research communications
Synthesis,
and Hirshfeld surface analysis of 5-[2-(dicyanomethylidene)hydrazin-1-yl]-2,4,6-triiodoisophthalic acid ethanol monosolvateaExcellence Center, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan, bOrganic Chemistry Department, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, dDepartment of Physics, Faculty of Science, Erciyes University, 38039 Kayseri, Türkiye, and eDepartment of Chemistry, M.M.A.M.C. (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: akkurt@erciyes.edu.tr, ajaya.bhattarai@mmamc.tu.edu.np
The title compound, C11H3I3N4O4·C2H6O, crystallizes in the triclinic P with one independent molecule and one ethanol solvent molecule in the The benzene ring and the methylcarbonohydrazonoyl dicyanide group of the main molecule makes a dihedral angle of 57.91 (16)°. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link pairs of molecules, forming dimers with R22(14) motifs. These dimers are connected by O—H⋯O hydrogen bonds into chains along the a-axis direction, forming R22(16) ring motifs. Further O—H⋯O interactions involving the ethanol solvent molecule connect the chains into a three-dimensional network. In addition, C—I⋯π interactions are observed. The intermolecular interactions in the were quantified and analysed using Hirshfeld surface analysis.
Keywords: crystal structure; hydrogen bonds; three dimensional network; C—I⋯π interactions; Hirshfeld surface analysis.
CCDC reference: 2286318
1. Chemical context
Arylhydrazones of active methylene compounds (AHAMC) have been extensively employed as ligands and precursors for the synthesis of coordination, organic or supramolecular compounds (Gurbanov et al., 2020a,b; Kopylovich et al., 2011). Besides their biological significance (Martins et al., 2017), the transition-metal complexes of AHAMC ligands have been found to possess a wide variety of functional properties, and have applications as catalysts, supramolecular building blocks and analytical reagents (Mahmudov et al., 2010, 2012, 2015). By the functionalization of the active methylene fragment (acetylacetone or barbituric acid) or the aromatic moiety (2,4,6-triiodoisophthalic acid) of the AHAMC molecules, the catalytic properties of their metal complexes can be improved in the nitroaldol reaction between and nitroethane (Gurbanov et al., 2022). On the other hand, non-covalent interactions such as hydrogen, halogen and chalcogen bonds as well as π-interactions can be employed in the synthesis, catalysis and design of materials (Abdelhamid et al., 2011; Khalilov et al., 2021; Ma et al., 2021; Mahmudov et al., 2022). As well as hydrogen bonds, the cooperation of different weak bonds can act as a driving force for controlling supramolecular networks (Polyanskii et al., 2019; Safarova et al., 2019; Shikhaliyev et al., 2019; Zubkov et al., 2018). Similarly to Schiff base complexes (Mahmoudi et al., 2017a,b, 2019), the functional groups can be involved in various types of intermolecular interactions in metal complexes of arylhydrazone ligands. We have synthesized a new iodine-substituted AHAMC ligand, 5-[2-(dicyanomethylene)hydrazinyl]-2,4,6-triiodoisophthalic acid, and studied the intermolecular halogen bonds and other types of weak interactions in its crystal structure.
2. Structural commentary
The title compound (Fig. 1) crystallizes in the triclinic P with one independent molecule and one ethanol solvent molecule in the The benzene ring (C1–C6) and the methylcarbonohydrazonoyl dicyanide group (N1–N4/C1/C7–C9) of the main molecule makes a dihedral angle of 57.91 (16)°. Geometric parameter values in the molecule are normal and in good agreement with the values in the compounds discussed in the Database survey section.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal of the title compound, pairs of molecules are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming dimers with (14) motifs (Bernstein et al., 1995; Table 1, Fig. 2). These dimers are connected along the a-axis direction by further O—H⋯O hydrogen bonds, forming (16) ring motifs. O—H⋯O hydrogen bonds involving the ethanol solvent molecule connect chains into a three-dimensional network. In addition, C—I⋯π interactions are also observed [C2—I1⋯Cg1(1 − x, 1 − y, 1 − z), 3.8441 (15) Å]. The carbon atoms in the arylhydrazone molecule are magnetically non-equivalent as a result of limited rotation around the C—N bond, thus the NH group is locked and becomes `asymmetric', which translates into protons and carbons in the title compound.
In order to present the intermolecular interactions in the CrystalExplorer17.5 (Spackman et al., 2021). The Hirshfeld surface plotted over dnorm is shown in Fig. 3, while Fig. 4 shows the full two-dimensional fingerprint plot and those delineated into the major contacts: O⋯H/H⋯O (23.2%), N⋯H/H⋯N (11.9%), I⋯N/N⋯I (11.9%) and I⋯H/H⋯I (10.7%). Smaller contributions are made by I⋯C/C⋯I (7.7%), C⋯H/H⋯C (6.7%), I⋯O/O⋯I (6.7%), I⋯I (5.4%), C⋯C (4.8%), H⋯H (2.3%), O⋯C/C⋯O(2.3%), N⋯C/C⋯N (2.1%), O⋯N/N⋯O (2.0%), O⋯O (1.4%) and N⋯N (1.0%) interactions.
of the title compound in a visual manner, Hirshfeld surfaces and their associated two-dimensional fingerprint plots were generated using4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.43, update June 2022; Groom et al., 2016) for the 5-amino-2,4,6-triiodobenzene-1,3-dicarboxylic acid unit gave four similar structures, viz. 5-amino-2,4,6-triiodoisophthalic acid monohydrate (SOGGUR; Beck & Sheldrick, 2008), 4-(4-pyridyl)pyridinium 3-amino-5-carboxy-2,4,6-triiodobenzoate–5-amino-2,4,6-triiodoisophthalic acid (1/1) (WADPAU; Zhang et al., 2010), 5-amino-2,4,6-triiodoisophthalic acid–4,4′-bipyridine N,N′-dioxide–water (1/1/1) (UNUDIR; Zhang et al., 2011) and 5-amino-2,4,6-tribromoisophthalic acid (BOTVUC; Beck et al., 2009).
In the
of SOGGUR, molecules are linked by O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds involving all possible donors and also the water molecule, forming an extensive hydrogen-bond network.In the ammonium carboxylate–carboxylic acid c-axis direction of the monoclinic The chains are linked by pyridinium and pyridine N—H⋯O hydrogen bonds, generating a layer motif. O—H⋯N and O—H⋯O hydrogen bonds are also observed.
WADPAU, the carboxylate anion and carboxylic acid molecule are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming a chain running along theIn the crystal of UNUDIR, molecules are linked by O—H⋯O hydrogen bonds into a three-dimensional network. An N—H⋯O interaction also occurs. One of the amino H atoms is not involved in hydrogen bonding.
In the
of BOTVUC, molecules are linked into chains by COO—H⋯O bonds, and pairs of chains are connected by additional COO—H⋯O interactions. This chain bundle shows stacking interactions and weak N—H⋯O hydrogen bonds with adjacent chains.5. Synthesis and crystallization
Diazotization: 558 mg (1 mmol) of 5-amino-2,4,6-triiodoisophthalic acid were dissolved in 15 mL of water, and the solution was cooled in an ice bath to 273 K, then 69 mg (1 mmol) of NaNO2 were added followed by 0.2 mL of HCl, and mixed for 1 h. The temperature of the mixture should not exceed 278 K.
Azocoupling: NaOH (40 mg, 1 mmol) was added to a mixture of 1 mmol (66 mg) of malononitrile with 5 mL of water. The solution was cooled in an ice bath, and a suspension of 3,5-bis(methoxycarbonyl)benzenediazonium chloride (prepared according to the procedure described above) was added in two equal portions under vigorous stirring for 1 h. The precipitate was filtered off, recrystallized from methanol and dried in air. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.
The title compound: Yield 79% (based on malononitrile), yellow powder soluble in DMSO, methanol, ethanol and DMF. Analysis calculated for C13H9I3N4O5: C 22.90, H 1.33, N 8.22; found: C 22.87, H 1.30, N 8.18 %. ESI–MS: m/z: 636.88. IR (KBr): 3123 ν(NH), 2937 ν(NH), 2233 ν(CN) and 1707 ν(C=N) cm−1. 1H NMR (300.130 MHz, DMSO-d6, internal TMS): δ 1.02–1.06 (3H, CH3), 3.42–3.47 (2H, CH2), 7.25 and 7.32 (2H, COOH) and 11.21 (1H, N—H). 1H, in 13C{1H} NMR (75.468 MHz, DMSO-d6): δ 18.56 (CH3), 56.78 (CH2), 85.37, 89.06 and 94.93 (3C–I), 96.80 (C=N), 109.71 and 109.91 (CN), 149.79 and 150.13 (CCOOH), 162.97 (C–NH), 169.48 and 169.79 (C=O).
6. Refinement
Crystal data, data collection and structure . The hydrogen atoms of the ethanol molecule were placed at idealized positions and refined using a riding model, with Uiso(H) values assigned as 1.2Ueq or 1.5Ueq(methyl only) of the parent atoms, with C—H distances of 0.97 (methylene) and 0.96 Å (methyl). The remaining hydrogen atoms bound to nitrogen and oxygen were located in difference-Fourier maps and refined with fixed positional thermal displacement parameters and with Uiso(H) values assigned as 1.2Ueq(NH) or 1.5Ueq(OH) of the parent atoms. One reflection, (001), affected by the incident beam-stop was omitted in the final cycles of refinement.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2286318
https://doi.org/10.1107/S205698902300676X/tx2072sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902300676X/tx2072Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902300676X/tx2072Isup3.cml
Data collection: APEX4 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT2019/1 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/1 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C11H3I3N4O4·C2H6O | Z = 2 |
Mr = 681.94 | F(000) = 628 |
Triclinic, P1 | Dx = 2.386 Mg m−3 |
a = 9.1499 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.8771 (3) Å | Cell parameters from 9873 reflections |
c = 12.0440 (4) Å | θ = 2.3–26.4° |
α = 113.512 (1)° | µ = 4.97 mm−1 |
β = 95.399 (1)° | T = 296 K |
γ = 103.462 (1)° | Prism, orange |
V = 949.11 (5) Å3 | 0.26 × 0.21 × 0.14 mm |
Bruker D8 Quest PHOTON 100 detector diffractometer | 3375 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.025 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 26.4°, θmin = 2.3° |
Tmin = 0.325, Tmax = 0.518 | h = −11→11 |
20253 measured reflections | k = −12→12 |
3755 independent reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: mixed |
wR(F2) = 0.054 | H-atom parameters constrained |
S = 1.22 | w = 1/[σ2(Fo2) + 2.2238P] where P = (Fo2 + 2Fc2)/3 |
3755 reflections | (Δ/σ)max < 0.001 |
227 parameters | Δρmax = 0.75 e Å−3 |
0 restraints | Δρmin = −0.61 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.43837 (3) | 0.36375 (3) | 0.66860 (2) | 0.03614 (8) | |
I2 | 0.00185 (3) | 0.27921 (3) | 0.22009 (2) | 0.03995 (8) | |
I3 | 0.34230 (3) | 0.92158 (3) | 0.61552 (3) | 0.04489 (9) | |
O1 | 0.0961 (3) | 0.1098 (3) | 0.4380 (3) | 0.0419 (6) | |
H1 | 0.063676 | 0.171314 | 0.495416 | 0.063* | |
O2 | 0.2676 (3) | 0.1256 (3) | 0.3246 (2) | 0.0380 (6) | |
O3 | 0.1880 (3) | 0.6581 (4) | 0.2734 (3) | 0.0433 (7) | |
H3 | 0.165558 | 0.704626 | 0.231145 | 0.065* | |
O4 | 0.0089 (3) | 0.7033 (4) | 0.3831 (3) | 0.0438 (7) | |
O5 | 1.0910 (4) | 0.7945 (4) | 0.1586 (3) | 0.0600 (9) | |
H5 | 1.151655 | 0.834890 | 0.123379 | 0.090* | |
N1 | 0.4566 (3) | 0.7189 (3) | 0.7341 (3) | 0.0315 (6) | |
H1N | 0.532784 | 0.799315 | 0.735139 | 0.038* | |
N2 | 0.4222 (3) | 0.7013 (4) | 0.8311 (3) | 0.0326 (6) | |
N3 | 0.7600 (5) | 1.0028 (5) | 0.9762 (4) | 0.0656 (12) | |
N4 | 0.4455 (6) | 0.7440 (5) | 1.1278 (4) | 0.0656 (12) | |
C1 | 0.3561 (4) | 0.6188 (4) | 0.6179 (3) | 0.0260 (7) | |
C2 | 0.3273 (3) | 0.4583 (4) | 0.5705 (3) | 0.0249 (6) | |
C3 | 0.2269 (4) | 0.3621 (4) | 0.4560 (3) | 0.0262 (7) | |
C4 | 0.1576 (4) | 0.4260 (4) | 0.3895 (3) | 0.0258 (7) | |
C5 | 0.1879 (4) | 0.5859 (4) | 0.4348 (3) | 0.0267 (7) | |
C6 | 0.2875 (4) | 0.6808 (4) | 0.5487 (3) | 0.0262 (7) | |
C7 | 0.5133 (4) | 0.7872 (4) | 0.9390 (3) | 0.0348 (8) | |
C8 | 0.6530 (5) | 0.9076 (5) | 0.9622 (3) | 0.0398 (9) | |
C9 | 0.4713 (5) | 0.7606 (5) | 1.0428 (4) | 0.0437 (9) | |
C10 | 0.1991 (4) | 0.1893 (4) | 0.4015 (3) | 0.0296 (7) | |
C11 | 0.1178 (4) | 0.6559 (4) | 0.3606 (3) | 0.0294 (7) | |
C12 | 0.8376 (7) | 0.6247 (7) | 0.0688 (6) | 0.0785 (17) | |
H12A | 0.731327 | 0.619981 | 0.052211 | 0.118* | |
H12B | 0.850672 | 0.568988 | 0.116680 | 0.118* | |
H12C | 0.869243 | 0.579198 | −0.008073 | 0.118* | |
C13 | 0.9323 (6) | 0.7882 (7) | 0.1389 (5) | 0.0646 (14) | |
H13A | 0.915521 | 0.846280 | 0.092754 | 0.078* | |
H13B | 0.903196 | 0.833807 | 0.217868 | 0.078* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.04006 (14) | 0.03692 (13) | 0.03368 (13) | 0.01326 (10) | 0.00214 (10) | 0.01774 (10) |
I2 | 0.03979 (14) | 0.03778 (14) | 0.02815 (13) | 0.00210 (10) | −0.00658 (10) | 0.00856 (10) |
I3 | 0.05157 (16) | 0.02331 (12) | 0.05002 (16) | 0.00527 (10) | 0.00314 (12) | 0.01113 (11) |
O1 | 0.0475 (16) | 0.0294 (13) | 0.0477 (16) | 0.0067 (12) | 0.0229 (13) | 0.0155 (12) |
O2 | 0.0432 (15) | 0.0294 (13) | 0.0371 (14) | 0.0089 (11) | 0.0160 (12) | 0.0095 (11) |
O3 | 0.0468 (16) | 0.0641 (18) | 0.0457 (16) | 0.0286 (14) | 0.0219 (13) | 0.0408 (15) |
O4 | 0.0432 (15) | 0.0589 (18) | 0.0422 (15) | 0.0288 (14) | 0.0164 (12) | 0.0255 (14) |
O5 | 0.0564 (19) | 0.069 (2) | 0.081 (2) | 0.0197 (17) | 0.0171 (17) | 0.057 (2) |
N1 | 0.0339 (15) | 0.0276 (14) | 0.0257 (14) | −0.0020 (12) | 0.0005 (12) | 0.0119 (12) |
N2 | 0.0340 (16) | 0.0339 (16) | 0.0241 (14) | 0.0074 (13) | 0.0016 (12) | 0.0092 (12) |
N3 | 0.062 (3) | 0.061 (3) | 0.054 (2) | −0.010 (2) | −0.002 (2) | 0.023 (2) |
N4 | 0.082 (3) | 0.072 (3) | 0.033 (2) | 0.004 (2) | 0.0039 (19) | 0.024 (2) |
C1 | 0.0239 (15) | 0.0290 (16) | 0.0196 (15) | 0.0023 (13) | 0.0028 (12) | 0.0087 (13) |
C2 | 0.0204 (15) | 0.0278 (16) | 0.0241 (15) | 0.0027 (12) | 0.0015 (12) | 0.0120 (13) |
C3 | 0.0233 (15) | 0.0291 (16) | 0.0259 (16) | 0.0038 (13) | 0.0060 (13) | 0.0137 (14) |
C4 | 0.0261 (16) | 0.0253 (16) | 0.0209 (15) | 0.0028 (13) | 0.0038 (12) | 0.0079 (13) |
C5 | 0.0283 (16) | 0.0293 (16) | 0.0229 (15) | 0.0068 (13) | 0.0076 (13) | 0.0122 (13) |
C6 | 0.0281 (16) | 0.0217 (15) | 0.0269 (16) | 0.0042 (13) | 0.0066 (13) | 0.0102 (13) |
C7 | 0.0380 (19) | 0.0336 (18) | 0.0267 (17) | 0.0075 (15) | 0.0001 (15) | 0.0102 (15) |
C8 | 0.048 (2) | 0.035 (2) | 0.0275 (18) | 0.0093 (18) | −0.0007 (16) | 0.0084 (16) |
C9 | 0.049 (2) | 0.044 (2) | 0.0283 (19) | 0.0081 (18) | −0.0034 (17) | 0.0112 (17) |
C10 | 0.0291 (17) | 0.0253 (16) | 0.0278 (17) | 0.0029 (14) | 0.0030 (14) | 0.0087 (14) |
C11 | 0.0313 (17) | 0.0289 (17) | 0.0262 (16) | 0.0062 (14) | 0.0065 (14) | 0.0116 (14) |
C12 | 0.073 (4) | 0.077 (4) | 0.068 (4) | 0.007 (3) | 0.005 (3) | 0.024 (3) |
C13 | 0.063 (3) | 0.072 (3) | 0.058 (3) | 0.016 (3) | −0.009 (2) | 0.034 (3) |
I1—C2 | 2.097 (3) | C1—C6 | 1.397 (5) |
I2—C4 | 2.104 (3) | C1—C2 | 1.401 (5) |
I3—C6 | 2.097 (3) | C2—C3 | 1.399 (4) |
O1—C10 | 1.307 (4) | C3—C4 | 1.392 (5) |
O1—H1 | 0.8499 | C3—C10 | 1.511 (5) |
O2—C10 | 1.214 (4) | C4—C5 | 1.396 (5) |
O3—C11 | 1.287 (4) | C5—C6 | 1.390 (5) |
O3—H3 | 0.8500 | C5—C11 | 1.510 (5) |
O4—C11 | 1.205 (4) | C7—C8 | 1.444 (6) |
O5—C13 | 1.432 (6) | C7—C9 | 1.445 (6) |
O5—H5 | 0.8500 | C12—C13 | 1.481 (8) |
N1—N2 | 1.303 (4) | C12—H12A | 0.9600 |
N1—C1 | 1.419 (4) | C12—H12B | 0.9600 |
N1—H1N | 0.9222 | C12—H12C | 0.9600 |
N2—C7 | 1.300 (5) | C13—H13A | 0.9700 |
N3—C8 | 1.134 (6) | C13—H13B | 0.9700 |
N4—C9 | 1.136 (6) | ||
C10—O1—H1 | 109.4 | C1—C6—I3 | 119.1 (2) |
C11—O3—H3 | 120.3 | N2—C7—C8 | 124.6 (3) |
C13—O5—H5 | 119.8 | N2—C7—C9 | 117.6 (3) |
N2—N1—C1 | 117.7 (3) | C8—C7—C9 | 117.8 (3) |
N2—N1—H1N | 125.8 | N3—C8—C7 | 177.0 (4) |
C1—N1—H1N | 115.9 | N4—C9—C7 | 176.6 (5) |
C7—N2—N1 | 119.9 (3) | O2—C10—O1 | 120.9 (3) |
C6—C1—C2 | 119.5 (3) | O2—C10—C3 | 121.4 (3) |
C6—C1—N1 | 119.8 (3) | O1—C10—C3 | 117.6 (3) |
C2—C1—N1 | 120.7 (3) | O4—C11—O3 | 125.5 (3) |
C3—C2—C1 | 119.5 (3) | O4—C11—C5 | 122.5 (3) |
C3—C2—I1 | 120.3 (2) | O3—C11—C5 | 112.0 (3) |
C1—C2—I1 | 120.1 (2) | C13—C12—H12A | 109.5 |
C4—C3—C2 | 120.0 (3) | C13—C12—H12B | 109.5 |
C4—C3—C10 | 119.7 (3) | H12A—C12—H12B | 109.5 |
C2—C3—C10 | 120.2 (3) | C13—C12—H12C | 109.5 |
C3—C4—C5 | 120.9 (3) | H12A—C12—H12C | 109.5 |
C3—C4—I2 | 119.4 (2) | H12B—C12—H12C | 109.5 |
C5—C4—I2 | 119.7 (2) | O5—C13—C12 | 109.1 (5) |
C6—C5—C4 | 118.8 (3) | O5—C13—H13A | 109.9 |
C6—C5—C11 | 120.1 (3) | C12—C13—H13A | 109.9 |
C4—C5—C11 | 121.0 (3) | O5—C13—H13B | 109.9 |
C5—C6—C1 | 121.2 (3) | C12—C13—H13B | 109.9 |
C5—C6—I3 | 119.6 (2) | H13A—C13—H13B | 108.3 |
C1—N1—N2—C7 | 177.9 (3) | C4—C5—C6—C1 | −0.3 (5) |
N2—N1—C1—C6 | 121.9 (3) | C11—C5—C6—C1 | −178.8 (3) |
N2—N1—C1—C2 | −59.3 (4) | C4—C5—C6—I3 | 177.5 (2) |
C6—C1—C2—C3 | −1.7 (5) | C11—C5—C6—I3 | −1.0 (4) |
N1—C1—C2—C3 | 179.5 (3) | C2—C1—C6—C5 | 1.6 (5) |
C6—C1—C2—I1 | 176.7 (2) | N1—C1—C6—C5 | −179.7 (3) |
N1—C1—C2—I1 | −2.0 (4) | C2—C1—C6—I3 | −176.2 (2) |
C1—C2—C3—C4 | 0.6 (5) | N1—C1—C6—I3 | 2.5 (4) |
I1—C2—C3—C4 | −177.8 (2) | N1—N2—C7—C8 | 1.6 (6) |
C1—C2—C3—C10 | 177.7 (3) | N1—N2—C7—C9 | −178.7 (3) |
I1—C2—C3—C10 | −0.7 (4) | C4—C3—C10—O2 | 79.7 (4) |
C2—C3—C4—C5 | 0.6 (5) | C2—C3—C10—O2 | −97.4 (4) |
C10—C3—C4—C5 | −176.5 (3) | C4—C3—C10—O1 | −98.9 (4) |
C2—C3—C4—I2 | −178.2 (2) | C2—C3—C10—O1 | 84.0 (4) |
C10—C3—C4—I2 | 4.7 (4) | C6—C5—C11—O4 | −79.6 (5) |
C3—C4—C5—C6 | −0.8 (5) | C4—C5—C11—O4 | 102.0 (4) |
I2—C4—C5—C6 | 178.0 (2) | C6—C5—C11—O3 | 100.3 (4) |
C3—C4—C5—C11 | 177.6 (3) | C4—C5—C11—O3 | −78.1 (4) |
I2—C4—C5—C11 | −3.6 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4i | 0.85 | 1.80 | 2.648 (4) | 178 |
O3—H3···O5ii | 0.85 | 1.68 | 2.515 (4) | 169 |
O5—H5···N3iii | 0.85 | 2.40 | 3.200 (5) | 156 |
N1—H1N···O2iv | 0.92 | 2.11 | 2.937 (4) | 149 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+2, −y+2, −z+1; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
The authors' contributions are as follows. Conceptualization, MA and AB; synthesis, FSA and FEH; X-ray analysis, GZM, STÇ and MA; writing (review and editing of the manuscript) STÇ, MA and AB; funding acquisition, FSA, FEH and GZM; supervision, MA and AB.
Funding information
This work was supported by Baku State University.
References
Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. Web of Science CSD CrossRef IUCr Journals Google Scholar
Beck, T., Herbst-Irmer, R. & Sheldrick, G. M. (2009). Acta Cryst. C65, o237–o239. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Beck, T. & Sheldrick, G. M. (2008). Acta Cryst. E64, o1286. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2008). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans. 51, 1019–1031. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS PubMed Google Scholar
Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761. Web of Science CrossRef Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Kuznetsov, M. L., Silva, T. F. S., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2011). J. Phys. Org. Chem. 24, 764–773. Web of Science CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859. Web of Science CrossRef Google Scholar
Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772. Web of Science CSD CrossRef Google Scholar
Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187–189. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, F. C., Ribera, A., Nunes, A. V. M., Gahramanova, S. I., Marchetti, F. & Pombeiro, A. J. L. (2015). RSC Adv. 5, 25979–25987. Web of Science CSD CrossRef CAS Google Scholar
Martins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076–4086. Web of Science CrossRef CAS Google Scholar
Polyanskii, K. B., Alekseeva, K. A., Raspertov, P. V., Kumandin, P. A., Nikitina, E. V., Gurbanov, A. V. & Zubkov, F. I. (2019). Beilstein J. Org. Chem. 15, 769–779. Web of Science CSD CrossRef CAS PubMed Google Scholar
Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038. Web of Science CSD CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Zhang, K.-L., Diao, G.-W. & Ng, S. W. (2010). Acta Cryst. E66, o3165. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, K.-L., Zhang, J.-B. & Ng, S. W. (2011). Acta Cryst. E67, o793. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.