research communications
Synthesis, characterization and H-chromen-4-ylamino)benzoate
of methyl 2-(2-oxo-2aChemistry Department, Pontifical Catholic University of Rio de Janeiro, 22451-900 Rio de Janeiro, RJ, Brazil, and bChemistry Institute, Federal Fluminense Universidade, Niteroi, 24020-141 Rio de Janeiro, Brazil
*Correspondence e-mail: liviablescobar@puc-rio.br
Methyl 2-(2-oxo-2H-chromen-4-ylamino)benzoate, C17H13NO4 (1), was prepared by condensation between 4-hydroxycoumarin and methyl 2-aminobenzoate. It crystallizes in the orthorhombic Pca21 at 300 K. The molecule of compound 1 consists of the 2H-chromen-2-one part connected by an amine moiety (–NH–) to the methyl benzoate ring. The supramolecular array is formed by hydrogen bonds between the aromatic ring and the O atoms of the lactone and ester portions. The structural details match the spectroscopic data acquired from NMR and IR spectroscopy.
Keywords: crystal structure; coumarin; benzoate; ester.
CCDC reference: 2289922
1. Chemical context
α-pyrone ring (Fig. 1). These structures have two pharmacophoric groups: the aromatic ring, which can promote hydrophobic interactions, such as π-interactions, and the lactone group, which is a hydrogen-bond acceptor with receptors such as enzymes (Yildirim et al., 2023).
are an important class of composed of benzene fused to anThese compounds are widely distributed in nature, especially as Dipteryx odorata Wild; Fabaceae family) by Vogel in 1820. Since then, more than 1300 have been identified from natural sources (Bor et al., 2016).
of vascular plants. Coumarin was first isolated from tonka beans (Their versatile scaffold also brings a wide range of applications, such as biocides, phytochemicals, pharmacological agents and flavorings, widely used in different industries. In medicinal chemistry, a widely used coumarin drug is warfarin, an anticoagulant that has made it possible for thrombosis treatment to be done orally (Annunziata et al., 2020). In addition, multiple biological activities are well known, including anti-inflammatory (Bansal et al., 2013), antimicrobial (Regal et al., 2020), antioxidant (Rosa et al., 2021), anti-allergic (Liu et al., 2019), anti-HIV (Xu et al., 2021), anticancer (Emam et al., 2023) and antiviral (Sharapov et al., 2023) activities.
Recent work has demonstrated the importance of coumarins in the design of small-molecule fluorescent chemosensors (Cao et al., 2019). Here we report the synthesis and characterization of methyl 2-(2-oxo-2H-chromen-4-ylamino)benzoate, 1 (Fig. 2), by condensation between 4-hydroxycoumarin and methyl 2-aminobenzoate, according to the literature (Carneiro et al., 2021). The principal purpose of producing this compound was to investigate its biological properties because coumarin derivatives are potential candidates for antileishmaniasis drugs (Carneiro et al., 2021). Also, studies involving the complexation of this molecule with metal ions, such as CuII and GdIII, are in progress in our laboratory for future contributions.
2. Structural commentary
Compound 1 was synthesized via a reaction of the precursor coumarin and the corresponding aniline (Scheme 1). The resulting compound was recrystallized from dimethylformamide to yield yellow single crystals. Compound 1 crystallizes in the orthorhombic Pca21, with the consisting of one methyl 2-(2-oxo-2H-chromen-4-ylamino)benzoate molecule (Fig. 3). The could not be established with certainty.
The average C—C bond distance in the aromatic portion of the coumarin is 1.374 (7) Å, while the C9—C13, C9—C10 and C10—C11 bond lengths in the lactone portion are 1.450 (7), 1.353 (7) and 1.412 (7) Å, respectively, because of the partial localization of π-bonding within the ring. The C11—O3 and C12—O3 bond lengths are equivalent at 1.374 (7) and 1.373 (7) Å, respectively, while the C11=O4 distance is 1.204 (7) Å. The sum of the angles about N1 is 359 (3)°, implicating involvement of its lone pair in N—C π-bonding. This is supported by the N1—C9 and N1—C4 distances of 1.351 (6) and 1.391 (6) Å, respectively. Similar geometrical parameters are found in closely related structures (see Database survey section), although the C4—N1—C9 angle at 130.9 (4)° is about 7° larger than in those molecules, presumably due to the intramolecular N1—H1⋯O2 hydrogen bond (Table 1). In the C3–C8 ring, the average C—C bond distance is 1.379 (8) Å, with the ester portion bond lengths of C2=O2 = 1.203 (6), C2—O1 = 1.316 (7) and C1—O1 = 1.440 (8) Å.
|
The dihedral angle between the mean plane which contains the main structure of the coumarin and the mean plane containing the aromatic ester portion is 31.21 (10)°.
The NMR spectra are shown in Figs. 4 and 5. The characterization by 1H and 13C NMR confirms the product as methyl 2-(2-oxo-2H-chromen-4-ylamino)benzoate. In the 1H NMR spectrum, there is a singlet at δ 3.74 ppm attributable to the methoxy group of the ester, the coumarin vinylic H atom appears at δ 5.31 ppm and a singlet is seen at δ 9.67 which can be assigned to N—H. In addition, there are eight aromatic H atoms between δ 7.44 and 8.14 ppm. In the 13C NMR spectrum, the methoxy group appears at δ 52.47 ppm, the two carbonyl C atoms at δ 166.50 and 161.40, and the vinylic and aromatic C atoms between δ 114 and 154 ppm.
3. Supramolecular features
The supramolecular array is formed by hydrogen bonds between the H atoms of the methyl group and the O atom of the lactone portion (C1—H1B⋯O4i) and the H atom from the aromatic ring (C7—H7⋯O4ii) (Table 1). These build corrugated chains two molecules wide extending along the a-axis direction (Fig. 6). The crystal packing (Fig. 7) involves layers of chains parallel to the ab plane which stack along the c-axis direction, all associated through van der Waals interactions.
4. Database survey
A search of the Cambridge Structural Database (CSD; Groom et al., 2016; updated to March 2023) yielded a substantial number of hits for chromenes having a nitrogen-containing substituent in the 3-position of the lactone ring but relatively few with this substituent in the 4-position. Most of the latter also contained a second substituent in the 3-position, such as 4-[(4-bromophenyl)amino]-3-(phenylselanyl)-2H-chromen-2-one (OFIHOE; Belladona et al., 2023), but only three are directly comparable to 1. These are 4-(propylamino)-2H-chromen-2-one (HIDYEB; Kumar et al., 2018), 4-[(pyridin-3-ylmethyl)amino]-2H-chromen-2-one (TUWLUV; Ait-Ramdane-Terbouche et al., 2020) and 4-(benzylamino)-2H-chromen-2-one (ZOKVIE; Campbell et al., 1995). All three have structural parameters very similar to those of 1, including essentially planar chromene portions and some localization of π-bonding in the lactone portion. The largest difference is seen for the exocyclic C—N—C angles which are around 123°.
5. Synthesis and crystallization
The reaction was carried out according to the literature (Carneiro et al., 2021) (Scheme 1). A mixture of A and the aniline B (2 equiv.) was heated in a 50 ml Becher at 453 K for 1 h. A solution comprised of 30 ml of hot methanol and 30 ml of aqueous NaOH (1 mol l−1) was then added to the solid. This mixture was stirred for 30 min at 333 K and then filtered. The solid was washed with water, dried and used without further purification.
6. Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Supporting information
CCDC reference: 2289922
https://doi.org/10.1107/S2056989023007351/mw2198sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023007351/mw2198Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989023007351/mw2198Isup3.cml
Data collection: APEX4 (Bruker, 2021); cell
SAINT (Bruker, 2021); data reduction: SAINT (Bruker, 2021); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b).C17H13NO4 | Dx = 1.448 Mg m−3 |
Mr = 295.28 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pca21 | Cell parameters from 2328 reflections |
a = 12.7698 (16) Å | θ = 2.1–25.0° |
b = 14.9212 (18) Å | µ = 0.10 mm−1 |
c = 7.1087 (8) Å | T = 298 K |
V = 1354.5 (3) Å3 | Prismatic, yellow |
Z = 4 | 0.39 × 0.08 × 0.06 mm |
F(000) = 616 |
Bruker D8 Venture diffractometer | 2096 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.102 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 25.0°, θmin = 2.1° |
Tmin = 0.666, Tmax = 0.745 | h = −15→15 |
35019 measured reflections | k = −17→17 |
2328 independent reflections | l = −7→8 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.066 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.158 | w = 1/[σ2(Fo2) + (0.0648P)2 + 1.5253P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
2328 reflections | Δρmax = 0.25 e Å−3 |
204 parameters | Δρmin = −0.37 e Å−3 |
1 restraint | Absolute structure: Flack x determined using 771 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: dual | Absolute structure parameter: 0.2 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.4084 (3) | 0.8237 (3) | 0.3512 (7) | 0.0553 (12) | |
O2 | 0.5181 (3) | 0.7166 (2) | 0.4363 (8) | 0.0536 (12) | |
O3 | 1.0000 (3) | 0.6344 (3) | 0.4928 (7) | 0.0527 (12) | |
O4 | 1.0759 (3) | 0.7520 (3) | 0.3698 (9) | 0.0669 (15) | |
N1 | 0.7132 (3) | 0.7623 (3) | 0.5069 (7) | 0.0364 (11) | |
H1 | 0.664 (4) | 0.725 (4) | 0.502 (8) | 0.032 (15)* | |
C1 | 0.3280 (5) | 0.7569 (5) | 0.3295 (12) | 0.067 (2) | |
H1A | 0.349617 | 0.713581 | 0.237447 | 0.101* | |
H1B | 0.264282 | 0.785039 | 0.288804 | 0.101* | |
H1C | 0.316334 | 0.727407 | 0.447724 | 0.101* | |
C2 | 0.5005 (4) | 0.7946 (4) | 0.4076 (9) | 0.0405 (13) | |
C3 | 0.5768 (4) | 0.8683 (3) | 0.4321 (8) | 0.0367 (13) | |
C4 | 0.6811 (4) | 0.8507 (3) | 0.4842 (8) | 0.0326 (11) | |
C5 | 0.7468 (4) | 0.9226 (3) | 0.5221 (8) | 0.0387 (13) | |
H5 | 0.814613 | 0.912215 | 0.564520 | 0.046* | |
C6 | 0.7126 (5) | 1.0084 (4) | 0.4974 (10) | 0.0477 (15) | |
H6 | 0.758040 | 1.055801 | 0.520819 | 0.057* | |
C7 | 0.6125 (5) | 1.0258 (3) | 0.4388 (11) | 0.0539 (17) | |
H7 | 0.590562 | 1.084558 | 0.419550 | 0.065* | |
C8 | 0.5454 (4) | 0.9566 (4) | 0.4089 (10) | 0.0476 (15) | |
H8 | 0.476977 | 0.968658 | 0.372170 | 0.057* | |
C9 | 0.8095 (4) | 0.7251 (3) | 0.5005 (8) | 0.0325 (11) | |
C10 | 0.8978 (4) | 0.7656 (3) | 0.4380 (9) | 0.0385 (13) | |
H10 | 0.894045 | 0.825120 | 0.399951 | 0.046* | |
C11 | 0.9952 (4) | 0.7211 (4) | 0.4284 (10) | 0.0469 (15) | |
C12 | 0.9119 (4) | 0.5900 (4) | 0.5527 (9) | 0.0401 (13) | |
C13 | 0.8153 (4) | 0.6322 (3) | 0.5592 (8) | 0.0342 (12) | |
C14 | 0.7308 (4) | 0.5799 (3) | 0.6151 (8) | 0.0371 (13) | |
H14 | 0.664447 | 0.605621 | 0.619064 | 0.045* | |
C15 | 0.7421 (6) | 0.4924 (4) | 0.6640 (9) | 0.0467 (14) | |
H15 | 0.684223 | 0.458872 | 0.700802 | 0.056* | |
C16 | 0.8405 (5) | 0.4536 (4) | 0.6587 (10) | 0.0549 (17) | |
H16 | 0.848964 | 0.394016 | 0.694065 | 0.066* | |
C17 | 0.9249 (5) | 0.5021 (4) | 0.6022 (11) | 0.058 (2) | |
H17 | 0.990900 | 0.475834 | 0.597178 | 0.069* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.033 (2) | 0.047 (2) | 0.086 (3) | 0.0037 (19) | −0.006 (2) | 0.004 (2) |
O2 | 0.034 (2) | 0.034 (2) | 0.093 (4) | −0.0002 (17) | 0.001 (2) | 0.001 (2) |
O3 | 0.034 (2) | 0.039 (2) | 0.085 (3) | 0.0077 (16) | −0.006 (2) | −0.011 (2) |
O4 | 0.031 (2) | 0.053 (3) | 0.117 (4) | −0.009 (2) | 0.014 (2) | −0.020 (3) |
N1 | 0.028 (2) | 0.024 (2) | 0.057 (3) | 0.0006 (18) | 0.001 (2) | 0.004 (2) |
C1 | 0.034 (3) | 0.073 (5) | 0.095 (6) | −0.006 (3) | −0.002 (4) | 0.000 (4) |
C2 | 0.028 (3) | 0.038 (3) | 0.055 (4) | 0.008 (2) | 0.008 (3) | −0.001 (3) |
C3 | 0.032 (3) | 0.031 (3) | 0.046 (3) | 0.006 (2) | 0.006 (2) | −0.002 (2) |
C4 | 0.035 (3) | 0.032 (2) | 0.030 (3) | 0.005 (2) | 0.003 (2) | 0.000 (2) |
C5 | 0.035 (3) | 0.034 (3) | 0.047 (3) | 0.000 (2) | −0.002 (3) | −0.002 (3) |
C6 | 0.054 (4) | 0.031 (3) | 0.058 (4) | −0.004 (2) | 0.004 (3) | −0.004 (3) |
C7 | 0.056 (4) | 0.025 (3) | 0.081 (5) | 0.011 (3) | 0.005 (4) | 0.001 (3) |
C8 | 0.038 (3) | 0.038 (3) | 0.066 (4) | 0.014 (2) | 0.003 (3) | 0.004 (3) |
C9 | 0.032 (3) | 0.028 (2) | 0.037 (3) | 0.002 (2) | −0.003 (2) | −0.003 (2) |
C10 | 0.035 (3) | 0.029 (3) | 0.051 (3) | −0.001 (2) | −0.002 (3) | −0.003 (2) |
C11 | 0.031 (3) | 0.042 (3) | 0.068 (4) | −0.001 (2) | −0.001 (3) | −0.021 (3) |
C12 | 0.034 (3) | 0.034 (3) | 0.052 (3) | 0.003 (2) | −0.009 (3) | −0.007 (3) |
C13 | 0.035 (3) | 0.028 (3) | 0.040 (3) | 0.005 (2) | −0.006 (2) | −0.005 (2) |
C14 | 0.037 (3) | 0.029 (3) | 0.045 (3) | 0.006 (2) | −0.001 (2) | −0.001 (2) |
C15 | 0.057 (4) | 0.035 (3) | 0.048 (4) | −0.005 (3) | −0.001 (3) | 0.002 (3) |
C16 | 0.069 (4) | 0.032 (3) | 0.064 (4) | 0.006 (3) | −0.018 (4) | 0.004 (3) |
C17 | 0.046 (3) | 0.041 (4) | 0.087 (5) | 0.021 (3) | −0.024 (4) | −0.007 (3) |
O1—C2 | 1.316 (7) | C6—H6 | 0.9300 |
O1—C1 | 1.440 (8) | C7—C8 | 1.358 (8) |
O2—C2 | 1.203 (6) | C7—H7 | 0.9300 |
O3—C12 | 1.373 (7) | C8—H8 | 0.9300 |
O3—C11 | 1.374 (7) | C9—C10 | 1.353 (7) |
O4—C11 | 1.204 (7) | C9—C13 | 1.450 (7) |
N1—C9 | 1.351 (6) | C10—C11 | 1.412 (7) |
N1—C4 | 1.391 (6) | C10—H10 | 0.9300 |
N1—H1 | 0.84 (6) | C12—C17 | 1.367 (8) |
C1—H1A | 0.9600 | C12—C13 | 1.385 (7) |
C1—H1B | 0.9600 | C13—C14 | 1.390 (7) |
C1—H1C | 0.9600 | C14—C15 | 1.359 (7) |
C2—C3 | 1.479 (7) | C14—H14 | 0.9300 |
C3—C8 | 1.387 (7) | C15—C16 | 1.385 (10) |
C3—C4 | 1.407 (7) | C15—H15 | 0.9300 |
C4—C5 | 1.388 (7) | C16—C17 | 1.359 (10) |
C5—C6 | 1.363 (8) | C16—H16 | 0.9300 |
C5—H5 | 0.9300 | C17—H17 | 0.9300 |
C6—C7 | 1.370 (9) | ||
C2—O1—C1 | 116.2 (5) | C7—C8—H8 | 119.3 |
C12—O3—C11 | 121.5 (4) | C3—C8—H8 | 119.3 |
C9—N1—C4 | 130.9 (4) | N1—C9—C10 | 125.8 (5) |
C9—N1—H1 | 114 (4) | N1—C9—C13 | 115.5 (4) |
C4—N1—H1 | 114 (4) | C10—C9—C13 | 118.6 (4) |
O1—C1—H1A | 109.5 | C9—C10—C11 | 122.7 (5) |
O1—C1—H1B | 109.5 | C9—C10—H10 | 118.7 |
H1A—C1—H1B | 109.5 | C11—C10—H10 | 118.7 |
O1—C1—H1C | 109.5 | O4—C11—O3 | 116.0 (5) |
H1A—C1—H1C | 109.5 | O4—C11—C10 | 126.3 (6) |
H1B—C1—H1C | 109.5 | O3—C11—C10 | 117.7 (5) |
O2—C2—O1 | 122.5 (5) | C17—C12—O3 | 116.3 (5) |
O2—C2—C3 | 125.2 (5) | C17—C12—C13 | 122.4 (6) |
O1—C2—C3 | 112.3 (4) | O3—C12—C13 | 121.3 (5) |
C8—C3—C4 | 118.8 (5) | C12—C13—C14 | 116.5 (5) |
C8—C3—C2 | 120.1 (5) | C12—C13—C9 | 118.1 (5) |
C4—C3—C2 | 121.1 (4) | C14—C13—C9 | 125.4 (5) |
C5—C4—N1 | 122.2 (5) | C15—C14—C13 | 121.9 (6) |
C5—C4—C3 | 118.7 (5) | C15—C14—H14 | 119.0 |
N1—C4—C3 | 119.0 (5) | C13—C14—H14 | 119.0 |
C6—C5—C4 | 120.4 (5) | C14—C15—C16 | 119.4 (6) |
C6—C5—H5 | 119.8 | C14—C15—H15 | 120.3 |
C4—C5—H5 | 119.8 | C16—C15—H15 | 120.3 |
C5—C6—C7 | 121.1 (5) | C17—C16—C15 | 120.3 (6) |
C5—C6—H6 | 119.5 | C17—C16—H16 | 119.8 |
C7—C6—H6 | 119.5 | C15—C16—H16 | 119.8 |
C8—C7—C6 | 119.4 (5) | C16—C17—C12 | 119.4 (6) |
C8—C7—H7 | 120.3 | C16—C17—H17 | 120.3 |
C6—C7—H7 | 120.3 | C12—C17—H17 | 120.3 |
C7—C8—C3 | 121.5 (5) | ||
C1—O1—C2—O2 | 1.4 (10) | C13—C9—C10—C11 | −0.2 (9) |
C1—O1—C2—C3 | −178.0 (6) | C12—O3—C11—O4 | −176.1 (6) |
O2—C2—C3—C8 | −174.9 (7) | C12—O3—C11—C10 | 4.4 (9) |
O1—C2—C3—C8 | 4.5 (8) | C9—C10—C11—O4 | 177.8 (7) |
O2—C2—C3—C4 | 3.2 (9) | C9—C10—C11—O3 | −2.7 (9) |
O1—C2—C3—C4 | −177.3 (5) | C11—O3—C12—C17 | 175.9 (6) |
C9—N1—C4—C5 | −26.1 (9) | C11—O3—C12—C13 | −3.2 (8) |
C9—N1—C4—C3 | 157.9 (6) | C17—C12—C13—C14 | −1.4 (9) |
C8—C3—C4—C5 | 4.0 (8) | O3—C12—C13—C14 | 177.6 (6) |
C2—C3—C4—C5 | −174.2 (6) | C17—C12—C13—C9 | −178.9 (6) |
C8—C3—C4—N1 | −179.7 (6) | O3—C12—C13—C9 | 0.1 (8) |
C2—C3—C4—N1 | 2.1 (8) | N1—C9—C13—C12 | 179.0 (5) |
N1—C4—C5—C6 | 179.8 (6) | C10—C9—C13—C12 | 1.6 (8) |
C3—C4—C5—C6 | −4.2 (9) | N1—C9—C13—C14 | 1.7 (8) |
C4—C5—C6—C7 | 1.4 (10) | C10—C9—C13—C14 | −175.7 (5) |
C5—C6—C7—C8 | 1.6 (11) | C12—C13—C14—C15 | 1.1 (8) |
C6—C7—C8—C3 | −1.6 (11) | C9—C13—C14—C15 | 178.4 (6) |
C4—C3—C8—C7 | −1.2 (10) | C13—C14—C15—C16 | 0.1 (9) |
C2—C3—C8—C7 | 177.0 (7) | C14—C15—C16—C17 | −1.1 (10) |
C4—N1—C9—C10 | −11.9 (10) | C15—C16—C17—C12 | 0.8 (10) |
C4—N1—C9—C13 | 171.0 (6) | O3—C12—C17—C16 | −178.6 (6) |
N1—C9—C10—C11 | −177.3 (6) | C13—C12—C17—C16 | 0.5 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1B···O4i | 0.96 | 2.52 | 3.232 (8) | 131 |
C7—H7···O4ii | 0.93 | 2.47 | 3.387 (6) | 167 |
N1—H1···O2 | 0.84 (6) | 1.92 (6) | 2.631 (6) | 141 (5) |
Symmetry codes: (i) x−1, y, z; (ii) x−1/2, −y+2, z. |
Acknowledgements
The authors would like to acknowledge LDRX (Laboratório Multiusuário de Difração de Raios-X da UFF) for the support with the X-ray diffraction facility (D8-Venture). The authors are also grateful to CAPLH/PUC-Rio for the use of the NMR facilities.
Funding information
Funding for this research was provided by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (grant No. E-26/202.720/2018); Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (grant No. E-26/201.314/2022); Conselho Nacional de Desenvolvimento Científico e Tecnológico (grant No. 304671/2020-7).
References
Ait-Ramdane-Terbouche, C., Abdeldjebar, H., Terbouche, A., Lakhdari, H., Bachari, K., Roisnel, T. & Hauchard, D. (2020). J. Mol. Struct. 1222, 128918. PubMed Google Scholar
Annunziata, F., Pinna, C., Dallavalle, S., Tamborini, L. & Pinto, A. (2020). Int. J. Mol. Sci. 21, 1–83. Google Scholar
Bansal, Y., Sethi, P. & Bansal, G. (2013). Med. Chem. Res. 22, 3049–3060. Web of Science CrossRef CAS Google Scholar
Belladona, A. L., Cardoso Dilelio, M., Cargnelutti, R., Barcellos, T., Cruz Silveira, C. & Schumacher, R. F. (2023). ChemistrySelect, 8, 202300377. CrossRef Google Scholar
Bor, T., Aljaloud, S. O., Gyawali, R. & Ibrahim, S. A. (2016). Fruits, Vegetables, and Herbs: Bioactive Foods in Health Promotion, edited by R. R. Watson & V. R. Preedy. pp. 551–578. New York: Academic Press. Google Scholar
Bruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Campbell, J. L. E., Barton, R. J., Gear, J. R., Conlin, G. M. & Robertson, B. E. (1995). J. Chem. Crystallogr. 25, 245–248. CrossRef CAS Google Scholar
Cao, D., Liu, Z., Verwilst, P., Koo, S., Jangjili, P., Kim, J. S. & Lin, W. (2019). Chem. Rev. 119, 10403–10519. Web of Science CrossRef CAS PubMed Google Scholar
Carneiro, L. S. A., Almeida-Souza, F., Lopes, Y. S. C., Novas, R. C. V., Santos, K. B. A., Ligiero, C. B. P., Calabrese, K. D. S. & Buarque, C. D. (2021). Bioorg. Chem. 114, 105141. CrossRef PubMed Google Scholar
Emam, S. H., Hassan, R. A., Osman, E. O., Hamed, M. I. A., Abdou, A. M., Kandil, M. M., Elbaz, E. M. & Mikhail, D. S. (2023). Drug Dev. Res. 84, 433–457. CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kumar, K., Ramulu, M. S. & Kumar, N. P. (2018). New J. Chem. 42, 11276–11279. CrossRef CAS Google Scholar
Liu, Q. M., Zhang, Y. F., Gao, Y. Y., Liu, H., Cao, M. J., Yang, X. W., Su, W. J. & Liu, G. M. (2019). Food Funct. 10, 6767–6778. CrossRef CAS PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Regal, M. K. A., Shaban, S. S. & El–Metwally, S. A. (2020). J. Heterocycl. Chem. 57, 1368–1378. CrossRef CAS Google Scholar
Rosa, W. C., Rocha, I. O., Schmitz, B. F., Martins, M. A. P., Zanatta, N., Tisoco, I., Iglesias, B. A. & Bonacorso, H. G. (2021). J. Fluor. Chem. 248, 109822. CrossRef Google Scholar
Sharapov, A. D., Fatykhov, R. F., Khalymbadzha, I. A., Zyryanov, G. V., Chupakhin, O. N. & Tsurkan, M. V. (2023). Int. J. Mol. Sci. 24, 2839. CrossRef PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Xu, Z., Chen, Q., Zhang, Y. & Liang, C. (2021). Fitoterapia, 150, 104863. CrossRef PubMed Google Scholar
Yildirim, M., Poyraz, S. & Ersatir, M. (2023). Med. Chem. Res. 32, 617–642. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.