research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 3-(bromo­meth­yl)-2-[1,2-di­bromo-2-(6-nitro­benzo[d][1,3]dioxol-5-yl)eth­yl]-1-(phenyl­sulfon­yl)-1H-indole chloro­form 0.585-solvate

crossmark logo

aCAS in Crystallography and Biophysics, University of Madras, Chennai, India, and bDepartment of Organic Chemistry, University of Madras, Chennai, India
*Correspondence e-mail: achyuta11@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 14 July 2023; accepted 11 August 2023; online 17 August 2023)

The title indole derivative, C24H17Br3N2O6S, crystallizes with a partial occupancy [0.585 (4)] CHCl3 solvent mol­ecule. The dihedral angles between the indole ring system and pendant nitro­benzodioxolane rings system and phenyl­sulfonyl ring are 4.81 (14) and 72.24 (19)°, respectively. In the crystal, the indole mol­ecules are linked to each other and to the chloro­form mol­ecule by weak C—H⋯O, C—H⋯Cl, C—H⋯π, C—Br⋯π and C—Cl⋯π and aromatic ππ stacking inter­actions. A Hirshfeld surface analysis was carried out and the inter­molecular contacts with the most significant contributions are H⋯O/O⋯H (24.3%), H⋯H (18.4%), Br⋯H/H⋯Br (16.8%) and C⋯H/H⋯C (8.4%).

1. Chemical context

Derivatives of indole have been reported to exhibit anti­bacterial (Okabe & Adachi, 1998[Okabe, N. & Adachi, Y. (1998). Acta Cryst. C54, 386-387.]) and anti­tumour (Schollmeyer et al., 1995[Schollmeyer, D., Fischer, G. & Pindur, U. (1995). Acta Cryst. C51, 2572-2575.]) activities. N-Substituted indole derivatives have been found to exhibit anti­oxidant properties (Ölgen & Çoban, 2003[Ölgen, S. & Çoban, T. (2003). Biol. Pharm. Bull. 26, 736-738.], 2002[Ölgen, S. & Çoban, T. (2002). Arch. Pharm. Pharm. Med. Chem. 335, 331-338.]) and halogenated indole derivatives have demonstrated anti­bacterial and anti­fungal activity (Piscopo et al., 1990[Piscopo, E., Diurno, M. V., Mazzoni, O. & Ciaccio, A. M. (1990). Boll. Soc. Ital. Biol. Sper. 66, 1181-1186.]). Derivatives of 1-(phenyl­sulfon­yl)indole have proven their usefulness in the synthesis of biologically active alkaloids and their related analogues, including pyridocarb­azoles, such as the anti­cancer alkaloid ellipticine, carbazoles, furo­indoles, pyrrolo­indoles, indolocarbazoles and other substituted indoles. The indole phenyl­sulfonyl moiety acts as both a protecting and activating group (Jasinski et al., 2009[Jasinski, J. P., Rinderspacher, A. & Gribble, G. W. (2009). J. Chem. Crystallogr. 40, 40-47.]). The phenyl­sulfonyl indole compounds have been shown to inhibit the HIV-1 RT enzyme in vitro and HTLVIIIb viral spread in MT-4 human T-lymphoid cells (Williams et al., 1993[Williams, T. M., Ciccarone, T. M., MacTough, S. C., Rooney, C. S., Balani, S. K., Condra, J. H., Emini, E. A., Goldman, M. E., Greenlee, W. J., Kauffman, L. R., et al. (1993). J. Med. Chem. 36, 1291-1294.]). As part of our studies in this area, we now describe the synthesis and structure of the title mol­ecule C24H17Br3N2O6S·0.585CHCl3, which crystallized as a chloro­form solvate.

[Scheme 1]

2. Structural commentary

The C9–C14 phenyl ring makes a dihedral angle of 72.24 (19)° with the C1–C8/N1 indole ring system (Fig. 1[link]). The C1—C15—C16—C17 torsion angle is 175.8 (3)°. The five-member dioxolane ring (C19/C20/O4/C23/O3) adopts an envelope conformation (C23 is displaced from the plane) with pseudo rotation parameters P = 59.3 (17)° and τ = 10.9 (3)°, which are confirmed by the Cremer–Pople puckering parameters Q = 0.097 (5) Å and φ = 329 (3)°. The C1—N1 and C4—N1 bond lengths are 1.423 (5) and 1.427 (5) Å, respectively, while in the case of N atoms in planar configurations, the reported mean value is 1.355 (14) Å (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). This difference is due to the electron-withdrawing nature of the phenyl­sulfonyl group attached to N1 and has been reported earlier (Palani et al., 2006[Palani, K., Ponnuswamy, M. N., Jaisankar, P., Srinivasan, P. C. & Nethaji, M. (2006). Acta Cryst. E62, o440-o442.]). During the synthesis of the title compound, bromination of the methyl group and the double bond between C15 and C16 of the 6-nitro­benzo[d][1,3]dioxol-5-yl)vinyl moiety occurs due to an addition reaction with Br2. The Br1—C16—C15—Br2 grouping is in a trans configuration and the torsion angle has a value of 178.14 (17)°. Intra­molecular C5—H5⋯O1, C15—H15⋯O2, C16—H16⋯O6 and C24—H24B⋯Br2 inter­actions (Fig. 1[link], Table 1[link]) are observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O5i 0.95 2.58 3.525 (6) 170
C13—H13⋯Cl13ii 0.95 2.63 3.244 (8) 123
C14—H14⋯O2iii 0.95 2.57 3.518 (6) 172
C1A—H1A⋯O1iv 1.00 2.34 3.169 (15) 140
C5—H5⋯O1 0.95 2.32 2.865 (6) 116
C15—H15⋯O2 1.00 2.30 2.950 (5) 122
C16—H16⋯O6 1.00 2.16 2.832 (5) 123
C24—H24B⋯Br2 0.99 2.83 3.572 (4) 132
Symmetry codes: (i) [-x+2, -y+1, -z+2]; (ii) [-x, -y, -z]; (iii) [-x+1, -y, -z+1]; (iv) [-x+1, -y, -z].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level with intra­molecular hydrogen bonds shown in light blue.

3. Supra­molecular features

The extended structure exhibits weak inter­molecular hydrogen bonds including indole-to-indole C—H⋯O, indole-to-chloro­form C—H⋯Cl and chloro­form-to-indole C—H⋯O contacts (Fig. 2[link], Table 1[link]). The crystal also features C—H⋯π, C—Br⋯π and C—Cl⋯π inter­actions. The C23—H23⋯Cg2i [symmetry code: (i) x – 1, y, z) inter­action where Cg2 is the centroid of the ring C1–C4/N1 has an H⋯Cg2 separation of 2.94 Å with the CH⋯Cg angle being 117°. In the case of the C—Br⋯π inter­action, the C16—Br1⋯ Cg4 (Cg4 is the centroid of the C9–C14 ring) inter­action has a Br⋯Cg4 distance of 3.691 (2) Å with the CBr⋯Cg angle being 111.46 (11) °. The C1—Cl2⋯ Cg4 inter­action to the other face of the C9–C14 ring has a Cl⋯Cg distance of 3.236 (4) Å with the CCl⋯Cg angle being 167 (5)°.

[Figure 2]
Figure 2
The crystal packing of the title compound viewed along the a-axis direction.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, update of November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 3-methyl-1-(phenyl­sulfon­yl)-1H-indole skeleton gave four hits. The structures of 2-azido­methyl-3-methyl-1-phenyl­sulfonyl-1H-indole (CSD refcode AYOSIR; Karthikeyan et al., 2011[Karthikeyan, S., Sethusankar, K., Rajeswaran, G. G. & Mohanakrishnan, A. K. (2011). Acta Cryst. E67, o2245-o2246.]), 2-chloro­methyl-3-methyl-1-phenyl­sulfonyl-1H-indole (FUGRUV; Saravanan et al., 2009[Saravanan, B., Dhayalan, V., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2733.]) and (E)-2-(4-meth­oxy­styr­yl)-3-methyl-1-phenyl­sulfonyl-1H-indole (NUP­TUP; Umadevi et al., 2015[Umadevi, M., Raju, P., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2015). Acta Cryst. E71, o723-o724.]) have additional groups attached to the 3-methyl-1-phenyl­sulfonyl-1H-indole core. Conversely, 2-(2-{1,4-dimethyl-2-[3-methyl-1-(phenyl­sulfon­yl)-1H-indol-2-yl]cyclo­hex-3-en-1-yl}vin­yl)-3-methyl-1-(phenyl­sulfon­yl)-1H-indole tetra­hydrate (FOLGOE; Dethe et al., 2014[Dethe, D. H., Erande, R. D. & Dherange, B. D. (2014). Org. Lett. 16, 2764-2767.]) consists of two 3-methyl-1-(phenyl­sulfon­yl)-1H-indole groups. The search fragment 3-bromo­methyl-1-phenyl­sulfonyl-1H-indole yielded one hit, 3-bromo­methyl-1-phenyl­sulfonyl-1H-indole-2-carbo­nitrile (TECGEO; Palani et al., 2006[Palani, K., Ponnuswamy, M. N., Jaisankar, P., Srinivasan, P. C. & Nethaji, M. (2006). Acta Cryst. E62, o440-o442.]).

5. Hirshfeld surface analysis

The Hirshfeld surface analysis and the associated two-dimensional fingerprint plots were determined using the Crystal Explorer 21 software (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Fig. 3[link] shows the Hirshfeld surface mapped over dnorm for the title compound, where red denotes shorter contacts, blue longer contacts and the white regions indicate contacts around the van der Waals separation. The two-dimensional fingerprint plots (Parkin et al., 2007[Parkin, A., Barr, G., Dong, W., Gilmore, C. J., Jayatilaka, D., McKinnon, J. J., Spackman, M. A. & Wilson, C. C. (2007). CrystEngComm, 9, 648.]) detailing the various inter­actions for the mol­ecule are shown in Fig. 4[link]. For points on the Hirshfeld surface, di is the distance to the nearest atom inside and de is the distance to the nearest atom outside the surface. The combination of de and di in the form of a two-dimensional fingerprint plot summarizes the inter­molecular contacts in the crystal: in the title mol­ecule, the most significant inter­molecular contacts are H⋯O/O⋯H (24.3%), H⋯H (18.4%), Br⋯H/H⋯Br (16.8%) and C⋯H/H⋯C (8.4%).

[Figure 3]
Figure 3
The Hirshfeld surface of the title compound mapped over dnorm.
[Figure 4]
Figure 4
The fingerprint plots of the title compound delineated into the various labelled contacts.

6. Synthesis and crystallization

A solution of (E)-3-methyl-2-[2-(6-nitro­benzo[d][1,3]dioxol-5-yl)vin­yl]-1-(phenyl­sulfon­yl)-1H-indole (0.80 g, 1.73 mmol) and N-bromo­succinimide (NBS, 0.91 g, 5.19 mmol) in dry CCl4 (100 ml) containing a catalytic amount of azobisisobutyro­nitrile (AIBN, 50 mg) was refluxed for 2 h. The reaction mixture was cooled to room temperature. Then, the suspended succinimide was filtered off and the filtrate was concentrated in vacuo to obtain the crude product, which upon trituration with methanol (10 ml) gave the title compound as a bright-yellow solid. Yield: 800 mg (88%) m.p. 431–433 K. The synthesized compound was crystallized by slow evaporation using chloro­form as solvent.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms were automatically added using a riding model with appropriate AFIX instructions.

Table 2
Experimental details

Crystal data
Chemical formula C24H17Br3N2O6S·0.585CHCl3
Mr 771.02
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 10.0987 (3), 12.2744 (4), 12.4842 (5)
α, β, γ (°) 99.448 (3), 110.701 (3), 100.696 (3)
V3) 1377.27 (9)
Z 2
Radiation type Cu Kα
μ (mm−1) 8.09
Crystal size (mm) 0.09 × 0.07 × 0.04
 
Data collection
Diffractometer SuperNova, Dual, Cu at home/near, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CryAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.679, 0.918
No. of measured, independent and observed [I > 2σ(I)] reflections 32306, 5783, 5068
Rint 0.058
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.134, 1.07
No. of reflections 5783
No. of parameters 362
No. of restraints 15
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.45, −1.18
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CryAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.42.36a (Rigaku OD, 2021); cell refinement: CrysAlis PRO 1.171.42.36a (Rigaku OD, 2021); data reduction: CrysAlis PRO 1.171.42.36a (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

3-(Bromomethyl)-2-[1,2-dibromo-2-(6-nitrobenzo[d][1,3]dioxol-5-yl)ethyl]-1-(phenylsulfonyl)-1H-indole chloroform 0.585-solvate top
Crystal data top
C24H17Br3N2O6S·0.585CHCl3Z = 2
Mr = 771.02F(000) = 756
Triclinic, P1Dx = 1.859 Mg m3
a = 10.0987 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 12.2744 (4) ÅCell parameters from 10304 reflections
c = 12.4842 (5) Åθ = 3.8–77.3°
α = 99.448 (3)°µ = 8.09 mm1
β = 110.701 (3)°T = 100 K
γ = 100.696 (3)°Block, yellow
V = 1377.27 (9) Å30.09 × 0.07 × 0.04 mm
Data collection top
SuperNova, Dual, Cu at home/near, HyPix
diffractometer
5783 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source5068 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.058
Detector resolution: 10.0000 pixels mm-1θmax = 77.8°, θmin = 3.8°
ω scansh = 1212
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2021)
k = 1515
Tmin = 0.679, Tmax = 0.918l = 1515
32306 measured reflections
Refinement top
Refinement on F215 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0756P)2 + 3.2347P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5783 reflectionsΔρmax = 2.45 e Å3
362 parametersΔρmin = 1.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.58451 (5)0.42132 (3)0.59315 (4)0.02570 (13)
Br20.73154 (5)0.14955 (4)0.79206 (4)0.02939 (13)
Br31.00762 (5)0.56830 (4)0.86622 (4)0.02920 (13)
S10.68128 (11)0.12626 (8)0.41364 (8)0.0223 (2)
O20.6345 (3)0.0430 (2)0.4695 (3)0.0253 (6)
O40.1132 (3)0.1454 (3)0.7754 (3)0.0330 (7)
O10.7479 (3)0.0973 (2)0.3329 (3)0.0262 (6)
O30.1207 (3)0.0964 (3)0.5903 (3)0.0274 (6)
O60.6713 (3)0.4960 (3)0.9228 (3)0.0280 (6)
O50.6049 (4)0.4185 (3)1.0457 (3)0.0343 (7)
N10.8057 (4)0.2367 (3)0.5219 (3)0.0218 (7)
N20.5943 (4)0.4196 (3)0.9449 (3)0.0252 (7)
C200.2451 (5)0.2022 (4)0.7782 (4)0.0257 (8)
C190.2496 (4)0.1717 (3)0.6678 (4)0.0231 (8)
C20.9429 (5)0.3497 (3)0.7066 (4)0.0229 (8)
C90.5355 (5)0.1832 (3)0.3452 (4)0.0242 (8)
C81.1596 (5)0.4418 (4)0.6586 (4)0.0243 (8)
H81.2190060.4875790.7363520.029*
C100.5593 (5)0.2662 (4)0.2858 (4)0.0272 (8)
H100.6517150.2901810.2812650.033*
C241.0022 (5)0.4044 (4)0.8361 (4)0.0259 (8)
H24A1.1025500.3959340.8743970.031*
H24B0.9399080.3648470.8714970.031*
C160.6285 (4)0.3342 (3)0.7156 (3)0.0215 (7)
H160.7089920.3845430.7903360.026*
C150.6810 (5)0.2339 (3)0.6679 (4)0.0221 (8)
H150.5983160.1820400.5954780.027*
C210.3578 (5)0.2820 (4)0.8701 (4)0.0275 (9)
H210.3540110.3042390.9452580.033*
C71.2061 (5)0.4458 (4)0.5668 (4)0.0277 (9)
H71.2986730.4948330.5817950.033*
C40.9377 (4)0.3002 (3)0.5193 (4)0.0227 (8)
C31.0226 (4)0.3683 (3)0.6332 (4)0.0228 (8)
C170.4909 (5)0.2960 (3)0.7380 (4)0.0224 (8)
C220.4805 (5)0.3296 (3)0.8468 (4)0.0232 (8)
C180.3703 (5)0.2154 (3)0.6456 (4)0.0232 (8)
H180.3720400.1917550.5699030.028*
C230.0388 (5)0.0681 (4)0.6607 (4)0.0278 (8)
H23A0.0622330.0758060.6234300.033*
H23B0.0328170.0118310.6670240.033*
C61.1179 (5)0.3783 (4)0.4524 (4)0.0272 (9)
H61.1517070.3839370.3909620.033*
C10.8102 (5)0.2724 (3)0.6378 (4)0.0228 (8)
C50.9823 (5)0.3031 (4)0.4253 (4)0.0261 (8)
H50.9236860.2564560.3477760.031*
C110.4463 (6)0.3134 (4)0.2336 (4)0.0345 (10)
H110.4607820.3707520.1931610.041*
C140.4009 (5)0.1455 (4)0.3522 (4)0.0296 (9)
H140.3867140.0884510.3930300.036*
C120.3110 (6)0.2768 (4)0.2402 (5)0.0390 (11)
H120.2335810.3096110.2045040.047*
C130.2885 (6)0.1925 (4)0.2988 (5)0.0397 (11)
H130.1954830.1672280.3020290.048*
Cl20.3028 (5)0.0547 (3)0.0343 (3)0.0840 (13)0.585 (4)
Cl30.0526 (5)0.1122 (4)0.1145 (5)0.1007 (15)0.585 (4)
Cl10.3205 (5)0.1710 (3)0.0639 (3)0.0828 (13)0.585 (4)
C1A0.247 (2)0.0539 (11)0.0772 (11)0.079 (4)0.585 (4)
H1A0.2578780.0263900.1453810.094*0.585 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0364 (2)0.0205 (2)0.0333 (2)0.00951 (17)0.02579 (19)0.01161 (17)
Br20.0408 (3)0.0259 (2)0.0337 (2)0.01040 (18)0.0248 (2)0.01486 (19)
Br30.0391 (3)0.0254 (2)0.0270 (2)0.00873 (18)0.01907 (19)0.00274 (17)
S10.0331 (5)0.0168 (4)0.0233 (4)0.0063 (4)0.0191 (4)0.0041 (4)
O20.0382 (16)0.0165 (13)0.0269 (14)0.0053 (11)0.0206 (12)0.0053 (11)
O40.0318 (16)0.0381 (18)0.0357 (17)0.0024 (13)0.0237 (14)0.0115 (14)
O10.0374 (16)0.0212 (14)0.0280 (14)0.0086 (12)0.0232 (13)0.0034 (12)
O30.0298 (14)0.0230 (14)0.0316 (15)0.0018 (11)0.0181 (12)0.0050 (12)
O60.0329 (15)0.0240 (14)0.0307 (15)0.0037 (12)0.0210 (13)0.0015 (12)
O50.0376 (17)0.0455 (19)0.0226 (15)0.0078 (14)0.0183 (13)0.0051 (14)
N10.0297 (17)0.0204 (16)0.0213 (16)0.0050 (13)0.0182 (13)0.0047 (13)
N20.0299 (17)0.0273 (18)0.0249 (17)0.0086 (14)0.0183 (14)0.0049 (14)
C200.028 (2)0.027 (2)0.034 (2)0.0084 (16)0.0218 (17)0.0130 (17)
C190.030 (2)0.0172 (18)0.0255 (19)0.0051 (15)0.0158 (16)0.0057 (15)
C20.031 (2)0.0206 (18)0.027 (2)0.0091 (15)0.0207 (17)0.0091 (16)
C90.035 (2)0.0190 (18)0.0243 (19)0.0096 (16)0.0176 (16)0.0032 (15)
C80.0286 (19)0.0233 (19)0.027 (2)0.0075 (16)0.0183 (16)0.0058 (16)
C100.039 (2)0.0204 (19)0.030 (2)0.0084 (17)0.0221 (18)0.0064 (17)
C240.035 (2)0.023 (2)0.026 (2)0.0053 (16)0.0196 (17)0.0060 (16)
C160.033 (2)0.0178 (17)0.0229 (18)0.0071 (15)0.0210 (16)0.0050 (15)
C150.033 (2)0.0175 (18)0.0235 (18)0.0068 (15)0.0199 (16)0.0058 (15)
C210.036 (2)0.031 (2)0.026 (2)0.0092 (18)0.0232 (18)0.0101 (17)
C70.029 (2)0.024 (2)0.038 (2)0.0053 (16)0.0234 (18)0.0085 (18)
C40.030 (2)0.0198 (18)0.0259 (19)0.0078 (15)0.0186 (16)0.0075 (15)
C30.0298 (19)0.0206 (18)0.027 (2)0.0096 (15)0.0193 (16)0.0093 (16)
C170.033 (2)0.0176 (17)0.0259 (19)0.0069 (15)0.0220 (17)0.0077 (15)
C220.030 (2)0.0206 (18)0.0259 (19)0.0059 (15)0.0193 (16)0.0066 (16)
C180.031 (2)0.0198 (18)0.0241 (19)0.0069 (15)0.0184 (16)0.0038 (15)
C230.030 (2)0.023 (2)0.035 (2)0.0029 (16)0.0195 (18)0.0078 (17)
C60.038 (2)0.026 (2)0.031 (2)0.0103 (17)0.0270 (18)0.0110 (17)
C10.033 (2)0.0214 (18)0.0226 (19)0.0074 (16)0.0202 (16)0.0074 (15)
C50.037 (2)0.025 (2)0.0251 (19)0.0087 (17)0.0216 (17)0.0070 (16)
C110.052 (3)0.025 (2)0.036 (2)0.015 (2)0.026 (2)0.0113 (19)
C140.041 (2)0.0208 (19)0.035 (2)0.0069 (17)0.026 (2)0.0049 (17)
C120.047 (3)0.032 (2)0.047 (3)0.019 (2)0.024 (2)0.011 (2)
C130.038 (2)0.036 (3)0.057 (3)0.013 (2)0.030 (2)0.013 (2)
Cl20.154 (4)0.0441 (15)0.0602 (18)0.0185 (18)0.049 (2)0.0213 (13)
Cl30.079 (2)0.103 (3)0.124 (4)0.015 (2)0.039 (2)0.051 (3)
Cl10.175 (4)0.082 (2)0.0621 (17)0.085 (2)0.091 (2)0.0492 (16)
C1A0.152 (14)0.051 (6)0.044 (6)0.021 (8)0.054 (8)0.014 (5)
Geometric parameters (Å, º) top
Br1—C161.978 (4)C16—H161.0000
Br2—C151.974 (4)C16—C151.542 (5)
Br3—C241.971 (4)C16—C171.519 (5)
S1—O21.429 (3)C15—H151.0000
S1—O11.430 (3)C15—C11.498 (5)
S1—N11.676 (3)C21—H210.9500
S1—C91.754 (4)C21—C221.415 (5)
O4—C201.369 (5)C7—H70.9500
O4—C231.429 (6)C7—C61.399 (6)
O3—C191.362 (5)C4—C31.392 (6)
O3—C231.443 (5)C4—C51.401 (5)
O6—N21.236 (5)C17—C221.399 (5)
O5—N21.227 (5)C17—C181.406 (6)
N1—C41.427 (5)C18—H180.9500
N1—C11.423 (5)C23—H23A0.9900
N2—C221.459 (5)C23—H23B0.9900
C20—C191.387 (6)C6—H60.9500
C20—C211.365 (6)C6—C51.394 (6)
C19—C181.376 (5)C5—H50.9500
C2—C241.494 (6)C11—H110.9500
C2—C31.436 (5)C11—C121.392 (7)
C2—C11.371 (6)C14—H140.9500
C9—C101.389 (6)C14—C131.378 (7)
C9—C141.390 (6)C12—H120.9500
C8—H80.9500C12—C131.392 (7)
C8—C71.388 (6)C13—H130.9500
C8—C31.400 (6)Cl2—C1A1.609 (12)
C10—H100.9500Cl3—C1A1.815 (18)
C10—C111.380 (7)Cl1—C1A1.742 (15)
C24—H24A0.9900C1A—H1A1.0000
C24—H24B0.9900
O2—S1—O1120.07 (17)C22—C21—H21121.9
O2—S1—N1106.78 (17)C8—C7—H7119.7
O2—S1—C9109.47 (19)C8—C7—C6120.7 (4)
O1—S1—N1105.88 (17)C6—C7—H7119.7
O1—S1—C9109.04 (19)C3—C4—N1107.0 (3)
N1—S1—C9104.44 (18)C3—C4—C5122.4 (4)
C20—O4—C23105.7 (3)C5—C4—N1130.5 (4)
C19—O3—C23105.4 (3)C8—C3—C2131.0 (4)
C4—N1—S1125.3 (3)C4—C3—C2108.6 (4)
C1—N1—S1126.2 (3)C4—C3—C8120.4 (4)
C1—N1—C4107.8 (3)C22—C17—C16124.1 (4)
O6—N2—C22118.8 (3)C22—C17—C18118.3 (4)
O5—N2—O6122.9 (4)C18—C17—C16117.4 (3)
O5—N2—C22118.2 (3)C21—C22—N2114.4 (3)
O4—C20—C19109.9 (4)C17—C22—N2122.5 (3)
C21—C20—O4128.3 (4)C17—C22—C21123.1 (4)
C21—C20—C19121.7 (4)C19—C18—C17118.2 (4)
O3—C19—C20110.1 (3)C19—C18—H18120.9
O3—C19—C18127.6 (4)C17—C18—H18120.9
C18—C19—C20122.3 (4)O4—C23—O3107.8 (3)
C3—C2—C24123.9 (4)O4—C23—H23A110.1
C1—C2—C24128.1 (3)O4—C23—H23B110.1
C1—C2—C3108.0 (4)O3—C23—H23A110.1
C10—C9—S1118.3 (3)O3—C23—H23B110.1
C10—C9—C14121.9 (4)H23A—C23—H23B108.5
C14—C9—S1119.8 (3)C7—C6—H6118.8
C7—C8—H8121.0C5—C6—C7122.3 (4)
C7—C8—C3118.1 (4)C5—C6—H6118.8
C3—C8—H8121.0N1—C1—C15122.1 (4)
C9—C10—H10120.6C2—C1—N1108.5 (3)
C11—C10—C9118.8 (4)C2—C1—C15129.2 (4)
C11—C10—H10120.6C4—C5—H5122.0
Br3—C24—H24A109.3C6—C5—C4116.0 (4)
Br3—C24—H24B109.3C6—C5—H5122.0
C2—C24—Br3111.4 (3)C10—C11—H11120.0
C2—C24—H24A109.3C10—C11—C12119.9 (4)
C2—C24—H24B109.3C12—C11—H11120.0
H24A—C24—H24B108.0C9—C14—H14120.6
Br1—C16—H16109.5C13—C14—C9118.8 (4)
C15—C16—Br1106.4 (2)C13—C14—H14120.6
C15—C16—H16109.5C11—C12—H12119.8
C17—C16—Br1108.4 (3)C13—C12—C11120.5 (5)
C17—C16—H16109.5C13—C12—H12119.8
C17—C16—C15113.4 (3)C14—C13—C12120.1 (5)
Br2—C15—H15108.9C14—C13—H13120.0
C16—C15—Br2106.6 (3)C12—C13—H13120.0
C16—C15—H15108.9Cl2—C1A—Cl3106.5 (9)
C1—C15—Br2110.4 (3)Cl2—C1A—Cl1120.0 (9)
C1—C15—C16112.9 (3)Cl2—C1A—H1A108.5
C1—C15—H15108.9Cl3—C1A—H1A108.5
C20—C21—H21121.9Cl1—C1A—Cl3104.4 (7)
C20—C21—C22116.2 (4)Cl1—C1A—H1A108.5
Br1—C16—C15—Br2178.14 (17)C10—C9—C14—C130.2 (7)
Br1—C16—C15—C156.7 (4)C10—C11—C12—C130.3 (8)
Br1—C16—C17—C22118.0 (4)C24—C2—C3—C84.9 (7)
Br1—C16—C17—C1866.7 (4)C24—C2—C3—C4177.2 (4)
Br2—C15—C1—N1119.7 (4)C24—C2—C1—N1175.3 (4)
Br2—C15—C1—C265.5 (5)C24—C2—C1—C159.4 (7)
S1—N1—C4—C3168.6 (3)C16—C15—C1—N1121.0 (4)
S1—N1—C4—C513.3 (6)C16—C15—C1—C253.7 (6)
S1—N1—C1—C2168.0 (3)C16—C17—C22—N210.0 (6)
S1—N1—C1—C1516.3 (6)C16—C17—C22—C21171.8 (4)
S1—C9—C10—C11178.7 (3)C16—C17—C18—C19174.1 (4)
S1—C9—C14—C13179.3 (4)C15—C16—C17—C22124.1 (4)
O2—S1—N1—C4139.8 (3)C15—C16—C17—C1851.3 (5)
O2—S1—N1—C130.3 (4)C21—C20—C19—O3176.2 (4)
O2—S1—C9—C10179.9 (3)C21—C20—C19—C183.4 (7)
O2—S1—C9—C140.4 (4)C7—C8—C3—C2176.6 (4)
O4—C20—C19—O31.0 (5)C7—C8—C3—C41.1 (6)
O4—C20—C19—C18179.4 (4)C7—C6—C5—C41.1 (6)
O4—C20—C21—C22178.1 (4)C4—N1—C1—C23.5 (4)
O1—S1—N1—C410.7 (4)C4—N1—C1—C15172.2 (4)
O1—S1—N1—C1159.3 (3)C3—C2—C24—Br373.2 (5)
O1—S1—C9—C1047.0 (4)C3—C2—C1—N12.6 (5)
O1—S1—C9—C14133.6 (3)C3—C2—C1—C15172.7 (4)
O3—C19—C18—C17177.7 (4)C3—C8—C7—C60.1 (6)
O6—N2—C22—C21150.6 (4)C3—C4—C5—C60.1 (6)
O6—N2—C22—C1727.7 (6)C17—C16—C15—Br262.8 (4)
O5—N2—C22—C2126.3 (5)C17—C16—C15—C1175.8 (3)
O5—N2—C22—C17155.4 (4)C22—C17—C18—C191.5 (6)
N1—S1—C9—C1065.9 (4)C18—C17—C22—N2174.7 (4)
N1—S1—C9—C14113.6 (3)C18—C17—C22—C213.5 (6)
N1—C4—C3—C21.4 (4)C23—O4—C20—C195.7 (5)
N1—C4—C3—C8179.5 (4)C23—O4—C20—C21177.4 (4)
N1—C4—C5—C6178.0 (4)C23—O3—C19—C207.1 (4)
C20—O4—C23—O310.0 (4)C23—O3—C19—C18173.3 (4)
C20—C19—C18—C171.8 (6)C1—N1—C4—C32.9 (4)
C20—C21—C22—N2176.4 (4)C1—N1—C4—C5175.1 (4)
C20—C21—C22—C171.9 (6)C1—C2—C24—Br3109.2 (4)
C19—O3—C23—O410.5 (4)C1—C2—C3—C8177.1 (4)
C19—C20—C21—C221.5 (6)C1—C2—C3—C40.8 (5)
C9—S1—N1—C4104.3 (3)C5—C4—C3—C2176.9 (4)
C9—S1—N1—C185.7 (4)C5—C4—C3—C81.3 (6)
C9—C10—C11—C120.5 (7)C11—C12—C13—C140.9 (8)
C9—C14—C13—C120.6 (7)C14—C9—C10—C110.8 (6)
C8—C7—C6—C51.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O5i0.952.583.525 (6)170
C13—H13···Cl13ii0.952.633.244 (8)123
C14—H14···O2iii0.952.573.518 (6)172
C1A—H1A···O1iv1.002.343.169 (15)140
C5—H5···O10.952.322.865 (6)116
C15—H15···O21.002.302.950 (5)122
C16—H16···O61.002.162.832 (5)123
C24—H24B···Br20.992.833.572 (4)132
Symmetry codes: (i) x+2, y+1, z+2; (ii) x, y, z; (iii) x+1, y, z+1; (iv) x+1, y, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDethe, D. H., Erande, R. D. & Dherange, B. D. (2014). Org. Lett. 16, 2764–2767.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Rinderspacher, A. & Gribble, G. W. (2009). J. Chem. Crystallogr. 40, 40–47.  Web of Science CSD CrossRef Google Scholar
First citationKarthikeyan, S., Sethusankar, K., Rajeswaran, G. G. & Mohanakrishnan, A. K. (2011). Acta Cryst. E67, o2245–o2246.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOkabe, N. & Adachi, Y. (1998). Acta Cryst. C54, 386–387.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖlgen, S. & Çoban, T. (2002). Arch. Pharm. Pharm. Med. Chem. 335, 331–338.  Google Scholar
First citationÖlgen, S. & Çoban, T. (2003). Biol. Pharm. Bull. 26, 736–738.  Web of Science PubMed Google Scholar
First citationPalani, K., Ponnuswamy, M. N., Jaisankar, P., Srinivasan, P. C. & Nethaji, M. (2006). Acta Cryst. E62, o440–o442.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParkin, A., Barr, G., Dong, W., Gilmore, C. J., Jayatilaka, D., McKinnon, J. J., Spackman, M. A. & Wilson, C. C. (2007). CrystEngComm, 9, 648.  Web of Science CrossRef Google Scholar
First citationPiscopo, E., Diurno, M. V., Mazzoni, O. & Ciaccio, A. M. (1990). Boll. Soc. Ital. Biol. Sper. 66, 1181–1186.  CAS PubMed Google Scholar
First citationRigaku OD (2021). CryAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSaravanan, B., Dhayalan, V., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2733.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchollmeyer, D., Fischer, G. & Pindur, U. (1995). Acta Cryst. C51, 2572–2575.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUmadevi, M., Raju, P., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2015). Acta Cryst. E71, o723–o724.  CSD CrossRef IUCr Journals Google Scholar
First citationWilliams, T. M., Ciccarone, T. M., MacTough, S. C., Rooney, C. S., Balani, S. K., Condra, J. H., Emini, E. A., Goldman, M. E., Greenlee, W. J., Kauffman, L. R., et al. (1993). J. Med. Chem. 36, 1291–1294.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds