2)C24—C25—H25120.4
N12—C13—C14123.5 (3)C25—C26—C21119.3 (3)
N12—C13—C1115.4 (2)C25—C26—H26120.3
C14—C13—C1121.0 (3)C21—C26—H26120.3
C15—C14—C13118.4 (3)N26A—C21A—N22A128.8 (3)
C15—C14—H14120.8N26A—C21A—N3114.0 (3)
C13—C14—H14120.8N22A—C21A—N3117.2 (3)
C14—C15—C16119.3 (3)C21A—N22A—C23A114.3 (3)
C14—C15—H15120.4N22A—C23A—O23A118.3 (3)
C16—C15—H15120.4N22A—C23A—C24A123.4 (3)
C15—C16—C11118.5 (3)O23A—C23A—C24A118.3 (3)
C15—C16—H16120.7C23A—C24A—C25A116.0 (3)
C11—C16—H16120.7C23A—C24A—H24A122.0
N12A—C11A—N16A129.5 (3)C25A—C24A—H24A122.0
N12A—C11A—N1114.3 (3)O25A—C25A—N26A118.5 (3)
N16A—C11A—N1116.0 (3)O25A—C25A—C24A118.2 (3)
C11A—N12A—C13A114.2 (3)N26A—C25A—C24A123.3 (3)
O13A—C13A—N12A118.5 (4)C21A—N26A—C25A114.2 (3)
O13A—C13A—C14A119.1 (3)C23A—O23A—C27A118.7 (3)
N12A—C13A—C14A122.4 (4)O23A—C27A—H27A109.5
C15A—C14A—C13A116.6 (3)O23A—C27A—H27B109.5
C15A—C14A—H14A121.7H27A—C27A—H27B109.5
C13A—C14A—H14A121.7O23A—C27A—H27C109.5
N16A—C15A—O15A118.3 (4)H27A—C27A—H27C109.5
N16A—C15A—C14A123.6 (3)H27B—C27A—H27C109.5
O15A—C15A—C14A118.1 (3)C25A—O25A—C28A117.5 (3)
C11A—N16A—C15A113.5 (3)O25A—C28A—H28A109.5
C13A—O13A—C17A117.9 (3)O25A—C28A—H28B109.5
O13A—C17A—H17A109.5H28A—C28A—H28B109.5
O13A—C17A—H17B109.5O25A—C28A—H28C109.5
H17A—C17A—H17B109.5H28A—C28A—H28C109.5
O13A—C17A—H17C109.5H28B—C28A—H28C109.5
O1—C1—N1—C11A26.2 (4)C13A—C14A—C15A—N16A0.4 (7)
C13—C1—N1—C11A150.1 (3)C13A—C14A—C15A—O15A178.3 (4)
O1—C1—N1—C2145.4 (3)N12A—C11A—N16A—C15A0.1 (5)
C13—C1—N1—C238.4 (3)N1—C11A—N16A—C15A175.5 (3)
C1—N1—C2—O235.9 (4)O15A—C15A—N16A—C11A179.4 (3)
C11A—N1—C2—O2136.0 (3)C14A—C15A—N16A—C11A1.5 (6)
C1—N1—C2—C21142.4 (3)N12A—C13A—O13A—C17A10.2 (6)
C11A—N1—C2—C2145.7 (3)C14A—C13A—O13A—C17A169.5 (5)
O3—C3—N3—C451.6 (4)N16A—C15A—O15A—C18A0.0 (6)
C11—C3—N3—C4131.0 (3)C14A—C15A—O15A—C18A178.0 (4)
O3—C3—N3—C21A119.2 (3)O2—C2—C21—N2223.0 (4)
C11—C3—N3—C21A58.3 (3)N1—C2—C21—N22158.8 (2)
C21A—N3—C4—O417.8 (5)O2—C2—C21—C26155.0 (3)
C3—N3—C4—O4152.5 (3)N1—C2—C21—C2623.2 (4)
C21A—N3—C4—C23i158.6 (3)C26—C21—N22—C233.9 (4)
C3—N3—C4—C23i31.1 (4)C2—C21—N22—C23178.0 (2)
O3—C3—C11—N12165.0 (3)C21—N22—C23—C240.3 (5)
N3—C3—C11—N1217.6 (4)C21—N22—C23—C4i177.0 (3)
O3—C3—C11—C1613.7 (4)N22—C23—C24—C252.7 (5)
N3—C3—C11—C16163.7 (3)C4i—C23—C24—C25174.0 (3)
C16—C11—N12—C131.3 (4)C23—C24—C25—C262.1 (6)
C3—C11—N12—C13179.9 (2)C24—C25—C26—C211.3 (5)
C11—N12—C13—C140.0 (4)N22—C21—C26—C254.5 (5)
C11—N12—C13—C1176.3 (2)C2—C21—C26—C25177.6 (3)
O1—C1—C13—N12141.8 (3)C4—N3—C21A—N26A143.9 (3)
N1—C1—C13—N1234.4 (3)C3—N3—C21A—N26A27.0 (3)
O1—C1—C13—C1434.5 (4)C4—N3—C21A—N22A38.0 (4)
N1—C1—C13—C14149.2 (3)C3—N3—C21A—N22A151.2 (2)
N12—C13—C14—C151.1 (5)N26A—C21A—N22A—C23A0.1 (4)
C1—C13—C14—C15177.1 (3)N3—C21A—N22A—C23A178.0 (3)
C13—C14—C15—C160.8 (5)C21A—N22A—C23A—O23A178.8 (3)
C14—C15—C16—C110.4 (5)C21A—N22A—C23A—C24A2.4 (5)
N12—C11—C16—C151.5 (5)N22A—C23A—C24A—C25A2.4 (5)
C3—C11—C16—C15179.9 (3)O23A—C23A—C24A—C25A178.8 (3)
C1—N1—C11A—N12A144.5 (3)C23A—C24A—C25A—O25A179.7 (3)
C2—N1—C11A—N12A27.1 (4)C23A—C24A—C25A—N26A0.3 (5)
C1—N1—C11A—N16A39.5 (4)N22A—C21A—N26A—C25A1.8 (4)
C2—N1—C11A—N16A148.9 (3)N3—C21A—N26A—C25A176.1 (2)
N16A—C11A—N12A—C13A2.3 (5)O25A—C25A—N26A—C21A178.3 (3)
N1—C11A—N12A—C13A173.1 (3)C24A—C25A—N26A—C21A1.7 (5)
C11A—N12A—C13A—O13A176.2 (4)N22A—C23A—O23A—C27A1.2 (5)
C11A—N12A—C13A—C14A3.5 (6)C24A—C23A—O23A—C27A179.9 (3)
O13A—C13A—C14A—C15A177.3 (4)N26A—C25A—O25A—C28A1.3 (5)
N12A—C13A—C14A—C15A2.3 (7)C24A—C25A—O25A—C28A178.7 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O3ii0.932.473.148 (4)130
C15—H15···O4iii0.932.423.084 (4)129
C18A—H18C···O23A0.962.473.393 (6)160
C24—H24···O1Wiv0.932.493.14 (2)127
C26—H26···N22A0.932.623.325 (4)133
C27A—H27B···O23Av0.962.573.144 (4)119
Symmetry codes: (ii) x+1/2, y1/2, z; (iii) x, y1, z; (iv) x, y+1, z; (v) x, y+2, z+1.
 

Acknowledgements

JFG thanks Dublin City University for grants in aid of chemical research. The research was part-funded under the Programme for Research in Third Level Institutions (PRTLI) Cycle 4 (Ireland). It was co-funded through the European Regional Development Fund (ERDF), part of the European Union Structural Funds Programme (ESF) 2007–2013.

Funding information

Funding for this research was provided by: Dublin City University.

References

First citationAndreetti, G. D., Ungaro, R. & Pochini, A. (1979). J. Chem. Soc. Chem. Commun. pp. 1005–1007.  CSD CrossRef Google Scholar
First citationBalakrishna, M. S. (2018). Polyhedron, 143, 2–10.  CrossRef CAS Google Scholar
First citationBohle, F. & Grimme, S. (2022). Angew. Chem. Int. Ed. 61, e202113905.  CrossRef Google Scholar
First citationBöhmer, V. (1995). Angew. Chem. Int. Ed. Engl. 34, 713–745.  CrossRef Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1998). Comput. Phys. Commun. 111, 243–257.  Web of Science CrossRef CAS Google Scholar
First citationDavis, F. & Higson, S. (2011). Macrocycles, Construction, Chemistry and Nanotechnology Applications. New York: John Wiley & Sons Inc.  Google Scholar
First citationDonnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335–o340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEvans, L. S. & Gale, P. A. (2004). Chem. Commun. pp. 1286–1287.  Web of Science CSD CrossRef Google Scholar
First citationFerguson, G., Gallagher, J. F. & Pappalardo, S. (1992). J. Incl Phenom. Macrocycl Chem. 14, 349–356.  CSD CrossRef CAS Google Scholar
First citationFerguson, G., Gallagher, J. F. & Pappalardo, S. (1993). Acta Cryst. C49, 1537–1540.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGallagher, J. F., Hanlon, K. & Howarth, J. (2001). Acta Cryst. C57, 1410–1414.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGallagher, J. F. & Mocilac, P. (2021). J. Mol. Struct. 1234, 130149.  CSD CrossRef Google Scholar
First citationGloe, K. (2005). Macrocyclic Chemistry, Current Trends and Future Perspectives. Dordrecht: Springer.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGutsche, C. D. (1983). Acc. Chem. Res. 16, 161–170.  CrossRef CAS Google Scholar
First citationGutsche, C. D., Dhawan, B., Levine, J. A., Hyun No, K. & Bauer, L. J. (1983). Tetrahedron, 39, 409–426.  CrossRef CAS Google Scholar
First citationKashid, V. S., Radhakrishna, L. & Balakrishna, M. S. (2017). Dalton Trans. 46, 6510–6513.  CSD CrossRef CAS PubMed Google Scholar
First citationLegrand, Y.-M. & Barboiu, M. (2013). Chem. Rec. 13, 524–538.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMocilac, P. & Gallagher, J. F. (2013). J. Org. Chem. 78, 2355–2361.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMocilac, P. & Gallagher, J. F. (2014). CrystEngComm, 16, 1893–1903.  CSD CrossRef CAS Google Scholar
First citationMocilac, P. & Gallagher, J. F. (2016). CrystEngComm, 18, 2375–2384.  CSD CrossRef CAS Google Scholar
First citationPappalardo, S., Ferguson, G. & Gallagher, J. F. (1992a). J. Org. Chem. 57, 7102–7109.  CSD CrossRef CAS Google Scholar
First citationPappalardo, S., Giunta, L., Foti, M., Ferguson, G., Gallagher, J. F. & Kaitner, B. (1992b). J. Org. Chem. 57, 2611–2624.  CSD CrossRef CAS Google Scholar
First citationPearce, K. G. & Crossley, I. R. (2020). J. Org. Chem. 85, 14697–14707.  CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSaunders, A. J., Crossley, I. R., Coles, M. P. & Roe, S. M. (2012). Chem. Commun. 48, 5766–5768.  CSD CrossRef CAS Google Scholar
First citationSharma, S., Thorat, S. H., Gonnade, R. G., Jasinski, J. P., Butcher, R. & Haridas, V. (2017). Eur. J. Org. Chem. 2017, 1120–1124.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShinkai, S. (1993). Tetrahedron, 49, 8933–8968.  CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakenaka, S. (2021). Polym. J. 53, 415–427.  CrossRef CAS Google Scholar
First citationVicens, J. & Harrowfield, J. (2007). Calixarenes in the Nanoworld. Dordrecht: Springer.  Google Scholar
First citationWang, Z., Song, R., Zhang, Y., Zhang, T., Zhu, X., Zeng, J., Zhang, W., Zhao, Z., Yan, N. & He, G. (2020). ChemPhotoChem, 4, 59–67.  CSD CrossRef CAS Google Scholar
First citationXin, P. Y., Zhang, L., Su, P., Hou, J.-L. & Li, Z.-T. (2015). Chem. Commun. 51, 4819–4822.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds