research communications
Structures of rac-2,4:3,5-dimethylene xylitol derivatives
aProgram in Judaic Studies-Box 1826, Brown University, Providence, Rhode Island 02912, USA, and bDepartment of Chemistry-Box H, Brown University, Providence, Rhode Island 02912, USA
*Correspondence e-mail: paul_williard@brown.edu
The structures of three racemic (tetrahydro-[1,3]dioxino[5,4-d][1,3]dioxin-4-yl)methanol derivatives are reported, namely, 4-[(methylsulfonyloxy)methyl]-2,4,4a,6,8,8a-hexahydro-[1,3]dioxino[5,4-d][1,3]dioxine, C8H14O7S, 1, 4-[(benzyloxy)methyl]-2,4,4a,6,8,8a-hexahydro-[1,3]dioxino[5,4-d][1,3]dioxine, C14H18O5, 2, and 4-[(anilinocarbonyl)methyl]-2,4,4a,6,8,8a-hexahydro-[1,3]dioxino[5,4-d][1,3]dioxine, C14H17NO6, 3. Mesylate ester 1 at 173 K has triclinic P symmetry and both benzyl ether 2 at 173 K and phenyl urethane 3 have monoclinic P21/c symmetry. These structures are of interest because of the conformation of the cis-fused tetraoxadecalin ring system. This cis-bicyclo[4.4.0]decane ring system, i.e. cis-decalin, can undergo conformational equilibration. In the two most stable conformers, both six-membered rings adopt a chair conformation. However, there are significant consequences in these two stable conformers, with heteroatom substitution at the 1,3,5,7-ring positions as described. Only one conformation, denoted as `concave' or `inside', is found in these crystal structures. This is consistent with previously reported structures of the 1,1-geminal dihydroxy aldehyde and tosylate analogs.
1. Chemical context
Naturally occurring ). Over the past decade or so, a sharply increasing emphasis is seen on the use of these sugars and also on chemical transformations among the various diastereomeric and homologous series of Despite this flurry of activity, monosaccharide derivatives still provide a rich source of challenging structural and conformational issues due to the anomeric and gauche interactions associated with the O atoms.
provide an abundant source of inexpensive, often chiral, starting materials for the syntheses of numerous sophisticated natural products, non-natural physiologically active compounds, and ligands for stereoselective catalysts (Ferrier, 2003In this article, we describe the crystal structures of three cis-fused [4.4.0]bicyclo methylene originally derived from the most inexpensive and readily available five-carbon meso polyalcohol, i.e. xylitol. The chemical structures of these compounds are shown in the scheme. The standard chemical numbering for the 1,3,5,7-tetraoxadecalin ring system is shown in Fig. 1. The atoms in all three crystal structures reported are labeled following this pattern. Compound 1 is a mesylate, with R = mesyl (Zarubinskii & Danilov, 1972), compound 2 is a benzyl ether, with R = benzyl (Che et al., 2017), and compound 3 is an N-phenylurethane, with R = –CO–NH–Ph. Since xylitol itself is achiral and we carried out no enantioselective reactions to prepare chiral derivatives, the structures we report are of racemates and hence centrosymmetric, although it is possible to obtain enantiomerically pure compounds from more complicated synthetic routes.
2. Structural commentary
The defining characteristic of the cis-1,3,5,7-tetraoxa-[4.4.0]bicyclodecalin ring system is depicted in Figs. 2 and 3. Fig. 2 illustrates the two lowest-energy all-chair conformations of this skeleton. The O atoms in these conformers adopt a tetrahedral geometry and the axial lone pair of electrons on each of these O atoms within the decalin ring are depicted. This feature was noted previously (Lemieux & Howard, 1963; Burkert, 1980; Taskinen, 2009) and described in detail in a mini-review summarizing over two decades of chemical work largely from one laboratory (Fuchs, 2013). Trivial nomenclature has evolved to describe these two conformations as inside/concave or outside/convex. These descriptions derive from the orientation of the axial lone pairs on the ring O atoms relative to the overall shape of the decalin ring system. For the completely unsubstituted tetraoxydecalin, it is not immediately obvious which of these two conformers is more stable.
Compounds 1–3 also incorporate a derivatized hydroxymethyl substituent at position C4 that is trans to both bridgehead H atoms. Consequently, this substituent must be equatorial in the concave/inside conformer and axial in the convex/outside conformer. suggests that the concave/inside conformer is favored, as seen in all these crystal structures. Fig. 3 highlights this overall geometry found in all three crystal structures. The overall shape of this molecule resembles a cylinder that has been cut in half. It is noteworthy that this molecular shape has been examined for its potential to chelate cations as a polydentate ligand (Ganguly & Fuchs, 2001) and also as a (Abramson et al., 2003).
Fig. 4 is an overlay of all three crystal structures obtained by minimizing the positional differences of the four ring O atoms in all three structures. No significant difference in the geometry of the tetraoxabicyclic ring in these three structures is discernible. It is noteworthy that a gauche conformation is found for the O3—C4—C9—O8 torsion angle, with values of 61.8 (2) and 81.6 (1)° in mesylate 1 and benzyl ether 2, respectively. However, a relatively antiperiplanar torsion angle of 175.9 (8)° exists in urethane 3. This is likely the consequence of stabilization by the single intermolecular hydrogen bond observed in the urethane structure (see below).
Figs. 5–7 display the all-atom displacement ellipsoid plots of compounds 1–3.
3. Supramolecular features
An intramolecular N—H⋯O hydrogen bond is observed in phenyl urethane derivative 3 between the –NH substituent and the carbonyl O atom of the urethane This is described as D—H⋯A (N1—H1⋯·O9i), with N1—H1 = 0.863 (16) Å, H1⋯O9i = 1.969 (16) Å, N1⋯O9i = 2.8025 (13) Å and N1—H1⋯O9i = 161.9 (14)° [symmetry code: (i) x, y − 1, z]. This is shown in Fig. 8.
No other hydrogen-bond interactions are possible in any of the structures, although there are short C—H⋯O interactions between the H2B atom on a methylene acetal and an adjacent acetal O5ii atom [symmetry code: (ii) x, −y + , z + ] in urethane structure 3 that is characteristically seen in all of the structures. This is characterized in Table 1.
|
No π-stacking interactions of the aromatic rings are observed.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.43, update of November 2021; Groom et al., 2016) for similar structures returned two relevant entries: 2,4:3,5-di-O-methylene-1-p-toluenesulfonyl xylitol (CSD refcode HALSAO; Rodier et al., 1993) and dihydroxy-2,4:3,5-dimethylene-L-xylose (SIVHUA; Smith et al., 1991).
5. Synthesis and crystallization
Compounds 1 and 2 were prepared and crystallized by the following general procedure. To a solution of racemic 2,4:3,5-dimethylene xylitol (Hann et al., 1944) in pyridine, 1.1 molar equivalents of either mesyl chloride or benzyl bromide were added and stirred at room temperature until the diacetal dissolved (∼4 h). The resulting reaction mixtures were allowed to stand for 18 h at room temperature and then poured onto crushed ice. Solid crystalline material formed upon slow evaporation of the reaction mixture on sitting in a fume hood overnight. Recrystallization from ethanol produced diffraction-quality crystals. 1H and 13C NMR spectra of the crystalline samples indicated no discernible impurities and are provided in the supporting information.
Compound 1, 13C{1H} NMR (298 K, CDCl3, 100.5 MHz): δ 93.07, 92.85, 75.49, 70.13, 69.42, 69.32, 68.30, 37.36.
Compound 2, 13C{1H} NMR (298 K, CDCl3, 100.5 MHz): δ 137.94, 128.44, 127.85, 127.79, 93.21, 93.16, 77.24, 73.67, 70.63, 70.16, 69.52, 68.49.
For urethane derivative 3, a solution of racemic 2,4:3,5-dimethylene xylitol, 1.1 molar equivalents of phenyl isocyanate, and pyridine was heated to reflux for 2 h protected from atmospheric moisture by a drying tube. On cooling, the derivative precipitated from the solution and was collected by filtration. Recrystallization from acetone yielded diffraction-quality crystals. 1H and 13C NMR spectra of the crystalline samples indicated no discernible impurities and are provided in the supporting information.
Compound 3, 13C{1H} NMR (298 K, d6-DMSO, 100.5 MHz): δ 153.76, 139.49, 129.21, 122.92, 118.64, 92.56, 92.17, 75.57, 69.98, 69.93, 69.12, 63.86.
6. Refinement
Crystal data, data collection and structure . H atoms were added automatically using a riding model with Uiso(H) = 1.2Ueq(C). The H atom on N1 in urethane 3 was located in a difference Fourier map and refined freely.
details are summarized in Table 2Supporting information
https://doi.org/10.1107/S2056989023006497/pk2693sup1.cif
contains datablocks 1, 2, 3, global. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989023006497/pk26931sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989023006497/pk26932sup3.hkl
Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S2056989023006497/pk26933sup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989023006497/pk26931sup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989023006497/pk26932sup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989023006497/pk26933sup7.cml
NMR 1H and 13C-NMR spectra of compounds 1-3. DOI: https://doi.org/10.1107/S2056989023006497/pk2693sup8.pdf
For all structures, data collection: APEX4 (Bruker, 2022); cell
SAINT (Bruker, 2022); data reduction: SAINT (Bruker, 2022); program(s) used to solve structure: SHELXT2019 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).C8H14O7S | Z = 2 |
Mr = 254.25 | F(000) = 268 |
Triclinic, P1 | Dx = 1.590 Mg m−3 |
a = 4.7401 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.3325 (6) Å | Cell parameters from 1351 reflections |
c = 15.9604 (14) Å | θ = 8.9–35.3° |
α = 90.019 (3)° | µ = 0.32 mm−1 |
β = 93.610 (3)° | T = 173 K |
γ = 106.439 (3)° | Cube, colorless |
V = 530.90 (8) Å3 | 0.15 × 0.13 × 0.09 mm |
Bruker D8 Quest diffractometer | 2290 reflections with I > 2σ(I) |
Kappa Diffractometer scans | Rint = 0.084 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 41.3°, θmin = 2.6° |
Tmin = 0.665, Tmax = 0.748 | h = −8→7 |
15993 measured reflections | k = −11→11 |
4823 independent reflections | l = −25→21 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.070 | H-atom parameters constrained |
wR(F2) = 0.147 | w = 1/[σ2(Fo2) + (0.0418P)2 + 0.2188P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
4823 reflections | Δρmax = 0.41 e Å−3 |
146 parameters | Δρmin = −0.65 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.60628 (13) | 0.80009 (9) | 0.58781 (4) | 0.02721 (16) | |
O1 | 0.6927 (3) | 0.4016 (2) | 0.93342 (9) | 0.0266 (4) | |
O3 | 0.6751 (3) | 0.6081 (2) | 0.82311 (9) | 0.0260 (4) | |
O5 | 0.4827 (3) | 0.2098 (2) | 0.76954 (9) | 0.0243 (3) | |
O7 | 0.4434 (3) | 0.0034 (2) | 0.88198 (10) | 0.0289 (4) | |
O8 | 0.7865 (3) | 0.7367 (2) | 0.66251 (9) | 0.0261 (4) | |
O9 | 0.3104 (4) | 0.6800 (3) | 0.58398 (11) | 0.0398 (5) | |
O10 | 0.6589 (4) | 0.9992 (2) | 0.60079 (10) | 0.0373 (4) | |
C2 | 0.7642 (6) | 0.5925 (3) | 0.90849 (14) | 0.0309 (5) | |
H2A | 0.979758 | 0.650217 | 0.917189 | 0.037* | |
H2B | 0.666347 | 0.663938 | 0.943971 | 0.037* | |
C4 | 0.8303 (5) | 0.5179 (3) | 0.77023 (13) | 0.0227 (4) | |
H4 | 1.045638 | 0.585886 | 0.776752 | 0.027* | |
C4A | 0.7829 (5) | 0.3113 (3) | 0.79322 (13) | 0.0216 (4) | |
H4A | 0.917530 | 0.256771 | 0.761967 | 0.026* | |
C6 | 0.4217 (6) | 0.0183 (3) | 0.79414 (14) | 0.0304 (5) | |
H6A | 0.220286 | −0.052390 | 0.772201 | 0.036* | |
H6B | 0.562188 | −0.040402 | 0.769413 | 0.036* | |
C8 | 0.7415 (5) | 0.0902 (3) | 0.91348 (14) | 0.0275 (5) | |
H8A | 0.871338 | 0.019144 | 0.891627 | 0.033* | |
H8B | 0.754402 | 0.083849 | 0.975507 | 0.033* | |
C8A | 0.8461 (5) | 0.2954 (3) | 0.88766 (13) | 0.0228 (4) | |
H8AA | 1.062871 | 0.346026 | 0.901998 | 0.027* | |
C9 | 0.7183 (5) | 0.5344 (3) | 0.68109 (13) | 0.0240 (5) | |
H9A | 0.815314 | 0.469652 | 0.642238 | 0.029* | |
H9B | 0.502868 | 0.474287 | 0.674387 | 0.029* | |
C10 | 0.7686 (5) | 0.7580 (3) | 0.49760 (14) | 0.0280 (5) | |
H10A | 0.666135 | 0.795460 | 0.448192 | 0.042* | |
H10B | 0.754631 | 0.622437 | 0.493002 | 0.042* | |
H10C | 0.976420 | 0.832549 | 0.500840 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0286 (3) | 0.0314 (3) | 0.0257 (3) | 0.0142 (2) | 0.0054 (2) | 0.0082 (2) |
O1 | 0.0368 (9) | 0.0221 (8) | 0.0199 (8) | 0.0062 (7) | 0.0049 (7) | 0.0028 (6) |
O3 | 0.0357 (9) | 0.0248 (8) | 0.0203 (8) | 0.0130 (7) | 0.0034 (6) | 0.0021 (6) |
O5 | 0.0261 (8) | 0.0208 (8) | 0.0242 (8) | 0.0038 (6) | 0.0000 (6) | −0.0001 (6) |
O7 | 0.0339 (9) | 0.0239 (9) | 0.0257 (8) | 0.0023 (7) | 0.0056 (7) | 0.0034 (6) |
O8 | 0.0320 (9) | 0.0231 (8) | 0.0226 (8) | 0.0067 (7) | 0.0026 (6) | 0.0073 (6) |
O9 | 0.0237 (9) | 0.0517 (12) | 0.0463 (11) | 0.0140 (8) | 0.0052 (8) | 0.0153 (9) |
O10 | 0.0571 (12) | 0.0318 (10) | 0.0316 (10) | 0.0246 (9) | 0.0116 (8) | 0.0086 (7) |
C2 | 0.0457 (15) | 0.0230 (12) | 0.0222 (11) | 0.0073 (10) | 0.0006 (10) | 0.0011 (9) |
C4 | 0.0237 (11) | 0.0212 (11) | 0.0228 (11) | 0.0056 (8) | 0.0026 (8) | 0.0038 (8) |
C4A | 0.0222 (11) | 0.0229 (11) | 0.0214 (11) | 0.0087 (8) | 0.0046 (8) | 0.0035 (8) |
C6 | 0.0416 (14) | 0.0206 (12) | 0.0262 (12) | 0.0042 (10) | 0.0021 (10) | 0.0012 (9) |
C8 | 0.0339 (13) | 0.0262 (12) | 0.0236 (11) | 0.0100 (10) | 0.0039 (9) | 0.0068 (9) |
C8A | 0.0233 (11) | 0.0221 (11) | 0.0223 (11) | 0.0051 (9) | 0.0015 (8) | 0.0047 (8) |
C9 | 0.0303 (12) | 0.0194 (11) | 0.0218 (11) | 0.0060 (9) | 0.0021 (9) | 0.0042 (8) |
C10 | 0.0310 (13) | 0.0306 (13) | 0.0240 (12) | 0.0111 (10) | 0.0026 (9) | 0.0043 (9) |
S1—O10 | 1.4228 (18) | C4—C4A | 1.516 (3) |
S1—O9 | 1.4270 (18) | C4—H4 | 1.0000 |
S1—O8 | 1.5698 (15) | C4A—C8A | 1.529 (3) |
S1—C10 | 1.742 (2) | C4A—H4A | 1.0000 |
O1—C2 | 1.408 (3) | C6—H6A | 0.9900 |
O1—C8A | 1.434 (3) | C6—H6B | 0.9900 |
O3—C2 | 1.415 (3) | C8—C8A | 1.511 (3) |
O3—C4 | 1.430 (3) | C8—H8A | 0.9900 |
O5—C6 | 1.412 (3) | C8—H8B | 0.9900 |
O5—C4A | 1.433 (3) | C8A—H8AA | 1.0000 |
O7—C6 | 1.406 (3) | C9—H9A | 0.9900 |
O7—C8 | 1.434 (3) | C9—H9B | 0.9900 |
O8—C9 | 1.461 (2) | C10—H10A | 0.9800 |
C2—H2A | 0.9900 | C10—H10B | 0.9800 |
C2—H2B | 0.9900 | C10—H10C | 0.9800 |
C4—C9 | 1.504 (3) | ||
O10—S1—O9 | 119.11 (11) | O7—C6—H6A | 109.3 |
O10—S1—O8 | 104.77 (10) | O5—C6—H6A | 109.3 |
O9—S1—O8 | 108.86 (9) | O7—C6—H6B | 109.3 |
O10—S1—C10 | 109.80 (11) | O5—C6—H6B | 109.3 |
O9—S1—C10 | 108.16 (12) | H6A—C6—H6B | 108.0 |
O8—S1—C10 | 105.28 (10) | O7—C8—C8A | 111.14 (18) |
C2—O1—C8A | 111.28 (17) | O7—C8—H8A | 109.4 |
C2—O3—C4 | 110.29 (17) | C8A—C8—H8A | 109.4 |
C6—O5—C4A | 110.55 (17) | O7—C8—H8B | 109.4 |
C6—O7—C8 | 109.65 (17) | C8A—C8—H8B | 109.4 |
C9—O8—S1 | 118.45 (13) | H8A—C8—H8B | 108.0 |
O1—C2—O3 | 111.64 (18) | O1—C8A—C8 | 107.96 (18) |
O1—C2—H2A | 109.3 | O1—C8A—C4A | 110.20 (17) |
O3—C2—H2A | 109.3 | C8—C8A—C4A | 110.23 (18) |
O1—C2—H2B | 109.3 | O1—C8A—H8AA | 109.5 |
O3—C2—H2B | 109.3 | C8—C8A—H8AA | 109.5 |
H2A—C2—H2B | 108.0 | C4A—C8A—H8AA | 109.5 |
O3—C4—C9 | 107.43 (17) | O8—C9—C4 | 107.50 (17) |
O3—C4—C4A | 110.85 (17) | O8—C9—H9A | 110.2 |
C9—C4—C4A | 110.92 (18) | C4—C9—H9A | 110.2 |
O3—C4—H4 | 109.2 | O8—C9—H9B | 110.2 |
C9—C4—H4 | 109.2 | C4—C9—H9B | 110.2 |
C4A—C4—H4 | 109.2 | H9A—C9—H9B | 108.5 |
O5—C4A—C4 | 108.19 (17) | S1—C10—H10A | 109.5 |
O5—C4A—C8A | 110.03 (17) | S1—C10—H10B | 109.5 |
C4—C4A—C8A | 110.15 (18) | H10A—C10—H10B | 109.5 |
O5—C4A—H4A | 109.5 | S1—C10—H10C | 109.5 |
C4—C4A—H4A | 109.5 | H10A—C10—H10C | 109.5 |
C8A—C4A—H4A | 109.5 | H10B—C10—H10C | 109.5 |
O7—C6—O5 | 111.57 (18) | ||
O10—S1—O8—C9 | 163.58 (16) | C4A—O5—C6—O7 | 64.7 (2) |
O9—S1—O8—C9 | 35.15 (18) | C6—O7—C8—C8A | 56.9 (2) |
C10—S1—O8—C9 | −80.62 (17) | C2—O1—C8A—C8 | −176.03 (18) |
C8A—O1—C2—O3 | 63.0 (2) | C2—O1—C8A—C4A | −55.6 (2) |
C4—O3—C2—O1 | −63.2 (2) | O7—C8—C8A—O1 | 70.2 (2) |
C2—O3—C4—C9 | 178.21 (17) | O7—C8—C8A—C4A | −50.2 (2) |
C2—O3—C4—C4A | 56.9 (2) | O5—C4A—C8A—O1 | −69.6 (2) |
C6—O5—C4A—C4 | −176.51 (17) | C4—C4A—C8A—O1 | 49.6 (2) |
C6—O5—C4A—C8A | −56.1 (2) | O5—C4A—C8A—C8 | 49.5 (2) |
O3—C4—C4A—O5 | 69.7 (2) | C4—C4A—C8A—C8 | 168.64 (18) |
C9—C4—C4A—O5 | −49.6 (2) | S1—O8—C9—C4 | −159.17 (14) |
O3—C4—C4A—C8A | −50.7 (2) | O3—C4—C9—O8 | 61.8 (2) |
C9—C4—C4A—C8A | −169.91 (18) | C4A—C4—C9—O8 | −176.93 (17) |
C8—O7—C6—O5 | −64.3 (2) |
C14H18O5 | F(000) = 568 |
Mr = 266.28 | Dx = 1.398 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 20.5429 (9) Å | Cell parameters from 665 reflections |
b = 4.4574 (2) Å | θ = 7.0–30.6° |
c = 13.9148 (7) Å | µ = 0.11 mm−1 |
β = 96.651 (2)° | T = 173 K |
V = 1265.57 (10) Å3 | Block, colorless |
Z = 4 | 0.20 × 0.10 × 0.08 mm |
Bruker D8 Quest diffractometer | 2759 reflections with I > 2σ(I) |
Kappa Diffractometer scans | Rint = 0.062 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 30.6°, θmin = 2.0° |
Tmin = 0.712, Tmax = 0.746 | h = −29→28 |
32635 measured reflections | k = −6→6 |
3878 independent reflections | l = −19→19 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.051 | H-atom parameters constrained |
wR(F2) = 0.123 | w = 1/[σ2(Fo2) + (0.0472P)2 + 0.495P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3878 reflections | Δρmax = 0.31 e Å−3 |
172 parameters | Δρmin = −0.21 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O3 | 0.14034 (5) | 0.5880 (2) | 0.31935 (7) | 0.0230 (2) | |
O5 | 0.18458 (5) | 0.5729 (2) | 0.12265 (7) | 0.0205 (2) | |
O7 | 0.09777 (5) | 0.5175 (2) | 0.00055 (7) | 0.0244 (2) | |
O8 | 0.27719 (5) | 0.4412 (3) | 0.40210 (7) | 0.0277 (2) | |
O1 | 0.05578 (5) | 0.4848 (2) | 0.19753 (7) | 0.0223 (2) | |
C2 | 0.07448 (7) | 0.4955 (4) | 0.29813 (10) | 0.0250 (3) | |
H2A | 0.068982 | 0.294409 | 0.326277 | 0.030* | |
H2B | 0.045623 | 0.637039 | 0.328068 | 0.030* | |
C13 | 0.37677 (9) | 0.4540 (4) | 0.69810 (12) | 0.0369 (4) | |
H13 | 0.360471 | 0.499754 | 0.757563 | 0.044* | |
C4 | 0.18415 (7) | 0.3773 (3) | 0.28339 (10) | 0.0202 (3) | |
H4 | 0.181883 | 0.184159 | 0.319425 | 0.024* | |
C14 | 0.43189 (9) | 0.2806 (4) | 0.69818 (12) | 0.0362 (4) | |
H14 | 0.453646 | 0.206011 | 0.757327 | 0.043* | |
C15 | 0.45538 (10) | 0.2158 (5) | 0.61234 (14) | 0.0488 (5) | |
H15 | 0.493685 | 0.096685 | 0.611887 | 0.059* | |
C16 | 0.42333 (9) | 0.3238 (5) | 0.52620 (13) | 0.0405 (4) | |
H16 | 0.439881 | 0.276927 | 0.467000 | 0.049* | |
C4A | 0.16574 (7) | 0.3179 (3) | 0.17607 (10) | 0.0191 (3) | |
H4A | 0.190262 | 0.137749 | 0.157023 | 0.023* | |
C6 | 0.16623 (7) | 0.5295 (3) | 0.02246 (10) | 0.0247 (3) | |
H6A | 0.183747 | 0.696081 | −0.013987 | 0.030* | |
H6B | 0.185645 | 0.340146 | 0.001883 | 0.030* | |
C8 | 0.07206 (7) | 0.2614 (3) | 0.04578 (10) | 0.0238 (3) | |
H8A | 0.087998 | 0.076190 | 0.016981 | 0.029* | |
H8B | 0.023629 | 0.263209 | 0.033288 | 0.029* | |
C9 | 0.25236 (7) | 0.5044 (3) | 0.30451 (10) | 0.0239 (3) | |
H9A | 0.281348 | 0.414262 | 0.260268 | 0.029* | |
H9B | 0.251289 | 0.724063 | 0.293854 | 0.029* | |
C12 | 0.34453 (8) | 0.5633 (4) | 0.61206 (12) | 0.0355 (4) | |
H12 | 0.306381 | 0.683312 | 0.612870 | 0.043* | |
C8A | 0.09237 (7) | 0.2591 (3) | 0.15380 (10) | 0.0204 (3) | |
H8AA | 0.081985 | 0.058431 | 0.180316 | 0.024* | |
C10 | 0.33439 (8) | 0.6145 (4) | 0.43094 (12) | 0.0334 (4) | |
H10A | 0.322121 | 0.827277 | 0.438450 | 0.040* | |
H10B | 0.364623 | 0.603076 | 0.380580 | 0.040* | |
C11 | 0.36794 (7) | 0.4977 (3) | 0.52499 (11) | 0.0263 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O3 | 0.0214 (5) | 0.0255 (5) | 0.0220 (5) | 0.0013 (4) | 0.0020 (4) | −0.0051 (4) |
O5 | 0.0249 (5) | 0.0202 (5) | 0.0162 (4) | −0.0022 (4) | 0.0016 (4) | 0.0004 (4) |
O7 | 0.0285 (5) | 0.0231 (5) | 0.0204 (5) | −0.0008 (4) | −0.0027 (4) | 0.0034 (4) |
O8 | 0.0248 (5) | 0.0345 (6) | 0.0219 (5) | −0.0064 (4) | −0.0057 (4) | 0.0041 (4) |
O1 | 0.0213 (5) | 0.0238 (5) | 0.0216 (5) | 0.0014 (4) | 0.0010 (4) | 0.0002 (4) |
C2 | 0.0207 (7) | 0.0325 (8) | 0.0221 (7) | 0.0003 (6) | 0.0038 (5) | 0.0011 (6) |
C13 | 0.0387 (10) | 0.0449 (10) | 0.0272 (8) | −0.0007 (8) | 0.0036 (7) | −0.0043 (7) |
C4 | 0.0226 (7) | 0.0190 (6) | 0.0186 (6) | 0.0027 (5) | 0.0005 (5) | 0.0001 (5) |
C14 | 0.0366 (9) | 0.0401 (10) | 0.0289 (8) | −0.0014 (7) | −0.0090 (7) | 0.0027 (7) |
C15 | 0.0406 (11) | 0.0617 (13) | 0.0427 (11) | 0.0242 (10) | −0.0014 (8) | −0.0011 (9) |
C16 | 0.0391 (10) | 0.0533 (11) | 0.0292 (9) | 0.0116 (8) | 0.0045 (7) | −0.0039 (8) |
C4A | 0.0234 (7) | 0.0148 (6) | 0.0187 (6) | 0.0024 (5) | 0.0007 (5) | 0.0008 (5) |
C6 | 0.0291 (8) | 0.0281 (7) | 0.0171 (6) | 0.0003 (6) | 0.0032 (5) | 0.0005 (6) |
C8 | 0.0281 (7) | 0.0188 (6) | 0.0231 (7) | −0.0016 (6) | −0.0037 (6) | −0.0013 (5) |
C9 | 0.0233 (7) | 0.0283 (7) | 0.0194 (6) | 0.0009 (6) | −0.0005 (5) | 0.0019 (6) |
C12 | 0.0265 (8) | 0.0430 (10) | 0.0365 (9) | 0.0068 (7) | 0.0020 (7) | −0.0028 (8) |
C8A | 0.0252 (7) | 0.0149 (6) | 0.0203 (6) | −0.0014 (5) | −0.0010 (5) | 0.0012 (5) |
C10 | 0.0286 (8) | 0.0382 (9) | 0.0310 (8) | −0.0100 (7) | −0.0071 (6) | 0.0060 (7) |
C11 | 0.0217 (7) | 0.0294 (8) | 0.0265 (7) | −0.0058 (6) | −0.0031 (6) | −0.0012 (6) |
O3—C2 | 1.4125 (17) | C15—C16 | 1.385 (3) |
O3—C4 | 1.4307 (17) | C15—H15 | 0.9500 |
O5—C6 | 1.4146 (16) | C16—C11 | 1.375 (2) |
O5—C4A | 1.4354 (16) | C16—H16 | 0.9500 |
O7—C6 | 1.4051 (18) | C4A—C8A | 1.526 (2) |
O7—C8 | 1.4336 (17) | C4A—H4A | 1.0000 |
O8—C9 | 1.4223 (16) | C6—H6A | 0.9900 |
O8—C10 | 1.4247 (18) | C6—H6B | 0.9900 |
O1—C2 | 1.4089 (17) | C8—C8A | 1.5127 (19) |
O1—C8A | 1.4329 (17) | C8—H8A | 0.9900 |
C2—H2A | 0.9900 | C8—H8B | 0.9900 |
C2—H2B | 0.9900 | C9—H9A | 0.9900 |
C13—C14 | 1.371 (3) | C9—H9B | 0.9900 |
C13—C12 | 1.388 (2) | C12—C11 | 1.385 (2) |
C13—H13 | 0.9500 | C12—H12 | 0.9500 |
C4—C9 | 1.509 (2) | C8A—H8AA | 1.0000 |
C4—C4A | 1.5206 (19) | C10—C11 | 1.500 (2) |
C4—H4 | 1.0000 | C10—H10A | 0.9900 |
C14—C15 | 1.370 (3) | C10—H10B | 0.9900 |
C14—H14 | 0.9500 | ||
C2—O3—C4 | 111.19 (11) | O7—C6—H6A | 109.3 |
C6—O5—C4A | 110.19 (10) | O5—C6—H6A | 109.3 |
C6—O7—C8 | 110.21 (11) | O7—C6—H6B | 109.3 |
C9—O8—C10 | 110.75 (11) | O5—C6—H6B | 109.3 |
C2—O1—C8A | 110.46 (11) | H6A—C6—H6B | 108.0 |
O1—C2—O3 | 111.22 (11) | O7—C8—C8A | 111.62 (11) |
O1—C2—H2A | 109.4 | O7—C8—H8A | 109.3 |
O3—C2—H2A | 109.4 | C8A—C8—H8A | 109.3 |
O1—C2—H2B | 109.4 | O7—C8—H8B | 109.3 |
O3—C2—H2B | 109.4 | C8A—C8—H8B | 109.3 |
H2A—C2—H2B | 108.0 | H8A—C8—H8B | 108.0 |
C14—C13—C12 | 120.68 (16) | O8—C9—C4 | 109.50 (11) |
C14—C13—H13 | 119.7 | O8—C9—H9A | 109.8 |
C12—C13—H13 | 119.7 | C4—C9—H9A | 109.8 |
O3—C4—C9 | 107.03 (11) | O8—C9—H9B | 109.8 |
O3—C4—C4A | 111.27 (11) | C4—C9—H9B | 109.8 |
C9—C4—C4A | 112.12 (12) | H9A—C9—H9B | 108.2 |
O3—C4—H4 | 108.8 | C11—C12—C13 | 120.07 (16) |
C9—C4—H4 | 108.8 | C11—C12—H12 | 120.0 |
C4A—C4—H4 | 108.8 | C13—C12—H12 | 120.0 |
C15—C14—C13 | 119.51 (16) | O1—C8A—C8 | 108.61 (11) |
C15—C14—H14 | 120.2 | O1—C8A—C4A | 110.34 (11) |
C13—C14—H14 | 120.2 | C8—C8A—C4A | 110.66 (12) |
C14—C15—C16 | 120.08 (17) | O1—C8A—H8AA | 109.1 |
C14—C15—H15 | 120.0 | C8—C8A—H8AA | 109.1 |
C16—C15—H15 | 120.0 | C4A—C8A—H8AA | 109.1 |
C11—C16—C15 | 121.06 (16) | O8—C10—C11 | 109.77 (13) |
C11—C16—H16 | 119.5 | O8—C10—H10A | 109.7 |
C15—C16—H16 | 119.5 | C11—C10—H10A | 109.7 |
O5—C4A—C4 | 108.63 (11) | O8—C10—H10B | 109.7 |
O5—C4A—C8A | 110.50 (11) | C11—C10—H10B | 109.7 |
C4—C4A—C8A | 110.90 (11) | H10A—C10—H10B | 108.2 |
O5—C4A—H4A | 108.9 | C16—C11—C12 | 118.60 (15) |
C4—C4A—H4A | 108.9 | C16—C11—C10 | 120.14 (15) |
C8A—C4A—H4A | 108.9 | C12—C11—C10 | 121.26 (15) |
O7—C6—O5 | 111.39 (11) | ||
C8A—O1—C2—O3 | 64.95 (15) | C4A—C4—C9—O8 | −156.09 (11) |
C4—O3—C2—O1 | −63.31 (15) | C14—C13—C12—C11 | 0.0 (3) |
C2—O3—C4—C9 | 176.82 (11) | C2—O1—C8A—C8 | −178.47 (11) |
C2—O3—C4—C4A | 54.02 (14) | C2—O1—C8A—C4A | −57.01 (14) |
C12—C13—C14—C15 | 0.2 (3) | O7—C8—C8A—O1 | 73.36 (15) |
C13—C14—C15—C16 | −0.3 (3) | O7—C8—C8A—C4A | −47.90 (15) |
C14—C15—C16—C11 | 0.3 (3) | O5—C4A—C8A—O1 | −71.99 (13) |
C6—O5—C4A—C4 | −178.11 (11) | C4—C4A—C8A—O1 | 48.53 (14) |
C6—O5—C4A—C8A | −56.24 (14) | O5—C4A—C8A—C8 | 48.25 (14) |
O3—C4—C4A—O5 | 74.48 (14) | C4—C4A—C8A—C8 | 168.77 (11) |
C9—C4—C4A—O5 | −45.35 (15) | C9—O8—C10—C11 | −167.65 (13) |
O3—C4—C4A—C8A | −47.14 (15) | C15—C16—C11—C12 | −0.1 (3) |
C9—C4—C4A—C8A | −166.97 (11) | C15—C16—C11—C10 | 179.44 (19) |
C8—O7—C6—O5 | −64.20 (15) | C13—C12—C11—C16 | −0.1 (3) |
C4A—O5—C6—O7 | 65.18 (14) | C13—C12—C11—C10 | −179.57 (16) |
C6—O7—C8—C8A | 55.30 (15) | O8—C10—C11—C16 | 102.95 (19) |
C10—O8—C9—C4 | −166.65 (13) | O8—C10—C11—C12 | −77.6 (2) |
O3—C4—C9—O8 | 81.64 (14) |
C14H17NO6 | F(000) = 624 |
Mr = 295.28 | Dx = 1.476 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 22.909 (2) Å | Cell parameters from 2795 reflections |
b = 4.8973 (5) Å | θ = 7.0–41.7° |
c = 12.2331 (14) Å | µ = 0.12 mm−1 |
β = 104.529 (4)° | T = 173 K |
V = 1328.6 (2) Å3 | Block, colorless |
Z = 4 | 0.20 × 0.15 × 0.12 mm |
Bruker D8 Venture Duo diffractometer | 2803 reflections with I > 2σ(I) |
Kappa Diffractometer scans | Rint = 0.069 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 27.5°, θmin = 2.8° |
Tmin = 0.568, Tmax = 0.746 | h = −29→29 |
23485 measured reflections | k = −6→6 |
3040 independent reflections | l = −15→15 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.044 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.107 | w = 1/[σ2(Fo2) + (0.0495P)2 + 0.442P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
3040 reflections | Δρmax = 0.34 e Å−3 |
193 parameters | Δρmin = −0.29 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.60997 (4) | 0.50342 (19) | 0.58605 (7) | 0.0310 (2) | |
O3 | 0.70830 (4) | 0.62699 (19) | 0.58784 (7) | 0.0302 (2) | |
O5 | 0.63244 (4) | 0.55251 (17) | 0.35740 (7) | 0.0258 (2) | |
O7 | 0.53139 (4) | 0.48658 (19) | 0.35638 (8) | 0.0324 (2) | |
O8 | 0.77058 (3) | 0.32337 (15) | 0.37519 (7) | 0.02338 (19) | |
O9 | 0.82960 (4) | 0.63477 (16) | 0.31909 (8) | 0.0330 (2) | |
N1 | 0.82836 (4) | 0.19036 (18) | 0.26368 (8) | 0.0225 (2) | |
H1 | 0.8209 (7) | 0.027 (3) | 0.2824 (13) | 0.027* | |
C2 | 0.66883 (6) | 0.5438 (3) | 0.65284 (10) | 0.0347 (3) | |
H2A | 0.683838 | 0.371609 | 0.692421 | 0.042* | |
H2B | 0.668196 | 0.684296 | 0.710706 | 0.042* | |
C4 | 0.71453 (5) | 0.4155 (2) | 0.51082 (9) | 0.0230 (2) | |
H4 | 0.733167 | 0.251744 | 0.554844 | 0.028* | |
C4A | 0.65326 (5) | 0.3365 (2) | 0.43578 (9) | 0.0215 (2) | |
H4A | 0.657592 | 0.166324 | 0.393308 | 0.026* | |
C6 | 0.57349 (5) | 0.4990 (3) | 0.29052 (10) | 0.0320 (3) | |
H6A | 0.561531 | 0.644689 | 0.233139 | 0.038* | |
H6B | 0.573382 | 0.323456 | 0.250366 | 0.038* | |
C8 | 0.54503 (5) | 0.2626 (3) | 0.43325 (11) | 0.0318 (3) | |
H8A | 0.540811 | 0.089413 | 0.390230 | 0.038* | |
H8B | 0.515926 | 0.259346 | 0.480937 | 0.038* | |
C9 | 0.75822 (5) | 0.5321 (2) | 0.44922 (10) | 0.0242 (2) | |
H9A | 0.740477 | 0.694399 | 0.404957 | 0.029* | |
H9B | 0.795986 | 0.587944 | 0.503863 | 0.029* | |
C8A | 0.60852 (5) | 0.2844 (2) | 0.50798 (10) | 0.0262 (2) | |
H8AA | 0.619336 | 0.109986 | 0.550758 | 0.031* | |
C10 | 0.81139 (5) | 0.4021 (2) | 0.31843 (9) | 0.0208 (2) | |
C11 | 0.87120 (5) | 0.2165 (2) | 0.19801 (9) | 0.0210 (2) | |
C12 | 0.86405 (5) | 0.4148 (2) | 0.11452 (10) | 0.0265 (2) | |
H12 | 0.831260 | 0.539301 | 0.102868 | 0.032* | |
C13 | 0.90499 (6) | 0.4305 (3) | 0.04823 (10) | 0.0310 (3) | |
H13 | 0.900295 | 0.566736 | −0.008600 | 0.037* | |
C14 | 0.95263 (6) | 0.2486 (3) | 0.06448 (11) | 0.0333 (3) | |
H14 | 0.980372 | 0.258761 | 0.018488 | 0.040* | |
C15 | 0.95972 (6) | 0.0516 (3) | 0.14805 (12) | 0.0323 (3) | |
H15 | 0.992606 | −0.072340 | 0.159664 | 0.039* | |
C16 | 0.91903 (5) | 0.0342 (2) | 0.21495 (10) | 0.0256 (2) | |
H16 | 0.923900 | −0.101674 | 0.271959 | 0.031* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0299 (4) | 0.0412 (5) | 0.0242 (4) | 0.0067 (4) | 0.0111 (3) | −0.0022 (3) |
O3 | 0.0292 (4) | 0.0361 (5) | 0.0248 (4) | 0.0022 (3) | 0.0056 (3) | −0.0100 (3) |
O5 | 0.0216 (4) | 0.0324 (4) | 0.0222 (4) | 0.0004 (3) | 0.0032 (3) | 0.0065 (3) |
O7 | 0.0209 (4) | 0.0425 (5) | 0.0336 (5) | 0.0030 (3) | 0.0064 (3) | 0.0023 (4) |
O8 | 0.0225 (4) | 0.0208 (4) | 0.0287 (4) | −0.0030 (3) | 0.0100 (3) | −0.0040 (3) |
O9 | 0.0438 (5) | 0.0157 (4) | 0.0454 (5) | −0.0033 (3) | 0.0221 (4) | −0.0004 (3) |
N1 | 0.0248 (4) | 0.0156 (4) | 0.0291 (5) | −0.0020 (3) | 0.0107 (4) | 0.0010 (3) |
C2 | 0.0344 (7) | 0.0503 (8) | 0.0194 (5) | 0.0081 (6) | 0.0068 (5) | −0.0035 (5) |
C4 | 0.0227 (5) | 0.0246 (5) | 0.0211 (5) | 0.0042 (4) | 0.0043 (4) | −0.0016 (4) |
C4A | 0.0220 (5) | 0.0225 (5) | 0.0206 (5) | 0.0023 (4) | 0.0066 (4) | 0.0006 (4) |
C6 | 0.0220 (6) | 0.0482 (7) | 0.0241 (6) | 0.0007 (5) | 0.0025 (4) | 0.0031 (5) |
C8 | 0.0256 (6) | 0.0345 (6) | 0.0381 (6) | −0.0027 (5) | 0.0135 (5) | −0.0003 (5) |
C9 | 0.0217 (5) | 0.0224 (5) | 0.0284 (5) | 0.0003 (4) | 0.0064 (4) | −0.0052 (4) |
C8A | 0.0280 (6) | 0.0273 (5) | 0.0258 (5) | 0.0031 (4) | 0.0115 (4) | 0.0037 (4) |
C10 | 0.0196 (5) | 0.0179 (5) | 0.0240 (5) | 0.0004 (4) | 0.0040 (4) | 0.0025 (4) |
C11 | 0.0220 (5) | 0.0188 (5) | 0.0222 (5) | −0.0040 (4) | 0.0057 (4) | −0.0025 (4) |
C12 | 0.0291 (6) | 0.0230 (5) | 0.0263 (5) | −0.0026 (4) | 0.0046 (4) | 0.0020 (4) |
C13 | 0.0417 (7) | 0.0277 (6) | 0.0242 (5) | −0.0089 (5) | 0.0093 (5) | 0.0015 (4) |
C14 | 0.0406 (7) | 0.0318 (6) | 0.0336 (6) | −0.0095 (5) | 0.0204 (5) | −0.0064 (5) |
C15 | 0.0316 (6) | 0.0275 (6) | 0.0418 (7) | 0.0002 (5) | 0.0165 (5) | −0.0037 (5) |
C16 | 0.0279 (6) | 0.0209 (5) | 0.0288 (6) | −0.0005 (4) | 0.0086 (4) | 0.0006 (4) |
O1—C2 | 1.4042 (16) | C4A—H4A | 1.0000 |
O1—C8A | 1.4309 (14) | C6—H6A | 0.9900 |
O3—C2 | 1.4059 (16) | C6—H6B | 0.9900 |
O3—C4 | 1.4313 (13) | C8—C8A | 1.5152 (17) |
O5—C6 | 1.4168 (14) | C8—H8A | 0.9900 |
O5—C4A | 1.4272 (13) | C8—H8B | 0.9900 |
O7—C6 | 1.4046 (15) | C9—H9A | 0.9900 |
O7—C8 | 1.4275 (16) | C9—H9B | 0.9900 |
O8—C10 | 1.3530 (13) | C8A—H8AA | 1.0000 |
O8—C9 | 1.4400 (13) | C11—C16 | 1.3881 (16) |
O9—C10 | 1.2129 (13) | C11—C12 | 1.3891 (15) |
N1—C10 | 1.3436 (14) | C12—C13 | 1.3873 (17) |
N1—C11 | 1.4215 (14) | C12—H12 | 0.9500 |
N1—H1 | 0.863 (16) | C13—C14 | 1.384 (2) |
C2—H2A | 0.9900 | C13—H13 | 0.9500 |
C2—H2B | 0.9900 | C14—C15 | 1.3852 (18) |
C4—C9 | 1.5079 (15) | C14—H14 | 0.9500 |
C4—C4A | 1.5219 (15) | C15—C16 | 1.3888 (16) |
C4—H4 | 1.0000 | C15—H15 | 0.9500 |
C4A—C8A | 1.5330 (15) | C16—H16 | 0.9500 |
C2—O1—C8A | 110.61 (9) | C8A—C8—H8B | 109.4 |
C2—O3—C4 | 110.31 (9) | H8A—C8—H8B | 108.0 |
C6—O5—C4A | 111.13 (9) | O8—C9—C4 | 107.79 (9) |
C6—O7—C8 | 110.06 (9) | O8—C9—H9A | 110.1 |
C10—O8—C9 | 113.00 (8) | C4—C9—H9A | 110.1 |
C10—N1—C11 | 122.64 (9) | O8—C9—H9B | 110.1 |
C10—N1—H1 | 118.9 (10) | C4—C9—H9B | 110.1 |
C11—N1—H1 | 116.4 (10) | H9A—C9—H9B | 108.5 |
O1—C2—O3 | 111.82 (9) | O1—C8A—C8 | 108.28 (9) |
O1—C2—H2A | 109.3 | O1—C8A—C4A | 110.67 (9) |
O3—C2—H2A | 109.3 | C8—C8A—C4A | 110.10 (9) |
O1—C2—H2B | 109.3 | O1—C8A—H8AA | 109.3 |
O3—C2—H2B | 109.3 | C8—C8A—H8AA | 109.3 |
H2A—C2—H2B | 107.9 | C4A—C8A—H8AA | 109.3 |
O3—C4—C9 | 104.08 (9) | O9—C10—N1 | 125.90 (10) |
O3—C4—C4A | 110.60 (8) | O9—C10—O8 | 123.03 (10) |
C9—C4—C4A | 114.97 (9) | N1—C10—O8 | 111.08 (9) |
O3—C4—H4 | 109.0 | C16—C11—C12 | 120.17 (10) |
C9—C4—H4 | 109.0 | C16—C11—N1 | 119.26 (10) |
C4A—C4—H4 | 109.0 | C12—C11—N1 | 120.52 (10) |
O5—C4A—C4 | 108.61 (9) | C13—C12—C11 | 119.75 (11) |
O5—C4A—C8A | 110.56 (8) | C13—C12—H12 | 120.1 |
C4—C4A—C8A | 110.09 (9) | C11—C12—H12 | 120.1 |
O5—C4A—H4A | 109.2 | C14—C13—C12 | 120.31 (11) |
C4—C4A—H4A | 109.2 | C14—C13—H13 | 119.8 |
C8A—C4A—H4A | 109.2 | C12—C13—H13 | 119.8 |
O7—C6—O5 | 111.66 (9) | C13—C14—C15 | 119.77 (11) |
O7—C6—H6A | 109.3 | C13—C14—H14 | 120.1 |
O5—C6—H6A | 109.3 | C15—C14—H14 | 120.1 |
O7—C6—H6B | 109.3 | C14—C15—C16 | 120.39 (11) |
O5—C6—H6B | 109.3 | C14—C15—H15 | 119.8 |
H6A—C6—H6B | 108.0 | C16—C15—H15 | 119.8 |
O7—C8—C8A | 111.20 (10) | C11—C16—C15 | 119.60 (11) |
O7—C8—H8A | 109.4 | C11—C16—H16 | 120.2 |
C8A—C8—H8A | 109.4 | C15—C16—H16 | 120.2 |
O7—C8—H8B | 109.4 | ||
C8A—O1—C2—O3 | 64.04 (13) | O7—C8—C8A—C4A | −49.89 (13) |
C4—O3—C2—O1 | −64.56 (13) | O5—C4A—C8A—O1 | −71.14 (11) |
C2—O3—C4—C9 | −179.25 (9) | C4—C4A—C8A—O1 | 48.87 (12) |
C2—O3—C4—C4A | 56.74 (11) | O5—C4A—C8A—C8 | 48.53 (12) |
C6—O5—C4A—C4 | −175.73 (9) | C4—C4A—C8A—C8 | 168.54 (9) |
C6—O5—C4A—C8A | −54.84 (11) | C11—N1—C10—O9 | 0.04 (18) |
O3—C4—C4A—O5 | 71.73 (11) | C11—N1—C10—O8 | −179.59 (9) |
C9—C4—C4A—O5 | −45.78 (12) | C9—O8—C10—O9 | −8.87 (15) |
O3—C4—C4A—C8A | −49.46 (12) | C9—O8—C10—N1 | 170.76 (9) |
C9—C4—C4A—C8A | −166.96 (9) | C10—N1—C11—C16 | 130.24 (11) |
C8—O7—C6—O5 | −63.89 (13) | C10—N1—C11—C12 | −52.41 (15) |
C4A—O5—C6—O7 | 63.36 (13) | C16—C11—C12—C13 | −0.13 (16) |
C6—O7—C8—C8A | 57.21 (13) | N1—C11—C12—C13 | −177.46 (10) |
C10—O8—C9—C4 | −177.55 (8) | C11—C12—C13—C14 | 0.38 (17) |
O3—C4—C9—O8 | 175.86 (8) | C12—C13—C14—C15 | −0.58 (19) |
C4A—C4—C9—O8 | −63.01 (12) | C13—C14—C15—C16 | 0.53 (19) |
C2—O1—C8A—C8 | −176.28 (10) | C12—C11—C16—C15 | 0.09 (17) |
C2—O1—C8A—C4A | −55.53 (12) | N1—C11—C16—C15 | 177.45 (10) |
O7—C8—C8A—O1 | 71.22 (12) | C14—C15—C16—C11 | −0.29 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O9i | 0.863 (16) | 1.969 (16) | 2.8025 (13) | 161.9 (14) |
C2—H2B···O5ii | 0.99 | 2.51 | 3.4515 (15) | 159 |
Symmetry codes: (i) x, y−1, z; (ii) x, −y+3/2, z+1/2. |
Funding information
The Salomon Research Fund administered by Brown University is thanked for supporting this research. The authors acknowledge support for the purchase of the X-ray diffraction equipment via grant No. 2117549 from the US National Science Foundation (NSF).
References
Abramson, S., Ashkenazi, E., Frische, K., Goldberg, I., Golender, L., Greenwald, M., Lemcoff, N. G., Madar, R., Weinman, S. & Fuchs, B. (2003). Chem. Eur. J. 9, 6071–6082. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bruker (2022). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burkert, U. (1980). J. Comput. Chem. 1, 192–198. CrossRef CAS Web of Science Google Scholar
Che, R., Zhu, Q., Yu, J., Li, J., Yu, J. & Lu, W. (2017). Tetrahedron, 73, 6172–6180. Web of Science CrossRef CAS Google Scholar
Ferrier, R. J. (2003). Carbohydrate Chemistry, Vol. 34, pp. 338–366. London: Royal Society of Chemistry. Google Scholar
Fuchs, B. (2013). Isr. J. Chem. 53, 45–52. Web of Science CrossRef CAS Google Scholar
Ganguly, B. & Fuchs, B. (2001). J. Phys. Org. Chem. 14, 488–494. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hann, R. M., Ness, A. T. & Hudson, C. S. (1944). J. Am. Chem. Soc. 66, 670–673. CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lemieux, R. U. & Howard, J. (1963). Can. J. Chem. 41, 393–398. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rodier, N., Ronco, G., Julien, R., Postel, D. & Villa, P. (1993). Acta Cryst. C49, 2032–2033. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, D. A., Baker, D. & Rahman, A. F. M. M. (1991). Struct. Chem. 2, 65–70. CSD CrossRef Web of Science Google Scholar
Taskinen, E. (2009). J. Phys. Org. Chem. 22, 761–768. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zarubinskii, G. M. & Danilov, S. N. (1972). Zh. Obshch. Khim. 42, 2758–2763. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.