research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of 5-[2-(di­cyano­methyl­­idene)hydrazin-1-yl]-2,4,6-tri­iodo­isophthalic acid ethanol monosolvate

crossmark logo

aExcellence Center, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan, bOrganic Chemistry Department, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, dDepartment of Physics, Faculty of Science, Erciyes University, 38039 Kayseri, Türkiye, and eDepartment of Chemistry, M.M.A.M.C. (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: akkurt@erciyes.edu.tr, ajaya.bhattarai@mmamc.tu.edu.np

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 20 July 2023; accepted 2 August 2023; online 4 August 2023)

The title compound, C11H3I3N4O4·C2H6O, crystallizes in the triclinic P[\overline{1}] space group with one independent mol­ecule and one ethanol solvent mol­ecule in the asymmetric unit. The benzene ring and the methyl­carbonohydrazonoyl dicyanide group of the main mol­ecule makes a dihedral angle of 57.91 (16)°. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link pairs of mol­ecules, forming dimers with R22(14) motifs. These dimers are connected by O—H⋯O hydrogen bonds into chains along the a-axis direction, forming R22(16) ring motifs. Further O—H⋯O inter­actions involving the ethanol solvent mol­ecule connect the chains into a three-dimensional network. In addition, C—I⋯π inter­actions are observed. The inter­molecular inter­actions in the crystal structure were qu­anti­fied and analysed using Hirshfeld surface analysis.

1. Chemical context

Aryl­hydrazones of active methyl­ene compounds (AHAMC) have been extensively employed as ligands and precursors for the synthesis of coordination, organic or supra­molecular compounds (Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.],b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833-14837.]; Kopylovich et al., 2011[Kopylovich, M. N., Mahmudov, K. T., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Kuznetsov, M. L., Silva, T. F. S., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2011). J. Phys. Org. Chem. 24, 764-773.]). Besides their biological significance (Martins et al., 2017[Martins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076-4086.]), the transition-metal complexes of AHAMC ligands have been found to possess a wide variety of functional properties, and have applications as catalysts, supra­molecular building blocks and analytical reagents (Mahmudov et al., 2010[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923-2938.], 2012[Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187-189.], 2015[Mahmudov, K. T., Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, F. C., Ribera, A., Nunes, A. V. M., Gahramanova, S. I., Marchetti, F. & Pombeiro, A. J. L. (2015). RSC Adv. 5, 25979-25987.]). By the functionalization of the active methyl­ene fragment (acetyl­acetone or barbituric acid) or the aromatic moiety (2,4,6-tri­iodo­isophthalic acid) of the AHAMC mol­ecules, the catalytic properties of their metal complexes can be improved in the nitro­aldol reaction between aldehydes and nitro­ethane (Gurbanov et al., 2022[Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans. 51, 1019-1031.]). On the other hand, non-covalent inter­actions such as hydrogen, halogen and chalcogen bonds as well as π-inter­actions can be employed in the synthesis, catalysis and design of materials (Abdelhamid et al., 2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.]; Khalilov et al., 2021[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.]; Ma et al., 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Mahmudov et al., 2022[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.]). As well as hydrogen bonds, the cooperation of different weak bonds can act as a driving force for controlling supra­molecular networks (Polyanskii et al., 2019[Polyanskii, K. B., Alekseeva, K. A., Raspertov, P. V., Kumandin, P. A., Nikitina, E. V., Gurbanov, A. V. & Zubkov, F. I. (2019). Beilstein J. Org. Chem. 15, 769-779.]; Safarova et al., 2019[Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183-1185.]; Shikhaliyev et al., 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]; Zubkov et al., 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]). Similarly to Schiff base complexes (Mahmoudi et al., 2017a[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192-205.],b[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763-4772.], 2019[Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108-117.]), the functional groups can be involved in various types of inter­molecular inter­actions in metal complexes of aryl­hydrazone ligands. We have synthesized a new iodine-substituted AHAMC ligand, 5-[2-(di­cyano­methyl­ene)hydrazin­yl]-2,4,6-tri­iodo­isophthalic acid, and studied the inter­molecular halogen bonds and other types of weak inter­actions in its crystal structure.

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]) crystallizes in the triclinic P[\overline{1}] space group with one independent mol­ecule and one ethanol solvent mol­ecule in the asymmetric unit. The benzene ring (C1–C6) and the methyl­carbonohydrazonoyl dicyanide group (N1–N4/C1/C7–C9) of the main mol­ecule makes a dihedral angle of 57.91 (16)°. Geometric parameter values in the mol­ecule are normal and in good agreement with the values in the compounds discussed in the Database survey section.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 30% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal of the title compound, pairs of mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming dimers with [R_{2}^{2}](14) motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Table 1[link], Fig. 2[link]). These dimers are connected along the a-axis direction by further O—H⋯O hydrogen bonds, forming [R_{2}^{2}](16) ring motifs. O—H⋯O hydrogen bonds involving the ethanol solvent mol­ecule connect chains into a three-dimensional network. In addition, C—I⋯π inter­actions are also observed [C2—I1⋯Cg1(1 − x, 1 − y, 1 − z), 3.8441 (15) Å]. The carbon atoms in the aryl­hydrazone mol­ecule are magnetically non-equivalent as a result of limited rotation around the C—N bond, thus the NH group is locked and becomes `asymmetric', which translates into diastereotopic protons and carbons in the title compound.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.85 1.80 2.648 (4) 178
O3—H3⋯O5ii 0.85 1.68 2.515 (4) 169
O5—H5⋯N3iii 0.85 2.40 3.200 (5) 156
N1—H1N⋯O2iv 0.92 2.11 2.937 (4) 149
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [x-1, y, z]; (iii) [-x+2, -y+2, -z+1]; (iv) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
A part view of the mol­ecular packing in the unit cell. N—H⋯O, O—H⋯O hydrogen bonds and C—I⋯π inter­actions are shown as dashed lines. Symmetry codes: (i) −x, −y + 1, −z + 1; (ii) x − 1, y, z; (iii) −x + 2, −y + 2, −z + 1; (iv) −x + 1, −y + 1, −z + 1; (v) x + 1, y, z.

In order to present the inter­molecular inter­actions in the crystal structure of the title compound in a visual manner, Hirshfeld surfaces and their associated two-dimensional fingerprint plots were generated using CrystalExplorer17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The Hirshfeld surface plotted over dnorm is shown in Fig. 3[link], while Fig. 4[link] shows the full two-dimensional fingerprint plot and those delineated into the major contacts: O⋯H/H⋯O (23.2%), N⋯H/H⋯N (11.9%), I⋯N/N⋯I (11.9%) and I⋯H/H⋯I (10.7%). Smaller contributions are made by I⋯C/C⋯I (7.7%), C⋯H/H⋯C (6.7%), I⋯O/O⋯I (6.7%), I⋯I (5.4%), C⋯C (4.8%), H⋯H (2.3%), O⋯C/C⋯O(2.3%), N⋯C/C⋯N (2.1%), O⋯N/N⋯O (2.0%), O⋯O (1.4%) and N⋯N (1.0%) inter­actions.

[Figure 3]
Figure 3
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm, with a fixed colour scale of −0.8291 to 1.0734 a.u.
[Figure 4]
Figure 4
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) O⋯H/H⋯O, (c) N⋯H/H⋯N, (d) I⋯N/N⋯I, (e) I⋯H/H⋯I and (f) I⋯C/C⋯I inter­actions. [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively.]

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43, update June 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 5-amino-2,4,6-tri­iodo­benzene-1,3-di­carb­oxy­lic acid unit gave four similar structures, viz. 5-amino-2,4,6-tri­iodo­isophthalic acid monohydrate (SOGGUR; Beck & Sheldrick, 2008[Beck, T. & Sheldrick, G. M. (2008). Acta Cryst. E64, o1286.]), 4-(4-pyrid­yl)pyridinium 3-amino-5-carb­oxy-2,4,6-tri­iodo­benzoate–5-amino-2,4,6-tri­iodo­isophthalic acid (1/1) (WADPAU; Zhang et al., 2010[Zhang, K.-L., Diao, G.-W. & Ng, S. W. (2010). Acta Cryst. E66, o3165.]), 5-amino-2,4,6-tri­iodo­isophthalic acid–4,4′-bi­pyri­dine N,N′-dioxide–water (1/1/1) (UNUDIR; Zhang et al., 2011[Zhang, K.-L., Zhang, J.-B. & Ng, S. W. (2011). Acta Cryst. E67, o793.]) and 5-amino-2,4,6-tri­bromo­isophthalic acid (BOTVUC; Beck et al., 2009[Beck, T., Herbst-Irmer, R. & Sheldrick, G. M. (2009). Acta Cryst. C65, o237-o239.]).

In the crystal structure of SOGGUR, mol­ecules are linked by O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds involving all possible donors and also the water mol­ecule, forming an extensive hydrogen-bond network.

In the ammonium carboxyl­ate–carb­oxy­lic acid co-crystal WADPAU, the carboxyl­ate anion and carb­oxy­lic acid mol­ecule are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming a chain running along the c-axis direction of the monoclinic unit cell. The chains are linked by pyridinium and pyridine N—H⋯O hydrogen bonds, generating a layer motif. O—H⋯N and O—H⋯O hydrogen bonds are also observed.

In the crystal of UNUDIR, mol­ecules are linked by O—H⋯O hydrogen bonds into a three-dimensional network. An N—H⋯O inter­action also occurs. One of the amino H atoms is not involved in hydrogen bonding.

In the crystal structure of BOTVUC, mol­ecules are linked into chains by COO—H⋯O bonds, and pairs of chains are connected by additional COO—H⋯O inter­actions. This chain bundle shows stacking inter­actions and weak N—H⋯O hydrogen bonds with adjacent chains.

5. Synthesis and crystallization

Diazo­tization: 558 mg (1 mmol) of 5-amino-2,4,6-tri­iodo­isophthalic acid were dissolved in 15 mL of water, and the solution was cooled in an ice bath to 273 K, then 69 mg (1 mmol) of NaNO2 were added followed by 0.2 mL of HCl, and mixed for 1 h. The temperature of the mixture should not exceed 278 K.

Azocoupling: NaOH (40 mg, 1 mmol) was added to a mixture of 1 mmol (66 mg) of malono­nitrile with 5 mL of water. The solution was cooled in an ice bath, and a suspension of 3,5-bis­(meth­oxy­carbon­yl)benzene­diazo­nium chloride (prepared according to the procedure described above) was added in two equal portions under vigorous stirring for 1 h. The precipitate was filtered off, recrystallized from methanol and dried in air. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

The title compound: Yield 79% (based on malono­nitrile), yellow powder soluble in DMSO, methanol, ethanol and DMF. Analysis calculated for C13H9I3N4O5: C 22.90, H 1.33, N 8.22; found: C 22.87, H 1.30, N 8.18 %. ESI–MS: m/z: 636.88. IR (KBr): 3123 ν(NH), 2937 ν(NH), 2233 ν(CN) and 1707 ν(C=N) cm−1. 1H NMR (300.130 MHz, DMSO-d6, inter­nal TMS): δ 1.02–1.06 (3H, CH3), 3.42–3.47 (2H, CH2), 7.25 and 7.32 (2H, COOH) and 11.21 (1H, N—H). 1H, in 13C{1H} NMR (75.468 MHz, DMSO-d6): δ 18.56 (CH3), 56.78 (CH2), 85.37, 89.06 and 94.93 (3C–I), 96.80 (C=N), 109.71 and 109.91 (CN), 149.79 and 150.13 (CCOOH), 162.97 (C–NH), 169.48 and 169.79 (C=O).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms of the ethanol mol­ecule were placed at idealized positions and refined using a riding model, with Uiso(H) values assigned as 1.2Ueq or 1.5Ueq(methyl only) of the parent atoms, with C—H distances of 0.97 (methyl­ene) and 0.96 Å (meth­yl). The remaining hydrogen atoms bound to nitro­gen and oxygen were located in difference-Fourier maps and refined with fixed positional thermal displacement parameters and with Uiso(H) values assigned as 1.2Ueq(NH) or 1.5Ueq(OH) of the parent atoms. One reflection, (001), affected by the incident beam-stop was omitted in the final cycles of refinement.

Table 2
Experimental details

Crystal data
Chemical formula C11H3I3N4O4·C2H6O
Mr 681.94
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 9.1499 (3), 9.8771 (3), 12.0440 (4)
α, β, γ (°) 113.512 (1), 95.399 (1), 103.462 (1)
V3) 949.11 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 4.97
Crystal size (mm) 0.26 × 0.21 × 0.14
 
Data collection
Diffractometer Bruker D8 Quest PHOTON 100 detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.325, 0.518
No. of measured, independent and observed [I > 2σ(I)] reflections 20253, 3755, 3375
Rint 0.025
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.054, 1.22
No. of reflections 3755
No. of parameters 227
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.75, −0.61
Computer programs: APEX4 and SAINT (Bruker, 2008[Bruker (2008). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2019/1 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX4 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT2019/1 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/1 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

5-[2-(Dicyanomethylidene)hydrazin-1-yl]-2,4,6-triiodoisophthalic acid ethanol monosolvate top
Crystal data top
C11H3I3N4O4·C2H6OZ = 2
Mr = 681.94F(000) = 628
Triclinic, P1Dx = 2.386 Mg m3
a = 9.1499 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8771 (3) ÅCell parameters from 9873 reflections
c = 12.0440 (4) Åθ = 2.3–26.4°
α = 113.512 (1)°µ = 4.97 mm1
β = 95.399 (1)°T = 296 K
γ = 103.462 (1)°Prism, orange
V = 949.11 (5) Å30.26 × 0.21 × 0.14 mm
Data collection top
Bruker D8 Quest PHOTON 100 detector
diffractometer
3375 reflections with I > 2σ(I)
φ and ω scansRint = 0.025
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.4°, θmin = 2.3°
Tmin = 0.325, Tmax = 0.518h = 1111
20253 measured reflectionsk = 1212
3755 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: mixed
wR(F2) = 0.054H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + 2.2238P]
where P = (Fo2 + 2Fc2)/3
3755 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.61 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.43837 (3)0.36375 (3)0.66860 (2)0.03614 (8)
I20.00185 (3)0.27921 (3)0.22009 (2)0.03995 (8)
I30.34230 (3)0.92158 (3)0.61552 (3)0.04489 (9)
O10.0961 (3)0.1098 (3)0.4380 (3)0.0419 (6)
H10.0636760.1713140.4954160.063*
O20.2676 (3)0.1256 (3)0.3246 (2)0.0380 (6)
O30.1880 (3)0.6581 (4)0.2734 (3)0.0433 (7)
H30.1655580.7046260.2311450.065*
O40.0089 (3)0.7033 (4)0.3831 (3)0.0438 (7)
O51.0910 (4)0.7945 (4)0.1586 (3)0.0600 (9)
H51.1516550.8348900.1233790.090*
N10.4566 (3)0.7189 (3)0.7341 (3)0.0315 (6)
H1N0.5327840.7993150.7351390.038*
N20.4222 (3)0.7013 (4)0.8311 (3)0.0326 (6)
N30.7600 (5)1.0028 (5)0.9762 (4)0.0656 (12)
N40.4455 (6)0.7440 (5)1.1278 (4)0.0656 (12)
C10.3561 (4)0.6188 (4)0.6179 (3)0.0260 (7)
C20.3273 (3)0.4583 (4)0.5705 (3)0.0249 (6)
C30.2269 (4)0.3621 (4)0.4560 (3)0.0262 (7)
C40.1576 (4)0.4260 (4)0.3895 (3)0.0258 (7)
C50.1879 (4)0.5859 (4)0.4348 (3)0.0267 (7)
C60.2875 (4)0.6808 (4)0.5487 (3)0.0262 (7)
C70.5133 (4)0.7872 (4)0.9390 (3)0.0348 (8)
C80.6530 (5)0.9076 (5)0.9622 (3)0.0398 (9)
C90.4713 (5)0.7606 (5)1.0428 (4)0.0437 (9)
C100.1991 (4)0.1893 (4)0.4015 (3)0.0296 (7)
C110.1178 (4)0.6559 (4)0.3606 (3)0.0294 (7)
C120.8376 (7)0.6247 (7)0.0688 (6)0.0785 (17)
H12A0.7313270.6199810.0522110.118*
H12B0.8506720.5689880.1166800.118*
H12C0.8692430.5791980.0080730.118*
C130.9323 (6)0.7882 (7)0.1389 (5)0.0646 (14)
H13A0.9155210.8462800.0927540.078*
H13B0.9031960.8338070.2178680.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.04006 (14)0.03692 (13)0.03368 (13)0.01326 (10)0.00214 (10)0.01774 (10)
I20.03979 (14)0.03778 (14)0.02815 (13)0.00210 (10)0.00658 (10)0.00856 (10)
I30.05157 (16)0.02331 (12)0.05002 (16)0.00527 (10)0.00314 (12)0.01113 (11)
O10.0475 (16)0.0294 (13)0.0477 (16)0.0067 (12)0.0229 (13)0.0155 (12)
O20.0432 (15)0.0294 (13)0.0371 (14)0.0089 (11)0.0160 (12)0.0095 (11)
O30.0468 (16)0.0641 (18)0.0457 (16)0.0286 (14)0.0219 (13)0.0408 (15)
O40.0432 (15)0.0589 (18)0.0422 (15)0.0288 (14)0.0164 (12)0.0255 (14)
O50.0564 (19)0.069 (2)0.081 (2)0.0197 (17)0.0171 (17)0.057 (2)
N10.0339 (15)0.0276 (14)0.0257 (14)0.0020 (12)0.0005 (12)0.0119 (12)
N20.0340 (16)0.0339 (16)0.0241 (14)0.0074 (13)0.0016 (12)0.0092 (12)
N30.062 (3)0.061 (3)0.054 (2)0.010 (2)0.002 (2)0.023 (2)
N40.082 (3)0.072 (3)0.033 (2)0.004 (2)0.0039 (19)0.024 (2)
C10.0239 (15)0.0290 (16)0.0196 (15)0.0023 (13)0.0028 (12)0.0087 (13)
C20.0204 (15)0.0278 (16)0.0241 (15)0.0027 (12)0.0015 (12)0.0120 (13)
C30.0233 (15)0.0291 (16)0.0259 (16)0.0038 (13)0.0060 (13)0.0137 (14)
C40.0261 (16)0.0253 (16)0.0209 (15)0.0028 (13)0.0038 (12)0.0079 (13)
C50.0283 (16)0.0293 (16)0.0229 (15)0.0068 (13)0.0076 (13)0.0122 (13)
C60.0281 (16)0.0217 (15)0.0269 (16)0.0042 (13)0.0066 (13)0.0102 (13)
C70.0380 (19)0.0336 (18)0.0267 (17)0.0075 (15)0.0001 (15)0.0102 (15)
C80.048 (2)0.035 (2)0.0275 (18)0.0093 (18)0.0007 (16)0.0084 (16)
C90.049 (2)0.044 (2)0.0283 (19)0.0081 (18)0.0034 (17)0.0112 (17)
C100.0291 (17)0.0253 (16)0.0278 (17)0.0029 (14)0.0030 (14)0.0087 (14)
C110.0313 (17)0.0289 (17)0.0262 (16)0.0062 (14)0.0065 (14)0.0116 (14)
C120.073 (4)0.077 (4)0.068 (4)0.007 (3)0.005 (3)0.024 (3)
C130.063 (3)0.072 (3)0.058 (3)0.016 (3)0.009 (2)0.034 (3)
Geometric parameters (Å, º) top
I1—C22.097 (3)C1—C61.397 (5)
I2—C42.104 (3)C1—C21.401 (5)
I3—C62.097 (3)C2—C31.399 (4)
O1—C101.307 (4)C3—C41.392 (5)
O1—H10.8499C3—C101.511 (5)
O2—C101.214 (4)C4—C51.396 (5)
O3—C111.287 (4)C5—C61.390 (5)
O3—H30.8500C5—C111.510 (5)
O4—C111.205 (4)C7—C81.444 (6)
O5—C131.432 (6)C7—C91.445 (6)
O5—H50.8500C12—C131.481 (8)
N1—N21.303 (4)C12—H12A0.9600
N1—C11.419 (4)C12—H12B0.9600
N1—H1N0.9222C12—H12C0.9600
N2—C71.300 (5)C13—H13A0.9700
N3—C81.134 (6)C13—H13B0.9700
N4—C91.136 (6)
C10—O1—H1109.4C1—C6—I3119.1 (2)
C11—O3—H3120.3N2—C7—C8124.6 (3)
C13—O5—H5119.8N2—C7—C9117.6 (3)
N2—N1—C1117.7 (3)C8—C7—C9117.8 (3)
N2—N1—H1N125.8N3—C8—C7177.0 (4)
C1—N1—H1N115.9N4—C9—C7176.6 (5)
C7—N2—N1119.9 (3)O2—C10—O1120.9 (3)
C6—C1—C2119.5 (3)O2—C10—C3121.4 (3)
C6—C1—N1119.8 (3)O1—C10—C3117.6 (3)
C2—C1—N1120.7 (3)O4—C11—O3125.5 (3)
C3—C2—C1119.5 (3)O4—C11—C5122.5 (3)
C3—C2—I1120.3 (2)O3—C11—C5112.0 (3)
C1—C2—I1120.1 (2)C13—C12—H12A109.5
C4—C3—C2120.0 (3)C13—C12—H12B109.5
C4—C3—C10119.7 (3)H12A—C12—H12B109.5
C2—C3—C10120.2 (3)C13—C12—H12C109.5
C3—C4—C5120.9 (3)H12A—C12—H12C109.5
C3—C4—I2119.4 (2)H12B—C12—H12C109.5
C5—C4—I2119.7 (2)O5—C13—C12109.1 (5)
C6—C5—C4118.8 (3)O5—C13—H13A109.9
C6—C5—C11120.1 (3)C12—C13—H13A109.9
C4—C5—C11121.0 (3)O5—C13—H13B109.9
C5—C6—C1121.2 (3)C12—C13—H13B109.9
C5—C6—I3119.6 (2)H13A—C13—H13B108.3
C1—N1—N2—C7177.9 (3)C4—C5—C6—C10.3 (5)
N2—N1—C1—C6121.9 (3)C11—C5—C6—C1178.8 (3)
N2—N1—C1—C259.3 (4)C4—C5—C6—I3177.5 (2)
C6—C1—C2—C31.7 (5)C11—C5—C6—I31.0 (4)
N1—C1—C2—C3179.5 (3)C2—C1—C6—C51.6 (5)
C6—C1—C2—I1176.7 (2)N1—C1—C6—C5179.7 (3)
N1—C1—C2—I12.0 (4)C2—C1—C6—I3176.2 (2)
C1—C2—C3—C40.6 (5)N1—C1—C6—I32.5 (4)
I1—C2—C3—C4177.8 (2)N1—N2—C7—C81.6 (6)
C1—C2—C3—C10177.7 (3)N1—N2—C7—C9178.7 (3)
I1—C2—C3—C100.7 (4)C4—C3—C10—O279.7 (4)
C2—C3—C4—C50.6 (5)C2—C3—C10—O297.4 (4)
C10—C3—C4—C5176.5 (3)C4—C3—C10—O198.9 (4)
C2—C3—C4—I2178.2 (2)C2—C3—C10—O184.0 (4)
C10—C3—C4—I24.7 (4)C6—C5—C11—O479.6 (5)
C3—C4—C5—C60.8 (5)C4—C5—C11—O4102.0 (4)
I2—C4—C5—C6178.0 (2)C6—C5—C11—O3100.3 (4)
C3—C4—C5—C11177.6 (3)C4—C5—C11—O378.1 (4)
I2—C4—C5—C113.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.851.802.648 (4)178
O3—H3···O5ii0.851.682.515 (4)169
O5—H5···N3iii0.852.403.200 (5)156
N1—H1N···O2iv0.922.112.937 (4)149
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z; (iii) x+2, y+2, z+1; (iv) x+1, y+1, z+1.
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, MA and AB; synthesis, FSA and FEH; X-ray analysis, GZM, STÇ and MA; writing (review and editing of the manuscript) STÇ, MA and AB; funding acquisition, FSA, FEH and GZM; supervision, MA and AB.

Funding information

This work was supported by Baku State University.

References

First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBeck, T., Herbst-Irmer, R. & Sheldrick, G. M. (2009). Acta Cryst. C65, o237–o239.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBeck, T. & Sheldrick, G. M. (2008). Acta Cryst. E64, o1286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans. 51, 1019–1031.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.  Web of Science CrossRef Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Kuznetsov, M. L., Silva, T. F. S., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2011). J. Phys. Org. Chem. 24, 764–773.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772.  Web of Science CSD CrossRef Google Scholar
First citationMahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187–189.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, F. C., Ribera, A., Nunes, A. V. M., Gahramanova, S. I., Marchetti, F. & Pombeiro, A. J. L. (2015). RSC Adv. 5, 25979–25987.  Web of Science CSD CrossRef CAS Google Scholar
First citationMartins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076–4086.  Web of Science CrossRef CAS Google Scholar
First citationPolyanskii, K. B., Alekseeva, K. A., Raspertov, P. V., Kumandin, P. A., Nikitina, E. V., Gurbanov, A. V. & Zubkov, F. I. (2019). Beilstein J. Org. Chem. 15, 769–779.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSafavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, K.-L., Diao, G.-W. & Ng, S. W. (2010). Acta Cryst. E66, o3165.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, K.-L., Zhang, J.-B. & Ng, S. W. (2011). Acta Cryst. E67, o793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds