research communications
E)-1-(4-bromophenyl)-3-(2-methylphenyl)prop-2-en-1-one
and Hirshfeld surface analysis of (2aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, bDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, AZ1148, Baku, Azerbaijan, cPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow 117198, Russian Federation, dN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, e`Composite Materials' Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, AZ1063, Baku, Azerbaijan, and fDepartment of Chemistry, M.M.A.M.C. (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
In the title compound, C16H13BrO, the planes of the aromatic rings are inclined at an angle of 23.49 (15)°, and the configuration about the C=C bond is E. In the crystal, the molecules are linked into chains by weak C—H⋯O interactions along the b axis. Successive chains form a zigzag structure along the c axis, and these chains are connected to each other by face-to-face π–π stacking interactions along the a axis. These layers, parallel to the (001) plane, are linked by van der Waals interactions, thus consolidating the Hirshfeld surface analysis showed that the most significant contacts in the structure are H⋯H (43.1%), C⋯H/H⋯C (17.4%), Br⋯H/H⋯Br (14.9%), C⋯C (11.9%) and O⋯H/H⋯O (9.8%).
Keywords: crystal structure; E configuration; weak C—H⋯O interactions; face-to-face π–π stacking interactions; Hirshfeld surface analysis.
CCDC reference: 2290092
1. Chemical context
Diverse C—C, C—N, C—S and C—O bond formations are fundamental and valuable conversions in modern organic chemistry (Gurbanov et al., 2017; Afkhami et al., 2019; Mahmoudi et al., 2021). are α,β-unsaturated containing aryl–aryl or aryl–alkyl groups at both ends. They belong to the flavonoid family, and they possess a wide variety of biological activities. Many natural such as echinatin, naringenin, isoliquiritigenin, butein, 4-hydroxyderricin, 4-hydroxylonchocarpin, derricin, xanthoangelol, lonchocarpin, licochalcone A, licochalcone E, humulusol, munsericin, flavokawain A, isobavachalcone, mallotophilippen C, D and E, broussochalcone A, crotaorixin, pedicinin and nardoaristolone A have been isolated from plants (Rozmer & Perjési, 2016; Çelik et al., 2023; Chalkha et al., 2023). Moreover, the enone moiety is a widespread structural motif often found in biologically active compounds possessing enzyme inhibitory, anticancer and antimicrobial activity (Poustforoosh et al., 2022; Tapera et al., 2022; Sarkı et al., 2023). Herein, in continuation to our recent investigations (Gurbanov et al., 2022a,b), we report the and Hirshfeld surface analysis of (2E)-1-(4-bromophenyl)-3-(2-methylphenyl)prop-2-en-1-one.
2. Structural commentary
The title compound (Fig. 1) is composed of two aromatic rings, i.e. 2-methylphenyl (C4–C9) and 4-bromophenyl (C11–C16), which are linked by a –CO—CH=CH– E-configured enone bridge. The molecule is approximately planar, as indicated by the torsion angles C10—C5—C4—C3 = 1.9 (5)°, C9—C4—C3—C2 = −4.4 (5)°, C4—C3—C2—C1 = −176.3 (3)°, C3—C2—C1—C11 = −168.2 (3)°, C2—C1—C11—C12 = 15.9 (4)° and Br1—C14—C15—C16 = 178.5 (2)°. The dihedral angle between the planes of the 2-methylphenyl and 4-bromophenyl rings is 23.49 (15)°.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, the molecules are linked into C(5) chains (Bernstein et al., 1995) by weak C—H⋯O interactions (Table 1 and Fig. 2) along the a axis. Successive chains form a zigzag structure along the b axis (Fig. 3) and these chains are connected to each other along the c axis by face-to-face π–π stacking interactions [Cg1⋯Cg1a = 3.942 (2) Å, slippage = 1.890 Å; Cg2⋯Cg2a = 3.9420 (18) Å, slippage = 1.942 Å; symmetry code: (a) x − 1, y, z; Cg1 and Cg2 are the centroids of the 2-methylphenyl (C4—C9) and 4-bromophenyl (C11–C16) rings, respectively]. They form layers parallel to the (001) plane through van der Waals interactions, thus consolidating the crystal structure.
CrystalExplorer17.5 (Spackman et al., 2021) was used to compute the Hirshfeld surfaces and the two-dimensional fingerprints of the title molecule. The dnorm mappings for the title compound were performed in the range from −0.0627 to +1.1373 a.u., on the dnorm surfaces, allowing the location of the C—H⋯O interactions (Tables 1 and 2).
|
The fingerprint plots (Fig. 4) show that H⋯H [Fig. 4(b); 43.1%], C⋯H/H⋯C [Fig. 4(c); 17.4%], Br⋯H/H⋯Br [Fig. 4(d); 14.9%], C⋯C [Fig. 4(e); 11.9%] and O⋯H/H⋯O [Fig. 4(f); 9.8%] interactions contribute the most to the surface contacts. The crystal packing is additionally influenced by Br⋯C/C⋯Br (2.0%), Br⋯Br (0.8%), N⋯N (2.6%) and O⋯C/C⋯O (0.2%) contacts. The Hirshfeld surface study confirms the significance of H-atom interactions in the packing formation. The large number of H⋯H, C⋯H/H⋯C, Br⋯H/H⋯Br, C⋯C and O⋯H/H⋯O interactions indicates that van der Waals interactions and hydrogen bonding are important in the crystal packing (Hathwar et al., 2015).
4. Database survey
Four related compounds were found as a result of a search for the `(2E)-1,3-diphenylprop-2-en-1-one' unit in the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016), viz. CSD refcodes KOCZUA (Bindya et al., 2019), RUCKIM (Spruce et al., 2020), XOLLOC (Çelikesir et al., 2019) and OBIYUW01 (Atioğlu et al., 2019).
In the crystal of KOCZUA, the shortest intermolecular contacts are Cl⋯O [3.173 (3) Å]; these link the molecules to form a 21 helix propagating along the b-axis direction. The helices are linked by offset π–π interactions [intercentroid distance = 3.983 (1) Å], forming layers lying parallel to the ab plane. In the crystal of RUCKIM, the molecules are linked through type II halogen bonds, forming a sheet structure parallel to the bc plane. Weak intermolecular C—H⋯π interactions are observed between the sheets. In the crystal of XOLLOC, molecules are linked via pairs of C—H⋯O interactions with an R22(14) ring motif, forming inversion dimers. The dimers are linked into a tape structure running along [101] via C—H⋯π interactions. In the crystal of OBIYUW01, molecules are linked by C—H⋯π interactions between the bromophenyl and fluorophenyl rings, resulting in a two-dimensional layered structure parallel to the ab plane. The molecular packing is consolidated by weak Br⋯H and F⋯H contacts.
5. Synthesis and crystallization
The title compound was synthesized using a reported procedure (Chithiraikumar et al., 2021) and colourless crystals were obtained upon recrystallization from an ethanol/water (3:1 v/v) solution at room temperature.
6. Refinement
Crystal data, data collection and structure . All H atoms were placed in their geometrically calculated positions and refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.
details are summarized in Table 3Supporting information
CCDC reference: 2290092
https://doi.org/10.1107/S2056989023007387/tx2073sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023007387/tx2073Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2022); cell
CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C16H13BrO | Dx = 1.561 Mg m−3 |
Mr = 301.17 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 12560 reflections |
a = 3.942 Å | θ = 3.8–76.9° |
b = 11.5915 (2) Å | µ = 4.23 mm−1 |
c = 28.0387 (4) Å | T = 100 K |
V = 1281.19 (3) Å3 | Needle, colourless |
Z = 4 | 0.35 × 0.09 × 0.07 mm |
F(000) = 608 |
Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector | 2627 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube | Rint = 0.025 |
φ and ω scans | θmax = 77.1°, θmin = 3.2° |
Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2022) | h = −4→4 |
Tmin = 0.251, Tmax = 1.000 | k = −14→14 |
14537 measured reflections | l = −35→34 |
2657 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.022 | w = 1/[σ2(Fo2) + (0.0121P)2 + 1.3924P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.052 | (Δ/σ)max = 0.001 |
S = 1.14 | Δρmax = 0.51 e Å−3 |
2657 reflections | Δρmin = −0.42 e Å−3 |
165 parameters | Absolute structure: Refined as an inversion twin |
0 restraints | Absolute structure parameter: 0.53 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6338 (7) | 0.6732 (2) | 0.28488 (10) | 0.0156 (6) | |
C2 | 0.5186 (8) | 0.5849 (3) | 0.31975 (11) | 0.0179 (6) | |
H2 | 0.576288 | 0.506108 | 0.315259 | 0.021* | |
C3 | 0.3333 (8) | 0.6169 (3) | 0.35751 (10) | 0.0167 (6) | |
H3 | 0.272264 | 0.696111 | 0.359037 | 0.020* | |
C4 | 0.2138 (8) | 0.5441 (3) | 0.39673 (9) | 0.0162 (5) | |
C5 | 0.0419 (8) | 0.5941 (3) | 0.43586 (11) | 0.0199 (6) | |
C6 | −0.0614 (9) | 0.5231 (3) | 0.47322 (11) | 0.0243 (7) | |
H6 | −0.174643 | 0.556148 | 0.499821 | 0.029* | |
C7 | −0.0025 (9) | 0.4050 (3) | 0.47241 (12) | 0.0260 (8) | |
H7 | −0.075592 | 0.358302 | 0.498276 | 0.031* | |
C8 | 0.1629 (10) | 0.3552 (3) | 0.43386 (11) | 0.0244 (7) | |
H8 | 0.202810 | 0.274348 | 0.433117 | 0.029* | |
C9 | 0.2691 (8) | 0.4245 (3) | 0.39655 (10) | 0.0200 (6) | |
H9 | 0.382068 | 0.390249 | 0.370170 | 0.024* | |
C10 | −0.0317 (9) | 0.7216 (3) | 0.43748 (12) | 0.0225 (7) | |
H10A | −0.155611 | 0.739898 | 0.466828 | 0.034* | |
H10B | −0.169550 | 0.743225 | 0.409802 | 0.034* | |
H10C | 0.182210 | 0.764687 | 0.436880 | 0.034* | |
C11 | 0.7811 (8) | 0.6341 (2) | 0.23829 (10) | 0.0151 (5) | |
C12 | 0.7419 (7) | 0.5219 (2) | 0.22102 (9) | 0.0170 (6) | |
H12 | 0.629276 | 0.465770 | 0.239962 | 0.020* | |
C13 | 0.8664 (8) | 0.4916 (2) | 0.17629 (11) | 0.0180 (6) | |
H13 | 0.839832 | 0.415359 | 0.164401 | 0.022* | |
C14 | 1.0295 (8) | 0.5750 (3) | 0.14959 (10) | 0.0170 (6) | |
C15 | 1.0768 (8) | 0.6869 (3) | 0.16597 (11) | 0.0178 (6) | |
H15 | 1.193503 | 0.742210 | 0.147111 | 0.021* | |
C16 | 0.9500 (8) | 0.7159 (3) | 0.21041 (11) | 0.0172 (6) | |
H16 | 0.978056 | 0.792262 | 0.222085 | 0.021* | |
Br1 | 1.19480 (8) | 0.53645 (3) | 0.08770 (2) | 0.02188 (9) | |
O1 | 0.6109 (6) | 0.77583 (19) | 0.29371 (8) | 0.0242 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0136 (15) | 0.0168 (14) | 0.0164 (13) | 0.0005 (11) | −0.0014 (11) | 0.0006 (11) |
C2 | 0.0207 (16) | 0.0164 (14) | 0.0165 (14) | 0.0013 (12) | 0.0014 (12) | −0.0001 (11) |
C3 | 0.0164 (13) | 0.0177 (13) | 0.0160 (13) | 0.0015 (13) | −0.0028 (12) | −0.0018 (11) |
C4 | 0.0129 (13) | 0.0224 (13) | 0.0134 (11) | −0.0004 (13) | −0.0030 (9) | 0.0003 (11) |
C5 | 0.0137 (14) | 0.0316 (18) | 0.0145 (14) | −0.0011 (13) | −0.0031 (12) | −0.0034 (13) |
C6 | 0.0193 (14) | 0.040 (2) | 0.0142 (13) | −0.0042 (16) | −0.0013 (11) | −0.0015 (14) |
C7 | 0.0249 (18) | 0.038 (2) | 0.0153 (15) | −0.0111 (15) | −0.0042 (13) | 0.0066 (14) |
C8 | 0.0264 (17) | 0.0242 (16) | 0.0226 (15) | −0.0024 (15) | −0.0079 (15) | 0.0043 (12) |
C9 | 0.0205 (17) | 0.0229 (14) | 0.0166 (13) | 0.0004 (12) | −0.0016 (11) | 0.0005 (10) |
C10 | 0.0194 (16) | 0.0280 (17) | 0.0203 (16) | 0.0003 (14) | 0.0009 (13) | −0.0072 (13) |
C11 | 0.0128 (13) | 0.0171 (13) | 0.0155 (13) | 0.0022 (11) | −0.0008 (11) | 0.0023 (10) |
C12 | 0.0162 (15) | 0.0178 (14) | 0.0170 (12) | −0.0007 (12) | 0.0021 (10) | 0.0043 (11) |
C13 | 0.0200 (16) | 0.0151 (14) | 0.0190 (14) | 0.0005 (11) | 0.0005 (12) | −0.0003 (10) |
C14 | 0.0133 (14) | 0.0253 (16) | 0.0123 (13) | 0.0024 (11) | 0.0009 (11) | −0.0012 (11) |
C15 | 0.0160 (14) | 0.0194 (15) | 0.0181 (14) | −0.0021 (12) | −0.0007 (11) | 0.0042 (11) |
C16 | 0.0172 (14) | 0.0151 (14) | 0.0194 (14) | −0.0023 (12) | −0.0019 (12) | 0.0009 (11) |
Br1 | 0.02033 (14) | 0.03011 (16) | 0.01522 (13) | −0.00038 (13) | 0.00375 (12) | −0.00153 (13) |
O1 | 0.0303 (14) | 0.0171 (11) | 0.0252 (11) | 0.0010 (9) | 0.0064 (10) | −0.0025 (9) |
C1—O1 | 1.218 (4) | C8—H8 | 0.9500 |
C1—C2 | 1.487 (4) | C9—H9 | 0.9500 |
C1—C11 | 1.500 (4) | C10—H10A | 0.9800 |
C2—C3 | 1.339 (4) | C10—H10B | 0.9800 |
C2—H2 | 0.9500 | C10—H10C | 0.9800 |
C3—C4 | 1.464 (4) | C11—C12 | 1.396 (4) |
C3—H3 | 0.9500 | C11—C16 | 1.398 (4) |
C4—C9 | 1.404 (4) | C12—C13 | 1.392 (4) |
C4—C5 | 1.414 (4) | C12—H12 | 0.9500 |
C5—C6 | 1.393 (5) | C13—C14 | 1.381 (4) |
C5—C10 | 1.507 (5) | C13—H13 | 0.9500 |
C6—C7 | 1.388 (5) | C14—C15 | 1.389 (4) |
C6—H6 | 0.9500 | C14—Br1 | 1.907 (3) |
C7—C8 | 1.389 (5) | C15—C16 | 1.384 (4) |
C7—H7 | 0.9500 | C15—H15 | 0.9500 |
C8—C9 | 1.384 (4) | C16—H16 | 0.9500 |
O1—C1—C2 | 121.1 (3) | C4—C9—H9 | 119.2 |
O1—C1—C11 | 120.1 (3) | C5—C10—H10A | 109.5 |
C2—C1—C11 | 118.9 (3) | C5—C10—H10B | 109.5 |
C3—C2—C1 | 119.7 (3) | H10A—C10—H10B | 109.5 |
C3—C2—H2 | 120.1 | C5—C10—H10C | 109.5 |
C1—C2—H2 | 120.1 | H10A—C10—H10C | 109.5 |
C2—C3—C4 | 127.6 (3) | H10B—C10—H10C | 109.5 |
C2—C3—H3 | 116.2 | C12—C11—C16 | 119.4 (3) |
C4—C3—H3 | 116.2 | C12—C11—C1 | 122.8 (3) |
C9—C4—C5 | 118.8 (3) | C16—C11—C1 | 117.8 (3) |
C9—C4—C3 | 121.1 (3) | C13—C12—C11 | 120.6 (3) |
C5—C4—C3 | 120.1 (3) | C13—C12—H12 | 119.7 |
C6—C5—C4 | 118.8 (3) | C11—C12—H12 | 119.7 |
C6—C5—C10 | 120.0 (3) | C14—C13—C12 | 118.4 (3) |
C4—C5—C10 | 121.2 (3) | C14—C13—H13 | 120.8 |
C7—C6—C5 | 121.4 (3) | C12—C13—H13 | 120.8 |
C7—C6—H6 | 119.3 | C13—C14—C15 | 122.5 (3) |
C5—C6—H6 | 119.3 | C13—C14—Br1 | 119.2 (2) |
C6—C7—C8 | 120.1 (3) | C15—C14—Br1 | 118.3 (2) |
C6—C7—H7 | 119.9 | C16—C15—C14 | 118.4 (3) |
C8—C7—H7 | 119.9 | C16—C15—H15 | 120.8 |
C9—C8—C7 | 119.3 (3) | C14—C15—H15 | 120.8 |
C9—C8—H8 | 120.4 | C15—C16—C11 | 120.7 (3) |
C7—C8—H8 | 120.4 | C15—C16—H16 | 119.7 |
C8—C9—C4 | 121.6 (3) | C11—C16—H16 | 119.7 |
C8—C9—H9 | 119.2 | ||
O1—C1—C2—C3 | 12.0 (5) | C3—C4—C9—C8 | 178.7 (3) |
C11—C1—C2—C3 | −168.2 (3) | O1—C1—C11—C12 | −164.3 (3) |
C1—C2—C3—C4 | −176.3 (3) | C2—C1—C11—C12 | 15.9 (4) |
C2—C3—C4—C9 | −4.4 (5) | O1—C1—C11—C16 | 12.6 (4) |
C2—C3—C4—C5 | 175.1 (3) | C2—C1—C11—C16 | −167.2 (3) |
C9—C4—C5—C6 | 1.1 (5) | C16—C11—C12—C13 | −0.6 (4) |
C3—C4—C5—C6 | −178.4 (3) | C1—C11—C12—C13 | 176.2 (3) |
C9—C4—C5—C10 | −178.6 (3) | C11—C12—C13—C14 | 0.1 (4) |
C3—C4—C5—C10 | 1.9 (5) | C12—C13—C14—C15 | 0.8 (5) |
C4—C5—C6—C7 | −0.8 (5) | C12—C13—C14—Br1 | −178.8 (2) |
C10—C5—C6—C7 | 178.9 (3) | C13—C14—C15—C16 | −1.1 (5) |
C5—C6—C7—C8 | 0.1 (6) | Br1—C14—C15—C16 | 178.5 (2) |
C6—C7—C8—C9 | 0.3 (5) | C14—C15—C16—C11 | 0.6 (5) |
C7—C8—C9—C4 | 0.1 (5) | C12—C11—C16—C15 | 0.3 (5) |
C5—C4—C9—C8 | −0.7 (5) | C1—C11—C16—C15 | −176.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1 | 0.95 | 2.45 | 2.791 (4) | 101 |
C12—H12···O1i | 0.95 | 2.58 | 3.200 (3) | 124 |
Symmetry code: (i) −x+1, y−1/2, −z+1/2. |
C3···H10B | 2.85 | x+1, y, z |
Br1···H7 | 3.17 | -x+3/2, -y+1, z-1/2 |
O1···H12 | 2.58 | -x+1, y+1/2, -z+1/2 |
H15···H9 | 2.45 | -x+2, y+1/2, -z+1/2 |
C10···H10A | 3.10 | x+1/2, -y+3/2, -z+1 |
Acknowledgements
This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program. Authors contributions are as follows: conceptualization by ANK and IGM; methodology by ANK, FNN and IGM; investigation by ANK, MA and FNN; writing (original draft) by MA and ANK; writing (review and editing of the manuscript) by MA and ANK; visualization by MA, ANK and IGM; funding acquisition by VNK, AB and ANK; resources by AB, VNK and KAA; supervision by ANK and MA.
References
Afkhami, F. A., Mahmoudi, Gh., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. 2019, 262–270. CrossRef CAS Google Scholar
Atioğlu, Z., Bindya, S., Akkurt, M. & Chidan Kumar, C. S. (2019). Acta Cryst. E75, 146–149. CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bindya, S., Chidan Kumar, C. S., Naveen, S., Siddaraju, B. P., Quah, C. K. & Raihan, M. A. (2019). Acta Cryst. E75, 264–267. CrossRef IUCr Journals Google Scholar
Çelik, M. S., Çetinus, A., Yenidünya, A. F., Çetinkaya, S. & Tüzün, B. (2023). J. Mol. Struct. 1272, 134158. Google Scholar
Çelikesir, S. T., Sheshadri, S. N., Akkurt, M., Chidan Kumar, C. S. & Veeraiah, M. K. (2019). Acta Cryst. E75, 942–945. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chalkha, M., Ameziane el Hassani, A., Nakkabi, A., Tüzün, B., Bakhouch, M., Benjelloun, A. T., Sfaira, M., Saadi, M., Ammari, L. E. & Yazidi, M. E. (2023). J. Mol. Struct. 1273, 134255. Web of Science CSD CrossRef Google Scholar
Chithiraikumar, C., Ponmuthu, K. V., Harikrishnan, M., Malini, N., Sepperumal, M. & Siva, A. (2021). Res. Chem. Intermed. 47, 895–909. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019–1031. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932–3940. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107–111. Web of Science CSD CrossRef CAS Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279. CrossRef Google Scholar
Poustforoosh, A., Hashemipour, H., Tüzün, B., Azadpour, M., Faramarz, S., Pardakhty, A., Mehrabani, M. & Nematollahi, M. H. (2022). Curr. Microbiol. 79, 241. Web of Science CrossRef PubMed Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Rozmer, Z. & Perjési, P. (2016). Phytochem. Rev. 15, 87–120. CrossRef CAS Google Scholar
Sarkı, G., Tüzün, B., Ünlüer, D. & Kantekin, H. (2023). Inorg. Chim. Acta, 545, 121113. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Spruce, K. J., Hall, C. L., Potticary, J., Pridmore, N. E., Cremeens, M. E., D'ambruoso, G. D., Matsumoto, M., Warren, G. I., Warren, S. D. & Hall, S. R. (2020). Acta Cryst. E76, 72–76. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tapera, M., Kekeçmuhammed, H., Tüzün, B., Sarıpınar, E., Koçyiğit, M., Yıldırım, E., Doğan, M. & Zorlu, Y. (2022). J. Mol. Struct. 1269, 133816. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.