research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A nickel(II) complex with an unsymmetrical tetra­dentate chelating ligand derived from pyridine-2,6-dicarbaldehyde and 2-amino­thio­phenol

crossmark logo

aDepartment of Chemistry and Chemical Technology, Tafila Technical University, Tafila, Jordan, bKarlsruher Institut für Technologie (KIT), Institut für Anorganische Chemie, Engesserstrasse 15, 76131 Karlsruhe, Germany, and cKarlsruher Institut für Technologie (KIT), Institut für Nanotechologie, Hermann von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
*Correspondence e-mail: annie.powell@kit.edu

Edited by S. Parkin, University of Kentucky, USA (Received 5 July 2023; accepted 1 August 2023; online 4 August 2023)

[(2-{[6-(1,3-Benzo­thia­zol-2-yl)pyridin-2-yl]carbonyl­aza­nid­yl}phen­yl)sulf­anido]nickel(II), [Ni(C19H11N3OS2)], crystallizes in the centrosymmetric monoclinic space group P21/n with one mol­ecule in the asymmetric unit. The expected ligand, a bis-Schiff base derived from pyridine-2,6-dicarbaldehyde and 2-amino­thio­phenol, had modified in situ in a both unexpected and unsymmetrical fashion. One arm had cyclized to form a benzo[d]thia­zol-2-yl functionality, while the imine linkage of the second arm had oxidized to an amide group. The geometry about the central NiII atom is distorted square-planar N3S. The mol­ecules form supra­molecular face-to-face dimers via rather strong ππ stacking inter­actions, with these dimers then linked into chains via pairwise C—H⋯O inter­actions.

1. Chemical context

In recent decades, Schiff base chemistry has proved a both fruitful and flexible source of organic ligands for coordination chemistry. Double Schiff bases, derived from two equivalents of an amine with a pyridine-2,6-dicarbaldehyde or a 2,6-phenoldicarbaldehyde, provide planar multidentate ligands that can mimic the properties of macrocyclic ligands without themselves being strictly cyclic.

[Scheme 1]

In this context, we were inter­ested in developing such double Schiff base ligands that are redox-active, and targeted ligand 2, with the intention that formation or cleavage of a di­sulfide bond would give the necessary redox activity. However, in situ formation of the ligand through condensation of pyridine-2,6-dicarbaldehyde with two equivalents of 2-amino­thio­phenol, followed by reaction with Ni(NO3)2·3H2O in refluxing methanol, did not yield the expected NiII complex of ligand 2, but instead gave the title complex 1 in good yield, in which the two ligand arms have both been oxidized, but in very different manners.

2. Structural commentary

Compound 1 crystallizes in the monoclinic space group P21/n with one mol­ecule in the asymmetric unit (Fig. 1[link]). Selected bond lengths and angles are listed in Table 1[link]. The central Ni1 atom has a distorted square-planar geometry with an N3S donor set, in which the X—Ni1—Y angles (Table 1[link]) differ by up to 15° from either 90° or 180°. The whole mol­ecule can be considered as planar, with the r.m.s. deviation of the atoms from their mean plane being 0.0867 Å, and the oxygen atom O1 showing the largest deviation from the plane of 0.210 (3) Å. It is immediately clear from the structure that the expected nickel complex of ligand 2 had not formed. Instead, the two ligand arms have each been differently oxidized in such a way as to yield a very unsymmetrical ligand.

Table 1
Selected geometric parameters (Å, °)

Ni1—S1 2.1508 (9) N1—C6 1.405 (4)
Ni1—N1 1.871 (2) N1—C7 1.354 (4)
Ni1—N2 1.843 (2) N2—C8 1.343 (3)
Ni1—N3 1.952 (2) N2—C12 1.332 (4)
S1—C1 1.761 (3) N3—C13 1.328 (4)
S2—C13 1.706 (3) N3—C14 1.395 (3)
S2—C19 1.733 (3) Ni1—Ni1i 3.3305 (9)
O1—C7 1.229 (4)    
       
N1—Ni1—S1 89.40 (8) C1—S1—Ni1 97.34 (10)
N1—Ni1—N3 165.47 (10) C13—S2—C19 88.68 (14)
N2—Ni1—S1 172.45 (8) O1—C7—N1 128.0 (3)
N2—Ni1—N1 83.74 (11) O1—C7—C8 120.7 (3)
N2—Ni1—N3 81.75 (10) N1—C7—C8 111.2 (2)
N3—Ni1—S1 105.05 (8)    
Symmetry code: (i) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
Mol­ecular structure of 1 with atom labelling; displacement ellipsoids represent 50% probability levels

The expected imine linkage of arm 1 (that including atom S1) has been oxidized to an amido functionality, as is clear from the short C7—O1 bond length of 1.229 (4) Å. There are two possible scenarios here. One is that one of the aldehyde groups oxidized to the corresponding carb­oxy­lic acid, followed by reaction with the amino­thio­phenol to form the amide. The other is that the Schiff base arm formed as expected, but with subsequent nucleophilic attack by water on the imino carbon atom, followed by oxidation to yield the amide. No significant electron density corresponding to a possible H atom could be found near S1, so this can be assigned as a deprotonated thio­pheno­lato group. C15 forms an intra­molecular C—H⋯S hydrogen bond to S1 (Table 2[link]), while any H atom bonded to S1 would lead to an unrealistic short contact to H15. NiII complexes of ligands containing such amido­benzene­thiol­ate units have previously been reported (Seratne et al., 2018[Senaratne, N. K., Mwania, T. M., Moore, C. E. & Eichhorn, D. M. (2018). Inorg. Chim. Acta, 476, 27-37.]), and their Ni—N and Ni—S distances [1.874 (3)–1.896 (9) Å and 2.126 (4)–2.1343 (9) Å] are similar to the corresponding bond lengths in 1, 1.871 (2) and 2.1508 (9) Å, respectively, although Ni1—N1 in 1 is slightly shorter, and Ni1—S1 slightly longer, than in these literature values.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1ii 0.93 2.27 3.135 (4) 155
C15—H15⋯S1 0.93 2.66 3.420 (3) 139
Symmetry code: (ii) [-x+1, -y+1, -z].

The other arm of the ligand is also oxidized relative to the expected structure of 2, but here this has involved an oxidative cyclization, in which the sulfur atom S2 has initially attacked the imine carbon C13 to give a benzo[d]thia­zol-2-yl functional group. Such oxidative cyclization has been previously observed in a related ligand system in which a 2,6-phenoldicarbaldehyde was condensed with two equivalents of 2-amino­thio­phenol (Gulcan et al., 2014[Gulcan, M., Karataş, Y., Işık, S., Öztürk, G., Akbaş, E. & Şahin, E. (2014). J. Fluoresc. 24, 1679-1686.]). An NiII complex with a chelating 2-(2′-pyrid­yl)-benzo­thia­zole ligand has previously been structurally characterized (Patel et al., 2010[Patel, R. N., Singh, A., Shukla, K. K., Patel, D. K. & Sondhiya, V. P. (2010). Indian J. Chem. 49, 1601-1606.]), in which the Ni—N(thia­zole) distance was 2.116 (2) Å, thus significantly longer than Ni1—N3 in 1 [1.952 (2) Å]. However, the reported complex was octa­hedral rather than square planar, and the benzo­thia­zole N atom was trans to an aqua ligand rather than the negatively charged deprotonated N atom in 1. The benzo­thia­zolyl arm is clearly neutral, while the other formally carries negative charges on S1 and N1, with the ligand as a whole thus a dianion. This is consistent with the calculated valency for Ni1 of 2.14 obtained from bond-valence-sum analysis (Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]; Liu & Thorp, 1993[Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102-4105.]).

3. Supra­molecular features

In the crystal, the mol­ecules of 1 are organized into centrosymmetric π-stacked supra­molecular dimers (Fig. 2[link]), with the shortest inter­molecular distance within such a dimer involving the two respective nickel atoms, with Ni1⋯Ni1i = 3.3305 (9) Å [symmetry code: (i) −x + 1, −y + 1, −z + 1]. These dimers are then linked into chains running parallel to the crystal c-axis by pairwise C9—H9··O1ii H-bonds (Table 2[link]) [symmetry code: (ii) −x + 1, −y + 1, −z].

[Figure 2]
Figure 2
Supra­molecular inter­actions in the crystal structure of 1. Hydrogen bonds are shown as purple dashed lines. Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z; (iii) x, y, z + 1.

4. Database survey

A survey of the Cambridge Structural Database (CSD, v5.44, including updates to June 2023; Groom et al. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) showed that no crystal structure of 1, nor any other complex of the same or related unsymmetrical ligand, nor the free ligand itself, has previously been reported. Two complexes of the bis-deprotonated target ligand 2 have been reported: the Zn2+ complex BTAQZN10 (Goedken & Christoph, 1973[Goedken, V. L. & Christoph, G. G. (1973). Inorg. Chem. 12, 2316-2320.]) and the methyl­thallium complex TPAMTL (Henrick et al., 1977[Henrick, K. F., Matthews, R. W. & Tasker, P. A. (1977). Inorg. Chim. Acta, 25, L31-L32.]). In a further 13 structures, the two S atoms are bonded to an organic functional group (usually methyl, but in some cases the sulfur atoms are linked via di- or tri­methyl­ene chains to form a macrocycle); in these ligands the S atoms are unable to carry a negative charge. The structures of six complexes of the symmetrical ligand 2,6-bis-(benzo[d]thia­zol-2-yl)pyridine were found, but all with metals other than nickel. 11 structures were found for complexes with ligands in which a pyridine ring carried either one or two doubly deprotonated 2-thio­pheno­lato­amido groups, but again no nickel complexes were among these. The structures of 15 further complexes, in which the S atom(s) of these ligands carry an organic functional group, were found. Six of these were nickel complexes, but were all octa­hedral hexa­coordinate, in contrast to the square-planar 1.

5. Synthesis and crystallization

2-Amino­thio­phenol (63 mg, 0.50 mmol) in methanol (5 ml) was added to a solution of pyridine-2,6-dicarbaldehyde (34 mg, 0.25mmol) in methanol (15ml). The mixture was stirred for 15 minutes at room temperature before Ni(NO3)2·3H2O (60 mg, 0.25 mmol) was added as a solid. The mixture was heated under reflux for 2 h, after which it was allowed to cool to room temperature, was filtered, and the filtrate left to stand undisturbed. Black needle-shaped crystals of the compound, suitable for X-ray diffraction, were obtained as the methanol evaporated slowly after three days. The resulting crystals were filtered and washed with cold methanol. Yield (35%) based on Ni.

Elemental analysis calculatedd (%) for C19H11N3NiOS2: C 54.28, H 2.62, N 10.00; found: C 54.16, H 2.57, N 9.91

IR: ν (cm−1): 3282 (w), 3263 (w), 3238 (w), 3224 (m), 3207 (w), 1640 (s), 1521 (s), 1446 (s), 1392 (w), 1369 (m), 1324 (w), 1221 (w), 1190 (w), 1169 (w), 1129 (m), 1067 (m), 870 (w), 837 (m), 795 (s), 771 (w), 755 (w), 710 (w), 620 (w), 559 (w), 507 (w), 480 (w), 461 (w), 438 (w), 423 (w).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Non-H atoms were refined anisotropically. H atoms were placed in geometrically idealized positions, riding on their respective C atoms with Uiso(H) = 1.2Ueq(C)

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C19H11N3OS2)]
Mr 420.14
Crystal system, space group Monoclinic, P21/n
Temperature (K) 291
a, b, c (Å) 8.6790 (2), 17.3282 (7), 11.2211 (4)
β (°) 101.002 (3)
V3) 1656.54 (10)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.16
Crystal size (mm) 0.43 × 0.04 × 0.03
 
Data collection
Diffractometer SuperNova, Dual, Cu at zero, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO, including ABSPACK. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.675, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9403, 3155, 2567
Rint 0.022
(sin θ/λ)max−1) 0.613
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.118, 1.04
No. of reflections 3155
No. of parameters 235
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.36
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO, including ABSPACK. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2017[Brandenburg, K. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.39.46e (Rigaku OD, 2018); cell refinement: CrysAlis PRO 1.171.39.46e (Rigaku OD, 2018); data reduction: CrysAlis PRO 1.171.39.46e (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND 4 (Brandenburg, 2017); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

[(2-{[6-(1,3-Benzothiazol-2-yl)pyridin-2-yl]carbonylazanidyl}phenyl)sulfanido]nickel(II) top
Crystal data top
[Ni(C19H11N3OS2)]F(000) = 856
Mr = 420.14Dx = 1.685 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 8.6790 (2) ÅCell parameters from 3558 reflections
b = 17.3282 (7) Åθ = 2.5–69.9°
c = 11.2211 (4) ŵ = 4.16 mm1
β = 101.002 (3)°T = 291 K
V = 1656.54 (10) Å3Needle, black
Z = 40.43 × 0.04 × 0.03 mm
Data collection top
SuperNova, Dual, Cu at zero, Eos
diffractometer
3155 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source2567 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.022
Detector resolution: 8.0534 pixels mm-1θmax = 71.1°, θmin = 4.8°
ω scansh = 710
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 2021
Tmin = 0.675, Tmax = 1.000l = 1313
9403 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0625P)2 + 0.6572P]
where P = (Fo2 + 2Fc2)/3
3155 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.34262 (5)0.45461 (3)0.42355 (4)0.04539 (17)
S10.38510 (9)0.35936 (5)0.54841 (7)0.0545 (2)
S20.05248 (9)0.65284 (5)0.47762 (7)0.0564 (2)
O10.5026 (3)0.41006 (16)0.1239 (2)0.0731 (7)
N10.4482 (3)0.40139 (14)0.3182 (2)0.0475 (5)
N20.3088 (3)0.52692 (15)0.3009 (2)0.0479 (5)
N30.2213 (2)0.52852 (15)0.4992 (2)0.0464 (5)
C10.5054 (3)0.30515 (17)0.4699 (3)0.0510 (7)
C20.5821 (4)0.23886 (19)0.5187 (3)0.0613 (8)
H20.5696610.2219410.5949920.074*
C30.6770 (4)0.1975 (2)0.4553 (4)0.0691 (9)
H30.7290530.1534510.4891130.083*
C40.6935 (4)0.2223 (2)0.3413 (4)0.0679 (9)
H40.7562010.1941890.2983540.082*
C50.6186 (3)0.28795 (19)0.2902 (3)0.0594 (8)
H50.6304440.3036220.2132040.071*
C60.5241 (3)0.33128 (17)0.3547 (3)0.0486 (6)
C70.4485 (3)0.43536 (19)0.2096 (3)0.0531 (7)
C80.3688 (3)0.5123 (2)0.2014 (2)0.0527 (7)
C90.3518 (4)0.5655 (2)0.1084 (3)0.0656 (9)
H90.3938050.5560560.0395240.079*
C100.2713 (4)0.6330 (2)0.1194 (3)0.0709 (10)
H100.2607530.6696130.0578780.085*
C110.2056 (4)0.6471 (2)0.2215 (3)0.0624 (8)
H110.1494480.6919640.2289230.075*
C120.2277 (3)0.59104 (19)0.3115 (3)0.0505 (7)
C130.1742 (3)0.58832 (18)0.4275 (3)0.0479 (6)
C140.1634 (3)0.53493 (17)0.6065 (3)0.0477 (6)
C150.1941 (4)0.48480 (19)0.7055 (3)0.0555 (7)
H150.2574440.4415870.7047340.067*
C160.1273 (4)0.5015 (2)0.8048 (3)0.0648 (8)
H160.1465430.4690430.8719690.078*
C170.0323 (4)0.5655 (2)0.8065 (3)0.0671 (9)
H170.0105530.5749150.8749460.081*
C180.0003 (4)0.6153 (2)0.7104 (3)0.0620 (8)
H180.0648780.6580340.7118460.074*
C190.0681 (3)0.59909 (19)0.6096 (3)0.0525 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0467 (3)0.0507 (3)0.0415 (3)0.0033 (2)0.01543 (19)0.0003 (2)
S10.0616 (4)0.0555 (5)0.0508 (4)0.0004 (3)0.0219 (3)0.0050 (3)
S20.0559 (4)0.0555 (5)0.0600 (4)0.0036 (3)0.0168 (3)0.0024 (4)
O10.0971 (17)0.0780 (17)0.0525 (12)0.0047 (14)0.0353 (12)0.0035 (12)
N10.0491 (11)0.0501 (14)0.0458 (12)0.0054 (11)0.0154 (9)0.0003 (11)
N20.0453 (11)0.0565 (15)0.0430 (12)0.0044 (11)0.0115 (9)0.0005 (11)
N30.0428 (11)0.0536 (14)0.0452 (12)0.0062 (10)0.0143 (9)0.0040 (11)
C10.0557 (15)0.0431 (16)0.0562 (16)0.0079 (13)0.0158 (13)0.0041 (13)
C20.0726 (19)0.0483 (18)0.0645 (19)0.0051 (16)0.0167 (16)0.0015 (15)
C30.076 (2)0.0449 (18)0.086 (3)0.0026 (16)0.0166 (19)0.0030 (17)
C40.072 (2)0.0515 (19)0.084 (2)0.0001 (16)0.0237 (18)0.0175 (18)
C50.0619 (17)0.0582 (19)0.0615 (19)0.0075 (15)0.0203 (14)0.0115 (15)
C60.0491 (14)0.0458 (16)0.0524 (15)0.0099 (12)0.0137 (12)0.0088 (13)
C70.0550 (15)0.0629 (19)0.0441 (15)0.0077 (14)0.0164 (12)0.0066 (14)
C80.0519 (14)0.066 (2)0.0414 (14)0.0036 (14)0.0128 (11)0.0009 (14)
C90.0668 (19)0.086 (3)0.0488 (17)0.0057 (18)0.0224 (14)0.0096 (17)
C100.077 (2)0.085 (3)0.0524 (18)0.011 (2)0.0162 (15)0.0239 (18)
C110.0569 (17)0.068 (2)0.0627 (19)0.0094 (16)0.0131 (14)0.0150 (16)
C120.0437 (13)0.0591 (18)0.0496 (15)0.0003 (13)0.0117 (11)0.0045 (14)
C130.0446 (13)0.0515 (17)0.0487 (15)0.0045 (13)0.0114 (11)0.0023 (13)
C140.0468 (14)0.0496 (16)0.0486 (14)0.0112 (12)0.0140 (11)0.0068 (12)
C150.0621 (16)0.0563 (18)0.0519 (16)0.0039 (15)0.0205 (13)0.0047 (14)
C160.086 (2)0.063 (2)0.0501 (17)0.0095 (18)0.0248 (16)0.0021 (15)
C170.079 (2)0.072 (2)0.0581 (19)0.0118 (18)0.0330 (17)0.0155 (17)
C180.0654 (18)0.063 (2)0.0631 (19)0.0049 (16)0.0261 (15)0.0161 (16)
C190.0494 (14)0.0577 (18)0.0529 (16)0.0101 (14)0.0163 (12)0.0099 (14)
Geometric parameters (Å, º) top
Ni1—S12.1508 (9)C5—H50.9300
Ni1—N11.871 (2)C5—C61.409 (4)
Ni1—N21.843 (2)C7—C81.496 (5)
Ni1—N31.952 (2)C8—C91.380 (4)
S1—C11.761 (3)C9—H90.9300
S2—C131.706 (3)C9—C101.379 (5)
S2—C191.733 (3)C10—H100.9300
O1—C71.229 (4)C10—C111.396 (5)
N1—C61.405 (4)C11—H110.9300
N1—C71.354 (4)C11—C121.387 (4)
N2—C81.343 (3)C12—C131.464 (4)
N2—C121.332 (4)C14—C151.395 (4)
N3—C131.328 (4)C14—C191.390 (4)
N3—C141.395 (3)C15—H150.9300
C1—C21.387 (4)C15—C161.381 (4)
C1—C61.408 (4)C16—H160.9300
C2—H20.9300C16—C171.384 (5)
C2—C31.387 (5)C17—H170.9300
C3—H30.9300C17—C181.368 (5)
C3—C41.382 (5)C18—H180.9300
C4—H40.9300C18—C191.403 (4)
C4—C51.380 (5)Ni1—Ni1i3.3305 (9)
N1—Ni1—S189.40 (8)N1—C7—C8111.2 (2)
N1—Ni1—N3165.47 (10)N2—C8—C7111.5 (3)
N2—Ni1—S1172.45 (8)N2—C8—C9120.0 (3)
N2—Ni1—N183.74 (11)C9—C8—C7128.6 (3)
N2—Ni1—N381.75 (10)C8—C9—H9120.6
N3—Ni1—S1105.05 (8)C10—C9—C8118.8 (3)
C1—S1—Ni197.34 (10)C10—C9—H9120.6
C13—S2—C1988.68 (14)C9—C10—H10119.5
C6—N1—Ni1120.08 (18)C9—C10—C11121.0 (3)
C7—N1—Ni1116.1 (2)C11—C10—H10119.5
C7—N1—C6123.8 (2)C10—C11—H11121.5
C8—N2—Ni1117.4 (2)C12—C11—C10116.9 (3)
C12—N2—Ni1120.79 (19)C12—C11—H11121.5
C12—N2—C8121.8 (3)N2—C12—C11121.4 (3)
C13—N3—Ni1112.18 (18)N2—C12—C13108.4 (3)
C13—N3—C14109.9 (2)C11—C12—C13130.2 (3)
C14—N3—Ni1137.8 (2)N3—C13—S2116.7 (2)
C2—C1—S1122.0 (2)N3—C13—C12116.8 (3)
C2—C1—C6119.9 (3)C12—C13—S2126.4 (2)
C6—C1—S1118.1 (2)N3—C14—C15126.3 (3)
C1—C2—H2119.6C19—C14—N3113.5 (3)
C1—C2—C3120.8 (3)C19—C14—C15120.1 (3)
C3—C2—H2119.6C14—C15—H15121.1
C2—C3—H3120.3C16—C15—C14117.8 (3)
C4—C3—C2119.4 (3)C16—C15—H15121.1
C4—C3—H3120.3C15—C16—H16119.3
C3—C4—H4119.4C15—C16—C17121.5 (3)
C5—C4—C3121.1 (3)C17—C16—H16119.3
C5—C4—H4119.4C16—C17—H17119.0
C4—C5—H5120.0C18—C17—C16122.0 (3)
C4—C5—C6120.0 (3)C18—C17—H17119.0
C6—C5—H5120.0C17—C18—H18121.5
N1—C6—C1114.6 (2)C17—C18—C19116.9 (3)
N1—C6—C5126.7 (3)C19—C18—H18121.5
C1—C6—C5118.7 (3)C14—C19—S2111.0 (2)
O1—C7—N1128.0 (3)C14—C19—C18121.7 (3)
O1—C7—C8120.7 (3)C18—C19—S2127.2 (3)
Ni1—S1—C1—C2173.1 (2)C2—C1—C6—N1176.4 (3)
Ni1—S1—C1—C66.3 (2)C2—C1—C6—C51.4 (4)
Ni1—N1—C6—C13.2 (3)C2—C3—C4—C50.7 (5)
Ni1—N1—C6—C5174.4 (2)C3—C4—C5—C60.4 (5)
Ni1—N1—C7—O1176.1 (3)C4—C5—C6—N1176.0 (3)
Ni1—N1—C7—C83.1 (3)C4—C5—C6—C11.5 (4)
Ni1—N2—C8—C72.4 (3)C6—N1—C7—O15.4 (5)
Ni1—N2—C8—C9177.8 (2)C6—N1—C7—C8175.4 (2)
Ni1—N2—C12—C11177.9 (2)C6—C1—C2—C30.3 (5)
Ni1—N2—C12—C132.0 (3)C7—N1—C6—C1178.3 (3)
Ni1—N3—C13—S2174.38 (13)C7—N1—C6—C54.1 (4)
Ni1—N3—C13—C123.7 (3)C7—C8—C9—C10179.1 (3)
Ni1—N3—C14—C156.6 (5)C8—N2—C12—C112.0 (4)
Ni1—N3—C14—C19174.1 (2)C8—N2—C12—C13178.0 (2)
S1—Ni1—N1—C66.08 (19)C8—C9—C10—C111.1 (5)
S1—Ni1—N1—C7175.3 (2)C9—C10—C11—C121.2 (5)
S1—C1—C2—C3179.6 (3)C10—C11—C12—N20.3 (5)
S1—C1—C6—N12.9 (3)C10—C11—C12—C13179.8 (3)
S1—C1—C6—C5179.2 (2)C11—C12—C13—S25.9 (5)
O1—C7—C8—N2175.8 (3)C11—C12—C13—N3176.3 (3)
O1—C7—C8—C94.0 (5)C12—N2—C8—C7177.6 (2)
N1—Ni1—N2—C80.6 (2)C12—N2—C8—C92.2 (4)
N1—Ni1—N2—C12179.4 (2)C13—S2—C19—C140.7 (2)
N1—C7—C8—N23.5 (4)C13—S2—C19—C18178.1 (3)
N1—C7—C8—C9176.7 (3)C13—N3—C14—C15177.0 (3)
N2—Ni1—N1—C6177.1 (2)C13—N3—C14—C192.4 (3)
N2—Ni1—N1—C71.6 (2)C14—N3—C13—S23.0 (3)
N2—C8—C9—C100.6 (5)C14—N3—C13—C12178.9 (2)
N2—C12—C13—S2174.2 (2)C14—C15—C16—C170.3 (5)
N2—C12—C13—N33.7 (4)C15—C14—C19—S2178.6 (2)
N3—Ni1—N1—C6179.9 (3)C15—C14—C19—C180.3 (4)
N3—Ni1—N1—C71.4 (5)C15—C16—C17—C180.0 (5)
N3—Ni1—N2—C8179.9 (2)C16—C17—C18—C190.5 (5)
N3—Ni1—N2—C120.2 (2)C17—C18—C19—S2178.1 (2)
N3—C14—C15—C16179.1 (3)C17—C18—C19—C140.7 (5)
N3—C14—C19—S20.8 (3)C19—S2—C13—N32.2 (2)
N3—C14—C19—C18179.7 (3)C19—S2—C13—C12179.9 (3)
C1—C2—C3—C40.8 (5)C19—C14—C15—C160.2 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1ii0.932.273.135 (4)155
C15—H15···S10.932.663.420 (3)139
Symmetry code: (ii) x+1, y+1, z.
 

Acknowledgements

We acknowledge support by the KIT-Publication Fund of the Karlsruhe Institute of Technology.

Funding information

Funding for this research was provided by: Helmholtz-Gemeinschaft (POF Program MSE).

References

First citationBrandenburg, K. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoedken, V. L. & Christoph, G. G. (1973). Inorg. Chem. 12, 2316–2320.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGulcan, M., Karataş, Y., Işık, S., Öztürk, G., Akbaş, E. & Şahin, E. (2014). J. Fluoresc. 24, 1679–1686.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHenrick, K. F., Matthews, R. W. & Tasker, P. A. (1977). Inorg. Chim. Acta, 25, L31–L32.  CSD CrossRef CAS Web of Science Google Scholar
First citationLiu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102–4105.  CrossRef CAS Web of Science Google Scholar
First citationPatel, R. N., Singh, A., Shukla, K. K., Patel, D. K. & Sondhiya, V. P. (2010). Indian J. Chem. 49, 1601–1606.  Google Scholar
First citationRigaku OD (2018). CrysAlis PRO, including ABSPACK. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSenaratne, N. K., Mwania, T. M., Moore, C. E. & Eichhorn, D. M. (2018). Inorg. Chim. Acta, 476, 27–37.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds