research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structures of rac-2,4:3,5-di­methyl­ene xylitol ­derivatives

crossmark logo

aProgram in Judaic Studies-Box 1826, Brown University, Providence, Rhode Island 02912, USA, and bDepartment of Chemistry-Box H, Brown University, Providence, Rhode Island 02912, USA
*Correspondence e-mail: paul_williard@brown.edu

Edited by S. Parkin, University of Kentucky, USA (Received 10 July 2023; accepted 25 July 2023; online 4 August 2023)

The structures of three racemic (tetra­hydro-[1,3]dioxino[5,4-d][1,3]dioxin-4-yl)methanol derivatives are reported, namely, 4-[(methyl­sulfon­yloxy)meth­yl]-2,4,4a,6,8,8a-hexa­hydro-[1,3]dioxino[5,4-d][1,3]dioxine, C8H14O7S, 1, 4-[(benz­yloxy)meth­yl]-2,4,4a,6,8,8a-hexa­hydro-[1,3]dioxino[5,4-d][1,3]dioxine, C14H18O5, 2, and 4-[(anilinocarbon­yl)meth­yl]-2,4,4a,6,8,8a-hexa­hydro-[1,3]dioxino[5,4-d][1,3]dioxine, C14H17NO6, 3. Mesylate ester 1 at 173 K has triclinic P[\overline{1}] symmetry and both benzyl ether 2 at 173 K and phenyl urethane 3 have monoclinic P21/c symmetry. These structures are of inter­est because of the conformation of the cis-fused tetra­oxadeca­lin ring system. This cis-bi­cyclo­[4.4.0]decane ring system, i.e. cis-deca­lin, can undergo conformational equilibration. In the two most stable conformers, both six-membered rings adopt a chair conformation. However, there are significant consequences in these two stable conformers, with heteroatom substitution at the 1,3,5,7-ring positions as described. Only one conformation, denoted as `concave' or `inside', is found in these crystal structures. This is consistent with previously reported structures of the 1,1-geminal dihy­droxy aldehyde and tosyl­ate analogs.

1. Chemical context

Naturally occurring monosaccharides provide an abundant source of inexpensive, often chiral, starting materials for the syntheses of numerous sophisticated natural products, non-natural physiologically active com­pounds, and ligands for stereoselective catalysts (Ferrier, 2003[Ferrier, R. J. (2003). Carbohydrate Chemistry, Vol. 34, pp. 338-366. London: Royal Society of Chemistry.]). Over the past decade or so, a sharply increasing emphasis is seen on the use of these sugars and also on chemical transformations among the various diastereomeric and homologous series of monosaccharides. Despite this flurry of activity, monosaccharide derivatives still provide a rich source of challenging structural and conformational issues due to the anomeric and gauche inter­actions associated with the O atoms.

[Scheme 1]

In this article, we describe the crystal structures of three cis-fused [4.4.0]bi­cyclo methyl­ene acetals originally derived from the most inexpensive and readily available five-carbon meso polyalcohol, i.e. xylitol. The chemical structures of these com­pounds are shown in the scheme[link]. The standard chemical numbering for the 1,3,5,7-tetra­oxadeca­lin ring system is shown in Fig. 1[link]. The atoms in all three crystal structures reported are labeled following this pattern. Compound 1 is a mesylate, with R = mesyl (Zarubinskii & Danilov, 1972[Zarubinskii, G. M. & Danilov, S. N. (1972). Zh. Obshch. Khim. 42, 2758-2763.]), com­pound 2 is a benzyl ether, with R = benzyl (Che et al., 2017[Che, R., Zhu, Q., Yu, J., Li, J., Yu, J. & Lu, W. (2017). Tetrahedron, 73, 6172-6180.]), and com­pound 3 is an N-phenyl­urethane, with R = –CO–NH–Ph. Since xylitol itself is achiral and we carried out no enanti­oselective reactions to prepare chiral derivatives, the structures we report are of racemates and hence centrosymmetric, although it is possible to obtain enanti­omerically pure com­pounds from more com­plicated synthetic routes.

[Figure 1]
Figure 1
The structures and atom numbering for com­pounds 13. For 1, R = SO2–CH3, for 2, R = CH2–Ph, and for 3, R = CO–NH–Ph.

2. Structural commentary

The defining characteristic of the cis-1,3,5,7-tetra­oxa-[4.4.0]bi­cyclo­deca­lin ring system is depicted in Figs. 2[link] and 3[link]. Fig. 2[link] illustrates the two lowest-energy all-chair conformations of this skeleton. The O atoms in these conformers adopt a tetra­hedral geometry and the axial lone pair of electrons on each of these O atoms within the deca­lin ring are depicted. This feature was noted previously (Lemieux & Howard, 1963[Lemieux, R. U. & Howard, J. (1963). Can. J. Chem. 41, 393-398.]; Burkert, 1980[Burkert, U. (1980). J. Comput. Chem. 1, 192-198.]; Taskinen, 2009[Taskinen, E. (2009). J. Phys. Org. Chem. 22, 761-768.]) and described in detail in a mini-review summarizing over two decades of chemical work largely from one laboratory (Fuchs, 2013[Fuchs, B. (2013). Isr. J. Chem. 53, 45-52.]). Trivial nomenclature has evolved to describe these two conformations as inside/concave or outside/convex. These descriptions derive from the orientation of the axial lone pairs on the ring O atoms relative to the overall shape of the deca­lin ring system. For the com­pletely unsubstituted tetra­oxydeca­lin, it is not immediately obvious which of these two conformers is more stable.

[Figure 2]
Figure 2
Stable conformations of cis-1,3,5,7-tetra­oxa-[4.4.0]bi­cyclo­deca­lin.
[Figure 3]
Figure 3
The half-cylinder mol­ecular shape of cis-1,3,5,7-tetra­oxa-[4.4.0]bi­cyclo­deca­lin.

Compounds 13 also incorporate a derivatized hy­droxy­methyl substituent at position C4 that is trans to both bridgehead H atoms. Consequently, this substituent must be equatorial in the concave/inside conformer and axial in the convex/outside conformer. Conformational analysis suggests that the concave/inside conformer is favored, as seen in all these crystal structures. Fig. 3[link] highlights this overall geometry found in all three crystal structures. The overall shape of this mol­ecule resembles a cylinder that has been cut in half. It is noteworthy that this mol­ecular shape has been examined for its potential to chelate cations as a polydentate ligand (Ganguly & Fuchs, 2001[Ganguly, B. & Fuchs, B. (2001). J. Phys. Org. Chem. 14, 488-494.]) and also as a cryptand (Abramson et al., 2003[Abramson, S., Ashkenazi, E., Frische, K., Goldberg, I., Golender, L., Greenwald, M., Lemcoff, N. G., Madar, R., Weinman, S. & Fuchs, B. (2003). Chem. Eur. J. 9, 6071-6082.]).

Fig. 4[link] is an overlay of all three crystal structures obtained by minimizing the positional differences of the four ring O atoms in all three structures. No significant difference in the geometry of the tetra­oxabicyclic ring in these three structures is discernible. It is noteworthy that a gauche conformation is found for the O3—C4—C9—O8 torsion angle, with values of 61.8 (2) and 81.6 (1)° in mesylate 1 and benzyl ether 2, respectively. However, a relatively anti­periplanar torsion angle of 175.9 (8)° exists in urethane 3. This is likely the consequence of stabilization by the single inter­molecular hydrogen bond observed in the urethane structure (see below).

[Figure 4]
Figure 4
Structural overlay of com­pounds 13.

Figs. 5[link]–7[link][link] display the all-atom displacement ellipsoid plots of com­pounds 13.

[Figure 5]
Figure 5
Displacement ellipsoid plot (50% probability) of com­pound 1.
[Figure 6]
Figure 6
Displacement ellipsoid plot (50% probability) of com­pound 2.
[Figure 7]
Figure 7
Displacement ellipsoid plot (50% probability) of com­pound 3.

3. Supra­molecular features

An intra­molecular N—H⋯O hydrogen bond is observed in phenyl urethane derivative 3 between the –NH substituent and the carbonyl O atom of the urethane functional group. This is described as D—H⋯A (N1—H1⋯·O9i), with N1—H1 = 0.863 (16) Å, H1⋯O9i = 1.969 (16) Å, N1⋯O9i = 2.8025 (13) Å and N1—H1⋯O9i = 161.9 (14)° [symmetry code: (i) x, y − 1, z]. This is shown in Fig. 8[link].

[Figure 8]
Figure 8
Hydrogen bonding in com­pound 3.

No other hydrogen-bond inter­actions are possible in any of the structures, although there are short C—H⋯O inter­actions between the H2B atom on a methyl­ene acetal and an adjacent acetal O5ii atom [symmetry code: (ii) x, −y + [{3\over 2}], z + [{1\over 2}]] in urethane structure 3 that is characteristically seen in all of the structures. This is characterized in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O9i 0.863 (16) 1.969 (16) 2.8025 (13) 161.9 (14)
C2—H2B⋯O5ii 0.99 2.51 3.4515 (15) 159
Symmetry codes: (i) [x, y-1, z]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

No π-stacking inter­actions of the aromatic rings are observed.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, update of November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar structures returned two relevant entries: 2,4:3,5-di-O-methyl­ene-1-p-toluene­sulfonyl xylitol (CSD refcode HALSAO; Rodier et al., 1993[Rodier, N., Ronco, G., Julien, R., Postel, D. & Villa, P. (1993). Acta Cryst. C49, 2032-2033.]) and dihy­droxy-2,4:3,5-di­methyl­ene-L-xylose (SIVHUA; Smith et al., 1991[Smith, D. A., Baker, D. & Rahman, A. F. M. M. (1991). Struct. Chem. 2, 65-70.]).

5. Synthesis and crystallization

Compounds 1 and 2 were prepared and crystallized by the following general procedure. To a solution of racemic 2,4:3,5-di­methyl­ene xylitol (Hann et al., 1944[Hann, R. M., Ness, A. T. & Hudson, C. S. (1944). J. Am. Chem. Soc. 66, 670-673.]) in pyridine, 1.1 molar equivalents of either mesyl chloride or benzyl bromide were added and stirred at room temperature until the diacetal dissolved (∼4 h). The resulting reaction mixtures were allowed to stand for 18 h at room temperature and then poured onto crushed ice. Solid crystalline material formed upon slow evaporation of the reaction mixture on sitting in a fume hood overnight. Recrystallization from ethanol pro­duced diffraction-quality crystals. 1H and 13C NMR spectra of the crystalline samples indicated no discernible impurities and are provided in the supporting information.

Compound 1, 13C{1H} NMR (298 K, CDCl3, 100.5 MHz): δ 93.07, 92.85, 75.49, 70.13, 69.42, 69.32, 68.30, 37.36.

Compound 2, 13C{1H} NMR (298 K, CDCl3, 100.5 MHz): δ 137.94, 128.44, 127.85, 127.79, 93.21, 93.16, 77.24, 73.67, 70.63, 70.16, 69.52, 68.49.

For urethane derivative 3, a solution of racemic 2,4:3,5-di­methyl­ene xylitol, 1.1 molar equivalents of phenyl iso­cyanate, and pyridine was heated to reflux for 2 h protected from atmospheric moisture by a drying tube. On cooling, the derivative precipitated from the solution and was collected by filtration. Recrystallization from acetone yielded diffraction-quality crystals. 1H and 13C NMR spectra of the crystalline samples indicated no discernible impurities and are provided in the supporting information.

Compound 3, 13C{1H} NMR (298 K, d6-DMSO, 100.5 MHz): δ 153.76, 139.49, 129.21, 122.92, 118.64, 92.56, 92.17, 75.57, 69.98, 69.93, 69.12, 63.86.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were added automatically using a riding model with Uiso(H) = 1.2Ueq(C). The H atom on N1 in urethane 3 was located in a difference Fourier map and refined freely.

Table 2
Experimental details

Experiments were carried out at 173 K with Mo Kα radiation. Absorption was corrected for by multi-scan methods (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]).

  1 2 3
Crystal data
Chemical formula C8H14O7S C14H18O5 C14H17NO6
Mr 254.25 266.28 295.28
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c Monoclinic, P21/c
a, b, c (Å) 4.7401 (4), 7.3325 (6), 15.9604 (14) 20.5429 (9), 4.4574 (2), 13.9148 (7) 22.909 (2), 4.8973 (5), 12.2331 (14)
α, β, γ (°) 90.019 (3), 93.610 (3), 106.439 (3) 90, 96.651 (2), 90 90, 104.529 (4), 90
V3) 530.90 (8) 1265.57 (10) 1328.6 (2)
Z 2 4 4
μ (mm−1) 0.32 0.11 0.12
Crystal size (mm) 0.15 × 0.13 × 0.09 0.20 × 0.10 × 0.08 0.20 × 0.15 × 0.12
 
Data collection
Diffractometer Bruker D8 Quest Bruker D8 Quest Bruker D8 Venture Duo
Tmin, Tmax 0.665, 0.748 0.712, 0.746 0.568, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 15993, 4823, 2290 32635, 3878, 2759 23485, 3040, 2803
Rint 0.084 0.062 0.069
(sin θ/λ)max−1) 0.929 0.716 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.147, 1.01 0.051, 0.123, 1.04 0.044, 0.107, 1.06
No. of reflections 4823 3878 3040
No. of parameters 146 172 193
H-atom treatment H-atom parameters constrained H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.66 0.31, −0.21 0.34, −0.29
Computer programs: APEX4 and SAINT (Bruker, 2022[Bruker (2022). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2019 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: APEX4 (Bruker, 2022); cell refinement: SAINT (Bruker, 2022); data reduction: SAINT (Bruker, 2022); program(s) used to solve structure: SHELXT2019 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

4-[(Methylsulfonyloxy)methyl]-2,4,4a,6,8,8a-hexahydro-[1,3]dioxino[5,4-d][1,3]dioxine (1) top
Crystal data top
C8H14O7SZ = 2
Mr = 254.25F(000) = 268
Triclinic, P1Dx = 1.590 Mg m3
a = 4.7401 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.3325 (6) ÅCell parameters from 1351 reflections
c = 15.9604 (14) Åθ = 8.9–35.3°
α = 90.019 (3)°µ = 0.32 mm1
β = 93.610 (3)°T = 173 K
γ = 106.439 (3)°Cube, colorless
V = 530.90 (8) Å30.15 × 0.13 × 0.09 mm
Data collection top
Bruker D8 Quest
diffractometer
2290 reflections with I > 2σ(I)
Kappa Diffractometer scansRint = 0.084
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 41.3°, θmin = 2.6°
Tmin = 0.665, Tmax = 0.748h = 87
15993 measured reflectionsk = 1111
4823 independent reflectionsl = 2521
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0418P)2 + 0.2188P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4823 reflectionsΔρmax = 0.41 e Å3
146 parametersΔρmin = 0.65 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.60628 (13)0.80009 (9)0.58781 (4)0.02721 (16)
O10.6927 (3)0.4016 (2)0.93342 (9)0.0266 (4)
O30.6751 (3)0.6081 (2)0.82311 (9)0.0260 (4)
O50.4827 (3)0.2098 (2)0.76954 (9)0.0243 (3)
O70.4434 (3)0.0034 (2)0.88198 (10)0.0289 (4)
O80.7865 (3)0.7367 (2)0.66251 (9)0.0261 (4)
O90.3104 (4)0.6800 (3)0.58398 (11)0.0398 (5)
O100.6589 (4)0.9992 (2)0.60079 (10)0.0373 (4)
C20.7642 (6)0.5925 (3)0.90849 (14)0.0309 (5)
H2A0.9797580.6502170.9171890.037*
H2B0.6663470.6639380.9439710.037*
C40.8303 (5)0.5179 (3)0.77023 (13)0.0227 (4)
H41.0456380.5858860.7767520.027*
C4A0.7829 (5)0.3113 (3)0.79322 (13)0.0216 (4)
H4A0.9175300.2567710.7619670.026*
C60.4217 (6)0.0183 (3)0.79414 (14)0.0304 (5)
H6A0.2202860.0523900.7722010.036*
H6B0.5621880.0404020.7694130.036*
C80.7415 (5)0.0902 (3)0.91348 (14)0.0275 (5)
H8A0.8713380.0191440.8916270.033*
H8B0.7544020.0838490.9755070.033*
C8A0.8461 (5)0.2954 (3)0.88766 (13)0.0228 (4)
H8AA1.0628710.3460260.9019980.027*
C90.7183 (5)0.5344 (3)0.68109 (13)0.0240 (5)
H9A0.8153140.4696520.6422380.029*
H9B0.5028680.4742870.6743870.029*
C100.7686 (5)0.7580 (3)0.49760 (14)0.0280 (5)
H10A0.6661350.7954600.4481920.042*
H10B0.7546310.6224370.4930020.042*
H10C0.9764200.8325490.5008400.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0286 (3)0.0314 (3)0.0257 (3)0.0142 (2)0.0054 (2)0.0082 (2)
O10.0368 (9)0.0221 (8)0.0199 (8)0.0062 (7)0.0049 (7)0.0028 (6)
O30.0357 (9)0.0248 (8)0.0203 (8)0.0130 (7)0.0034 (6)0.0021 (6)
O50.0261 (8)0.0208 (8)0.0242 (8)0.0038 (6)0.0000 (6)0.0001 (6)
O70.0339 (9)0.0239 (9)0.0257 (8)0.0023 (7)0.0056 (7)0.0034 (6)
O80.0320 (9)0.0231 (8)0.0226 (8)0.0067 (7)0.0026 (6)0.0073 (6)
O90.0237 (9)0.0517 (12)0.0463 (11)0.0140 (8)0.0052 (8)0.0153 (9)
O100.0571 (12)0.0318 (10)0.0316 (10)0.0246 (9)0.0116 (8)0.0086 (7)
C20.0457 (15)0.0230 (12)0.0222 (11)0.0073 (10)0.0006 (10)0.0011 (9)
C40.0237 (11)0.0212 (11)0.0228 (11)0.0056 (8)0.0026 (8)0.0038 (8)
C4A0.0222 (11)0.0229 (11)0.0214 (11)0.0087 (8)0.0046 (8)0.0035 (8)
C60.0416 (14)0.0206 (12)0.0262 (12)0.0042 (10)0.0021 (10)0.0012 (9)
C80.0339 (13)0.0262 (12)0.0236 (11)0.0100 (10)0.0039 (9)0.0068 (9)
C8A0.0233 (11)0.0221 (11)0.0223 (11)0.0051 (9)0.0015 (8)0.0047 (8)
C90.0303 (12)0.0194 (11)0.0218 (11)0.0060 (9)0.0021 (9)0.0042 (8)
C100.0310 (13)0.0306 (13)0.0240 (12)0.0111 (10)0.0026 (9)0.0043 (9)
Geometric parameters (Å, º) top
S1—O101.4228 (18)C4—C4A1.516 (3)
S1—O91.4270 (18)C4—H41.0000
S1—O81.5698 (15)C4A—C8A1.529 (3)
S1—C101.742 (2)C4A—H4A1.0000
O1—C21.408 (3)C6—H6A0.9900
O1—C8A1.434 (3)C6—H6B0.9900
O3—C21.415 (3)C8—C8A1.511 (3)
O3—C41.430 (3)C8—H8A0.9900
O5—C61.412 (3)C8—H8B0.9900
O5—C4A1.433 (3)C8A—H8AA1.0000
O7—C61.406 (3)C9—H9A0.9900
O7—C81.434 (3)C9—H9B0.9900
O8—C91.461 (2)C10—H10A0.9800
C2—H2A0.9900C10—H10B0.9800
C2—H2B0.9900C10—H10C0.9800
C4—C91.504 (3)
O10—S1—O9119.11 (11)O7—C6—H6A109.3
O10—S1—O8104.77 (10)O5—C6—H6A109.3
O9—S1—O8108.86 (9)O7—C6—H6B109.3
O10—S1—C10109.80 (11)O5—C6—H6B109.3
O9—S1—C10108.16 (12)H6A—C6—H6B108.0
O8—S1—C10105.28 (10)O7—C8—C8A111.14 (18)
C2—O1—C8A111.28 (17)O7—C8—H8A109.4
C2—O3—C4110.29 (17)C8A—C8—H8A109.4
C6—O5—C4A110.55 (17)O7—C8—H8B109.4
C6—O7—C8109.65 (17)C8A—C8—H8B109.4
C9—O8—S1118.45 (13)H8A—C8—H8B108.0
O1—C2—O3111.64 (18)O1—C8A—C8107.96 (18)
O1—C2—H2A109.3O1—C8A—C4A110.20 (17)
O3—C2—H2A109.3C8—C8A—C4A110.23 (18)
O1—C2—H2B109.3O1—C8A—H8AA109.5
O3—C2—H2B109.3C8—C8A—H8AA109.5
H2A—C2—H2B108.0C4A—C8A—H8AA109.5
O3—C4—C9107.43 (17)O8—C9—C4107.50 (17)
O3—C4—C4A110.85 (17)O8—C9—H9A110.2
C9—C4—C4A110.92 (18)C4—C9—H9A110.2
O3—C4—H4109.2O8—C9—H9B110.2
C9—C4—H4109.2C4—C9—H9B110.2
C4A—C4—H4109.2H9A—C9—H9B108.5
O5—C4A—C4108.19 (17)S1—C10—H10A109.5
O5—C4A—C8A110.03 (17)S1—C10—H10B109.5
C4—C4A—C8A110.15 (18)H10A—C10—H10B109.5
O5—C4A—H4A109.5S1—C10—H10C109.5
C4—C4A—H4A109.5H10A—C10—H10C109.5
C8A—C4A—H4A109.5H10B—C10—H10C109.5
O7—C6—O5111.57 (18)
O10—S1—O8—C9163.58 (16)C4A—O5—C6—O764.7 (2)
O9—S1—O8—C935.15 (18)C6—O7—C8—C8A56.9 (2)
C10—S1—O8—C980.62 (17)C2—O1—C8A—C8176.03 (18)
C8A—O1—C2—O363.0 (2)C2—O1—C8A—C4A55.6 (2)
C4—O3—C2—O163.2 (2)O7—C8—C8A—O170.2 (2)
C2—O3—C4—C9178.21 (17)O7—C8—C8A—C4A50.2 (2)
C2—O3—C4—C4A56.9 (2)O5—C4A—C8A—O169.6 (2)
C6—O5—C4A—C4176.51 (17)C4—C4A—C8A—O149.6 (2)
C6—O5—C4A—C8A56.1 (2)O5—C4A—C8A—C849.5 (2)
O3—C4—C4A—O569.7 (2)C4—C4A—C8A—C8168.64 (18)
C9—C4—C4A—O549.6 (2)S1—O8—C9—C4159.17 (14)
O3—C4—C4A—C8A50.7 (2)O3—C4—C9—O861.8 (2)
C9—C4—C4A—C8A169.91 (18)C4A—C4—C9—O8176.93 (17)
C8—O7—C6—O564.3 (2)
4-[(Benzyloxy)methyl]-2,4,4a,6,8,8a-hexahydro-[1,3]dioxino[5,4-d][1,3]dioxine (2) top
Crystal data top
C14H18O5F(000) = 568
Mr = 266.28Dx = 1.398 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 20.5429 (9) ÅCell parameters from 665 reflections
b = 4.4574 (2) Åθ = 7.0–30.6°
c = 13.9148 (7) ŵ = 0.11 mm1
β = 96.651 (2)°T = 173 K
V = 1265.57 (10) Å3Block, colorless
Z = 40.20 × 0.10 × 0.08 mm
Data collection top
Bruker D8 Quest
diffractometer
2759 reflections with I > 2σ(I)
Kappa Diffractometer scansRint = 0.062
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 30.6°, θmin = 2.0°
Tmin = 0.712, Tmax = 0.746h = 2928
32635 measured reflectionsk = 66
3878 independent reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0472P)2 + 0.495P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3878 reflectionsΔρmax = 0.31 e Å3
172 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.14034 (5)0.5880 (2)0.31935 (7)0.0230 (2)
O50.18458 (5)0.5729 (2)0.12265 (7)0.0205 (2)
O70.09777 (5)0.5175 (2)0.00055 (7)0.0244 (2)
O80.27719 (5)0.4412 (3)0.40210 (7)0.0277 (2)
O10.05578 (5)0.4848 (2)0.19753 (7)0.0223 (2)
C20.07448 (7)0.4955 (4)0.29813 (10)0.0250 (3)
H2A0.0689820.2944090.3262770.030*
H2B0.0456230.6370390.3280680.030*
C130.37677 (9)0.4540 (4)0.69810 (12)0.0369 (4)
H130.3604710.4997540.7575630.044*
C40.18415 (7)0.3773 (3)0.28339 (10)0.0202 (3)
H40.1818830.1841590.3194250.024*
C140.43189 (9)0.2806 (4)0.69818 (12)0.0362 (4)
H140.4536460.2060110.7573270.043*
C150.45538 (10)0.2158 (5)0.61234 (14)0.0488 (5)
H150.4936850.0966850.6118870.059*
C160.42333 (9)0.3238 (5)0.52620 (13)0.0405 (4)
H160.4398810.2769270.4670000.049*
C4A0.16574 (7)0.3179 (3)0.17607 (10)0.0191 (3)
H4A0.1902620.1377490.1570230.023*
C60.16623 (7)0.5295 (3)0.02246 (10)0.0247 (3)
H6A0.1837470.6960810.0139870.030*
H6B0.1856450.3401460.0018830.030*
C80.07206 (7)0.2614 (3)0.04578 (10)0.0238 (3)
H8A0.0879980.0761900.0169810.029*
H8B0.0236290.2632090.0332880.029*
C90.25236 (7)0.5044 (3)0.30451 (10)0.0239 (3)
H9A0.2813480.4142620.2602680.029*
H9B0.2512890.7240630.2938540.029*
C120.34453 (8)0.5633 (4)0.61206 (12)0.0355 (4)
H120.3063810.6833120.6128700.043*
C8A0.09237 (7)0.2591 (3)0.15380 (10)0.0204 (3)
H8AA0.0819850.0584310.1803160.024*
C100.33439 (8)0.6145 (4)0.43094 (12)0.0334 (4)
H10A0.3221210.8272770.4384500.040*
H10B0.3646230.6030760.3805800.040*
C110.36794 (7)0.4977 (3)0.52499 (11)0.0263 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0214 (5)0.0255 (5)0.0220 (5)0.0013 (4)0.0020 (4)0.0051 (4)
O50.0249 (5)0.0202 (5)0.0162 (4)0.0022 (4)0.0016 (4)0.0004 (4)
O70.0285 (5)0.0231 (5)0.0204 (5)0.0008 (4)0.0027 (4)0.0034 (4)
O80.0248 (5)0.0345 (6)0.0219 (5)0.0064 (4)0.0057 (4)0.0041 (4)
O10.0213 (5)0.0238 (5)0.0216 (5)0.0014 (4)0.0010 (4)0.0002 (4)
C20.0207 (7)0.0325 (8)0.0221 (7)0.0003 (6)0.0038 (5)0.0011 (6)
C130.0387 (10)0.0449 (10)0.0272 (8)0.0007 (8)0.0036 (7)0.0043 (7)
C40.0226 (7)0.0190 (6)0.0186 (6)0.0027 (5)0.0005 (5)0.0001 (5)
C140.0366 (9)0.0401 (10)0.0289 (8)0.0014 (7)0.0090 (7)0.0027 (7)
C150.0406 (11)0.0617 (13)0.0427 (11)0.0242 (10)0.0014 (8)0.0011 (9)
C160.0391 (10)0.0533 (11)0.0292 (9)0.0116 (8)0.0045 (7)0.0039 (8)
C4A0.0234 (7)0.0148 (6)0.0187 (6)0.0024 (5)0.0007 (5)0.0008 (5)
C60.0291 (8)0.0281 (7)0.0171 (6)0.0003 (6)0.0032 (5)0.0005 (6)
C80.0281 (7)0.0188 (6)0.0231 (7)0.0016 (6)0.0037 (6)0.0013 (5)
C90.0233 (7)0.0283 (7)0.0194 (6)0.0009 (6)0.0005 (5)0.0019 (6)
C120.0265 (8)0.0430 (10)0.0365 (9)0.0068 (7)0.0020 (7)0.0028 (8)
C8A0.0252 (7)0.0149 (6)0.0203 (6)0.0014 (5)0.0010 (5)0.0012 (5)
C100.0286 (8)0.0382 (9)0.0310 (8)0.0100 (7)0.0071 (6)0.0060 (7)
C110.0217 (7)0.0294 (8)0.0265 (7)0.0058 (6)0.0031 (6)0.0012 (6)
Geometric parameters (Å, º) top
O3—C21.4125 (17)C15—C161.385 (3)
O3—C41.4307 (17)C15—H150.9500
O5—C61.4146 (16)C16—C111.375 (2)
O5—C4A1.4354 (16)C16—H160.9500
O7—C61.4051 (18)C4A—C8A1.526 (2)
O7—C81.4336 (17)C4A—H4A1.0000
O8—C91.4223 (16)C6—H6A0.9900
O8—C101.4247 (18)C6—H6B0.9900
O1—C21.4089 (17)C8—C8A1.5127 (19)
O1—C8A1.4329 (17)C8—H8A0.9900
C2—H2A0.9900C8—H8B0.9900
C2—H2B0.9900C9—H9A0.9900
C13—C141.371 (3)C9—H9B0.9900
C13—C121.388 (2)C12—C111.385 (2)
C13—H130.9500C12—H120.9500
C4—C91.509 (2)C8A—H8AA1.0000
C4—C4A1.5206 (19)C10—C111.500 (2)
C4—H41.0000C10—H10A0.9900
C14—C151.370 (3)C10—H10B0.9900
C14—H140.9500
C2—O3—C4111.19 (11)O7—C6—H6A109.3
C6—O5—C4A110.19 (10)O5—C6—H6A109.3
C6—O7—C8110.21 (11)O7—C6—H6B109.3
C9—O8—C10110.75 (11)O5—C6—H6B109.3
C2—O1—C8A110.46 (11)H6A—C6—H6B108.0
O1—C2—O3111.22 (11)O7—C8—C8A111.62 (11)
O1—C2—H2A109.4O7—C8—H8A109.3
O3—C2—H2A109.4C8A—C8—H8A109.3
O1—C2—H2B109.4O7—C8—H8B109.3
O3—C2—H2B109.4C8A—C8—H8B109.3
H2A—C2—H2B108.0H8A—C8—H8B108.0
C14—C13—C12120.68 (16)O8—C9—C4109.50 (11)
C14—C13—H13119.7O8—C9—H9A109.8
C12—C13—H13119.7C4—C9—H9A109.8
O3—C4—C9107.03 (11)O8—C9—H9B109.8
O3—C4—C4A111.27 (11)C4—C9—H9B109.8
C9—C4—C4A112.12 (12)H9A—C9—H9B108.2
O3—C4—H4108.8C11—C12—C13120.07 (16)
C9—C4—H4108.8C11—C12—H12120.0
C4A—C4—H4108.8C13—C12—H12120.0
C15—C14—C13119.51 (16)O1—C8A—C8108.61 (11)
C15—C14—H14120.2O1—C8A—C4A110.34 (11)
C13—C14—H14120.2C8—C8A—C4A110.66 (12)
C14—C15—C16120.08 (17)O1—C8A—H8AA109.1
C14—C15—H15120.0C8—C8A—H8AA109.1
C16—C15—H15120.0C4A—C8A—H8AA109.1
C11—C16—C15121.06 (16)O8—C10—C11109.77 (13)
C11—C16—H16119.5O8—C10—H10A109.7
C15—C16—H16119.5C11—C10—H10A109.7
O5—C4A—C4108.63 (11)O8—C10—H10B109.7
O5—C4A—C8A110.50 (11)C11—C10—H10B109.7
C4—C4A—C8A110.90 (11)H10A—C10—H10B108.2
O5—C4A—H4A108.9C16—C11—C12118.60 (15)
C4—C4A—H4A108.9C16—C11—C10120.14 (15)
C8A—C4A—H4A108.9C12—C11—C10121.26 (15)
O7—C6—O5111.39 (11)
C8A—O1—C2—O364.95 (15)C4A—C4—C9—O8156.09 (11)
C4—O3—C2—O163.31 (15)C14—C13—C12—C110.0 (3)
C2—O3—C4—C9176.82 (11)C2—O1—C8A—C8178.47 (11)
C2—O3—C4—C4A54.02 (14)C2—O1—C8A—C4A57.01 (14)
C12—C13—C14—C150.2 (3)O7—C8—C8A—O173.36 (15)
C13—C14—C15—C160.3 (3)O7—C8—C8A—C4A47.90 (15)
C14—C15—C16—C110.3 (3)O5—C4A—C8A—O171.99 (13)
C6—O5—C4A—C4178.11 (11)C4—C4A—C8A—O148.53 (14)
C6—O5—C4A—C8A56.24 (14)O5—C4A—C8A—C848.25 (14)
O3—C4—C4A—O574.48 (14)C4—C4A—C8A—C8168.77 (11)
C9—C4—C4A—O545.35 (15)C9—O8—C10—C11167.65 (13)
O3—C4—C4A—C8A47.14 (15)C15—C16—C11—C120.1 (3)
C9—C4—C4A—C8A166.97 (11)C15—C16—C11—C10179.44 (19)
C8—O7—C6—O564.20 (15)C13—C12—C11—C160.1 (3)
C4A—O5—C6—O765.18 (14)C13—C12—C11—C10179.57 (16)
C6—O7—C8—C8A55.30 (15)O8—C10—C11—C16102.95 (19)
C10—O8—C9—C4166.65 (13)O8—C10—C11—C1277.6 (2)
O3—C4—C9—O881.64 (14)
4-[(Anilinocarbonyl)methyl]-2,4,4a,6,8,8a-hexahydro-[1,3]dioxino[5,4-d][1,3]dioxine (3) top
Crystal data top
C14H17NO6F(000) = 624
Mr = 295.28Dx = 1.476 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 22.909 (2) ÅCell parameters from 2795 reflections
b = 4.8973 (5) Åθ = 7.0–41.7°
c = 12.2331 (14) ŵ = 0.12 mm1
β = 104.529 (4)°T = 173 K
V = 1328.6 (2) Å3Block, colorless
Z = 40.20 × 0.15 × 0.12 mm
Data collection top
Bruker D8 Venture Duo
diffractometer
2803 reflections with I > 2σ(I)
Kappa Diffractometer scansRint = 0.069
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 27.5°, θmin = 2.8°
Tmin = 0.568, Tmax = 0.746h = 2929
23485 measured reflectionsk = 66
3040 independent reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.442P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3040 reflectionsΔρmax = 0.34 e Å3
193 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.60997 (4)0.50342 (19)0.58605 (7)0.0310 (2)
O30.70830 (4)0.62699 (19)0.58784 (7)0.0302 (2)
O50.63244 (4)0.55251 (17)0.35740 (7)0.0258 (2)
O70.53139 (4)0.48658 (19)0.35638 (8)0.0324 (2)
O80.77058 (3)0.32337 (15)0.37519 (7)0.02338 (19)
O90.82960 (4)0.63477 (16)0.31909 (8)0.0330 (2)
N10.82836 (4)0.19036 (18)0.26368 (8)0.0225 (2)
H10.8209 (7)0.027 (3)0.2824 (13)0.027*
C20.66883 (6)0.5438 (3)0.65284 (10)0.0347 (3)
H2A0.6838380.3716090.6924210.042*
H2B0.6681960.6842960.7107060.042*
C40.71453 (5)0.4155 (2)0.51082 (9)0.0230 (2)
H40.7331670.2517440.5548440.028*
C4A0.65326 (5)0.3365 (2)0.43578 (9)0.0215 (2)
H4A0.6575920.1663240.3933080.026*
C60.57349 (5)0.4990 (3)0.29052 (10)0.0320 (3)
H6A0.5615310.6446890.2331390.038*
H6B0.5733820.3234560.2503660.038*
C80.54503 (5)0.2626 (3)0.43325 (11)0.0318 (3)
H8A0.5408110.0894130.3902300.038*
H8B0.5159260.2593460.4809370.038*
C90.75822 (5)0.5321 (2)0.44922 (10)0.0242 (2)
H9A0.7404770.6943990.4049570.029*
H9B0.7959860.5879440.5038630.029*
C8A0.60852 (5)0.2844 (2)0.50798 (10)0.0262 (2)
H8AA0.6193360.1099860.5507580.031*
C100.81139 (5)0.4021 (2)0.31843 (9)0.0208 (2)
C110.87120 (5)0.2165 (2)0.19801 (9)0.0210 (2)
C120.86405 (5)0.4148 (2)0.11452 (10)0.0265 (2)
H120.8312600.5393010.1028680.032*
C130.90499 (6)0.4305 (3)0.04823 (10)0.0310 (3)
H130.9002950.5667360.0086000.037*
C140.95263 (6)0.2486 (3)0.06448 (11)0.0333 (3)
H140.9803720.2587610.0184880.040*
C150.95972 (6)0.0516 (3)0.14805 (12)0.0323 (3)
H150.9926060.0723400.1596640.039*
C160.91903 (5)0.0342 (2)0.21495 (10)0.0256 (2)
H160.9239000.1016740.2719590.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0299 (4)0.0412 (5)0.0242 (4)0.0067 (4)0.0111 (3)0.0022 (3)
O30.0292 (4)0.0361 (5)0.0248 (4)0.0022 (3)0.0056 (3)0.0100 (3)
O50.0216 (4)0.0324 (4)0.0222 (4)0.0004 (3)0.0032 (3)0.0065 (3)
O70.0209 (4)0.0425 (5)0.0336 (5)0.0030 (3)0.0064 (3)0.0023 (4)
O80.0225 (4)0.0208 (4)0.0287 (4)0.0030 (3)0.0100 (3)0.0040 (3)
O90.0438 (5)0.0157 (4)0.0454 (5)0.0033 (3)0.0221 (4)0.0004 (3)
N10.0248 (4)0.0156 (4)0.0291 (5)0.0020 (3)0.0107 (4)0.0010 (3)
C20.0344 (7)0.0503 (8)0.0194 (5)0.0081 (6)0.0068 (5)0.0035 (5)
C40.0227 (5)0.0246 (5)0.0211 (5)0.0042 (4)0.0043 (4)0.0016 (4)
C4A0.0220 (5)0.0225 (5)0.0206 (5)0.0023 (4)0.0066 (4)0.0006 (4)
C60.0220 (6)0.0482 (7)0.0241 (6)0.0007 (5)0.0025 (4)0.0031 (5)
C80.0256 (6)0.0345 (6)0.0381 (6)0.0027 (5)0.0135 (5)0.0003 (5)
C90.0217 (5)0.0224 (5)0.0284 (5)0.0003 (4)0.0064 (4)0.0052 (4)
C8A0.0280 (6)0.0273 (5)0.0258 (5)0.0031 (4)0.0115 (4)0.0037 (4)
C100.0196 (5)0.0179 (5)0.0240 (5)0.0004 (4)0.0040 (4)0.0025 (4)
C110.0220 (5)0.0188 (5)0.0222 (5)0.0040 (4)0.0057 (4)0.0025 (4)
C120.0291 (6)0.0230 (5)0.0263 (5)0.0026 (4)0.0046 (4)0.0020 (4)
C130.0417 (7)0.0277 (6)0.0242 (5)0.0089 (5)0.0093 (5)0.0015 (4)
C140.0406 (7)0.0318 (6)0.0336 (6)0.0095 (5)0.0204 (5)0.0064 (5)
C150.0316 (6)0.0275 (6)0.0418 (7)0.0002 (5)0.0165 (5)0.0037 (5)
C160.0279 (6)0.0209 (5)0.0288 (6)0.0005 (4)0.0086 (4)0.0006 (4)
Geometric parameters (Å, º) top
O1—C21.4042 (16)C4A—H4A1.0000
O1—C8A1.4309 (14)C6—H6A0.9900
O3—C21.4059 (16)C6—H6B0.9900
O3—C41.4313 (13)C8—C8A1.5152 (17)
O5—C61.4168 (14)C8—H8A0.9900
O5—C4A1.4272 (13)C8—H8B0.9900
O7—C61.4046 (15)C9—H9A0.9900
O7—C81.4275 (16)C9—H9B0.9900
O8—C101.3530 (13)C8A—H8AA1.0000
O8—C91.4400 (13)C11—C161.3881 (16)
O9—C101.2129 (13)C11—C121.3891 (15)
N1—C101.3436 (14)C12—C131.3873 (17)
N1—C111.4215 (14)C12—H120.9500
N1—H10.863 (16)C13—C141.384 (2)
C2—H2A0.9900C13—H130.9500
C2—H2B0.9900C14—C151.3852 (18)
C4—C91.5079 (15)C14—H140.9500
C4—C4A1.5219 (15)C15—C161.3888 (16)
C4—H41.0000C15—H150.9500
C4A—C8A1.5330 (15)C16—H160.9500
C2—O1—C8A110.61 (9)C8A—C8—H8B109.4
C2—O3—C4110.31 (9)H8A—C8—H8B108.0
C6—O5—C4A111.13 (9)O8—C9—C4107.79 (9)
C6—O7—C8110.06 (9)O8—C9—H9A110.1
C10—O8—C9113.00 (8)C4—C9—H9A110.1
C10—N1—C11122.64 (9)O8—C9—H9B110.1
C10—N1—H1118.9 (10)C4—C9—H9B110.1
C11—N1—H1116.4 (10)H9A—C9—H9B108.5
O1—C2—O3111.82 (9)O1—C8A—C8108.28 (9)
O1—C2—H2A109.3O1—C8A—C4A110.67 (9)
O3—C2—H2A109.3C8—C8A—C4A110.10 (9)
O1—C2—H2B109.3O1—C8A—H8AA109.3
O3—C2—H2B109.3C8—C8A—H8AA109.3
H2A—C2—H2B107.9C4A—C8A—H8AA109.3
O3—C4—C9104.08 (9)O9—C10—N1125.90 (10)
O3—C4—C4A110.60 (8)O9—C10—O8123.03 (10)
C9—C4—C4A114.97 (9)N1—C10—O8111.08 (9)
O3—C4—H4109.0C16—C11—C12120.17 (10)
C9—C4—H4109.0C16—C11—N1119.26 (10)
C4A—C4—H4109.0C12—C11—N1120.52 (10)
O5—C4A—C4108.61 (9)C13—C12—C11119.75 (11)
O5—C4A—C8A110.56 (8)C13—C12—H12120.1
C4—C4A—C8A110.09 (9)C11—C12—H12120.1
O5—C4A—H4A109.2C14—C13—C12120.31 (11)
C4—C4A—H4A109.2C14—C13—H13119.8
C8A—C4A—H4A109.2C12—C13—H13119.8
O7—C6—O5111.66 (9)C13—C14—C15119.77 (11)
O7—C6—H6A109.3C13—C14—H14120.1
O5—C6—H6A109.3C15—C14—H14120.1
O7—C6—H6B109.3C14—C15—C16120.39 (11)
O5—C6—H6B109.3C14—C15—H15119.8
H6A—C6—H6B108.0C16—C15—H15119.8
O7—C8—C8A111.20 (10)C11—C16—C15119.60 (11)
O7—C8—H8A109.4C11—C16—H16120.2
C8A—C8—H8A109.4C15—C16—H16120.2
O7—C8—H8B109.4
C8A—O1—C2—O364.04 (13)O7—C8—C8A—C4A49.89 (13)
C4—O3—C2—O164.56 (13)O5—C4A—C8A—O171.14 (11)
C2—O3—C4—C9179.25 (9)C4—C4A—C8A—O148.87 (12)
C2—O3—C4—C4A56.74 (11)O5—C4A—C8A—C848.53 (12)
C6—O5—C4A—C4175.73 (9)C4—C4A—C8A—C8168.54 (9)
C6—O5—C4A—C8A54.84 (11)C11—N1—C10—O90.04 (18)
O3—C4—C4A—O571.73 (11)C11—N1—C10—O8179.59 (9)
C9—C4—C4A—O545.78 (12)C9—O8—C10—O98.87 (15)
O3—C4—C4A—C8A49.46 (12)C9—O8—C10—N1170.76 (9)
C9—C4—C4A—C8A166.96 (9)C10—N1—C11—C16130.24 (11)
C8—O7—C6—O563.89 (13)C10—N1—C11—C1252.41 (15)
C4A—O5—C6—O763.36 (13)C16—C11—C12—C130.13 (16)
C6—O7—C8—C8A57.21 (13)N1—C11—C12—C13177.46 (10)
C10—O8—C9—C4177.55 (8)C11—C12—C13—C140.38 (17)
O3—C4—C9—O8175.86 (8)C12—C13—C14—C150.58 (19)
C4A—C4—C9—O863.01 (12)C13—C14—C15—C160.53 (19)
C2—O1—C8A—C8176.28 (10)C12—C11—C16—C150.09 (17)
C2—O1—C8A—C4A55.53 (12)N1—C11—C16—C15177.45 (10)
O7—C8—C8A—O171.22 (12)C14—C15—C16—C110.29 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O9i0.863 (16)1.969 (16)2.8025 (13)161.9 (14)
C2—H2B···O5ii0.992.513.4515 (15)159
Symmetry codes: (i) x, y1, z; (ii) x, y+3/2, z+1/2.
 

Funding information

The Salomon Research Fund administered by Brown University is thanked for supporting this research. The authors acknowledge support for the purchase of the X-ray diffraction equipment via grant No. 2117549 from the US National Science Foundation (NSF).

References

First citationAbramson, S., Ashkenazi, E., Frische, K., Goldberg, I., Golender, L., Greenwald, M., Lemcoff, N. G., Madar, R., Weinman, S. & Fuchs, B. (2003). Chem. Eur. J. 9, 6071–6082.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2022). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurkert, U. (1980). J. Comput. Chem. 1, 192–198.  CrossRef CAS Web of Science Google Scholar
First citationChe, R., Zhu, Q., Yu, J., Li, J., Yu, J. & Lu, W. (2017). Tetrahedron, 73, 6172–6180.  Web of Science CrossRef CAS Google Scholar
First citationFerrier, R. J. (2003). Carbohydrate Chemistry, Vol. 34, pp. 338–366. London: Royal Society of Chemistry.  Google Scholar
First citationFuchs, B. (2013). Isr. J. Chem. 53, 45–52.  Web of Science CrossRef CAS Google Scholar
First citationGanguly, B. & Fuchs, B. (2001). J. Phys. Org. Chem. 14, 488–494.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHann, R. M., Ness, A. T. & Hudson, C. S. (1944). J. Am. Chem. Soc. 66, 670–673.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLemieux, R. U. & Howard, J. (1963). Can. J. Chem. 41, 393–398.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRodier, N., Ronco, G., Julien, R., Postel, D. & Villa, P. (1993). Acta Cryst. C49, 2032–2033.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, D. A., Baker, D. & Rahman, A. F. M. M. (1991). Struct. Chem. 2, 65–70.  CSD CrossRef Web of Science Google Scholar
First citationTaskinen, E. (2009). J. Phys. Org. Chem. 22, 761–768.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZarubinskii, G. M. & Danilov, S. N. (1972). Zh. Obshch. Khim. 42, 2758–2763.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds