research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a (carb­­oxy­meth­yl)tri­ethyl­aza­nium bromide–2-(tri­ethyl­aza­n­ium­yl)acetate (1/1) hydrogen-bonded dimer

crossmark logo

aDepartment of Chemistry, Grand Valley State University, Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
*Correspondence e-mail: biross@gvsu.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 July 2023; accepted 3 August 2023; online 10 August 2023)

The title compound, C8H18NO2+·Br·C8H17NO2, crystallizes as the bromide salt of a 50:50 mixture of (tri­ethyl­azaniumyl)­carb­oxy­lic acid and the zwitterionic (tri­ethyl­azaniumyl)­carboxyl­ate. The two organic entities are linked by a half-occupied bridging carb­oxy­lic acid hydrogen atom that is hydrogen-bonded to the carboxyl­ate group of the second mol­ecule. The tetra­lkyl­ammonium group adopts a nearly perfect tetra­hedral shape around the nitro­gen atom with bond lengths that agree with known values. The carb­oxy­lic acid/carboxyl­ate group is oriented anti to one of the ethyl groups on the ammonium group, and the carbonyl oxygen atom is engaged in intra­molecular C—H⋯O hydrogen bonds.

1. Chemical context

The β-carbonyl­phospho­nate moiety is commonly used as a reagent in the Horner–Wadsworth–Emmons reaction (Horner et al., 1958[Horner, L., Hoffmann, H. & Wippel, H. G. (1958). Chem. Ber. 91, 61-63.]; Wadsworth & Emmons, 1961[Wadsworth, W. S. & Emmons, W. D. (1961). J. Am. Chem. Soc. 83, 1733-1738.]; Bisceglia & Orelli, 2015[Bisceglia, J. A. & Orelli, L. R. (2015). Curr. Org. Chem. 19, 744-775.]). These mol­ecules are reacted with aldehydes or ketones to prepare α,β-unsaturated esters, where a preference for the Z-configuration of the alkene group is often observed. When the phospho­nate group is replaced with a phosphine oxide, these sets of compounds have found use as ligands and extraction agents for f-elements (Babecki et al., 1989[Babecki, R., Platt, A. W. G., Tebby, J. C., Fawcett, J., Russell, D. R. & Little, R. (1989). Polyhedron, 8, 1357-1360.], 1990[Babecki, R., Platt, A. W. G. & Russell, D. R. (1990). Inorg. Chim. Acta, 171, 25-28.], 1992[Babecki, R., Platt, A. W. G. & Fawcett, J. (1992). J. Chem. Soc. Dalton Trans. pp. 675-681.]). Our research group has also characterized the ability of these types of compounds to sensitize the luminescence of lanthanide ions (Leach et al., 2017[Leach, E. G., Shady, J. R., Boyden, A. C., Emig, A., Henry, A. T., Connor, E. K., Staples, R. J., Schaertel, S., Werner, E. J. & Biros, S. M. (2017). Dalton Trans. 46, 15458-15469.]; Sartain et al., 2015[Sartain, H. T., McGraw, S. N., Lawrence, C. T., Werner, E. J. & Biros, S. M. (2015). Inorg. Chim. Acta, 426, 126-135.]). To this end, our group has been working to develop a synthetic route to the target compound shown in Fig. 1[link], following the procedure reported by Ando (1999[Ando, K. (1999). J. Org. Chem. 64, 8406-8408.]). The title compound was an undesired byproduct of this reaction, and serendipitously crystallized from the aqueous washings upon standing. A proposed mechanism for the formation of the title compound I is also shown in Fig. 1[link].

[Scheme 1]
[Figure 1]
Figure 1
(top) The reaction carried out in this work, along with structures of the target β-carbonyl­phospho­nate and the title compound I. (bottom) A proposed mechanism for the formation of the title compound.

2. Structural commentary

The title salt crystallizes as a 50:50 mixture of the ammonium carboxyl­ate zwitterion and the ammonium bromide. The mol­ecular entities of this compound are shown in Fig. 2[link] along with the atom-numbering scheme. The asymmetric unit is composed of all of the atoms shown in Fig. 2[link] where the carb­oxy­lic acid hydrogen atom H1 has a 0.50 occupancy, and the Br anion is located on a twofold rotation axis (Wyckoff position 4e) of space group I2/a. The ammonium group has C—N bond lengths ranging from 1.514 (3) to 1.526 (3) Å with a nearly perfect tetra­hedral arrangement of alkyl groups around the nitro­gen atom with a τ4 descriptor for fourfold coordin­ation of 0.97 (where 0.00 = square-planar, 0.85 = trigonal–pyramidal, and 1.00 = tetra­hedral; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). The carb­oxy­lic acid group has C—O bond lengths of 1.286 (3) and 1.224 (3) Å. When the mol­ecule is viewed down the C2—N1 bond the groups adopt a staggered conformation with the carb­oxy­lic acid group being anti to the C5–C6 ethyl group. The torsion angle between these two groups (C1—C2—N1—C5) is 168.8 (2)°. Two intra­molecular C—H⋯O hydrogen bonds are present between the carbonyl oxygen atom O2 and hydrogen atoms H3A and H7B of the gauche alkyl groups (Table 1[link], Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.97 1.50 2.457 (4) 167
C3—H3A⋯O2 0.99 2.39 2.969 (3) 116
C7—H7B⋯O2 0.99 2.39 3.068 (3) 125
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The mol­ecular structure of compound I, with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level using standard CPK colors. Atom H1 shows half-occupancy.
[Figure 3]
Figure 3
A depiction of the hydrogen-bonding inter­actions present in the crystal of compound I using a ball-and-stick model with standard CPK colors. Hydrogen-bonding inter­actions are depicted with blue dashed lines and all hydrogen atoms not involved in a hydrogen bond are not shown for clarity.

3. Supra­molecular features

Mol­ecules of the title compound exist as hydrogen-bonded dimers in the solid state. The carb­oxy­lic acid hydrogen atom H1 is a half-occupied bridging hydrogen atom (Fábry, 2018[Fábry, J. (2018). Acta Cryst. E74, 1344-1357.]), and within this dimer it is either bonded to oxygen atom O1 or to its symmetry derived counterpart O1i [symmetry code: (i) –x + [{3\over 2}], –y + [{1\over 2}], –z + [{1\over 2}]; Fig. 3[link]]. When this atom H1 is covalently bonded to O1, it is engaged in a very strong asymmetric hydrogen bond with the symmetry-derived oxygen atom O1i (Table 1[link]). The bromide counter-ions are located away from the carboxyl­ate/carb­oxy­lic acid sites and occupy a layer that lies parallel to the ab plane. These layers are bordered by the ethyl chains of the ammonium groups (Fig. 4[link]).

[Figure 4]
Figure 4
A view of the crystal structure down the b axis showing a cross section of the layers of bromide ions. This figure was drawn with a ball-and-stick model using standard CPK colors. Only one position of hydrogen atom H1 is shown, and all other hydrogen atoms have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.43, Jun. 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures with a hydrogen atom shared between two carboxyl­ate sites resulted in 274 hits. One of the simplest structures in this set is that of ammonium di­acetate (ACAMAC; Nahringbauer, 1969[Nahringbauer, I. (1969). Acta Chem. Scand. 23, 1653-1666.]). The structures ALUNIE (Dega-Szafran et al., 2003[Dega-Szafran, Z., Petryna, M., Dutkiewicz, G. & Kosturkiewicz, Z. (2003). Pol. J. Chem. 77, 1501-1504.]) and CIVKUQ (Ghaza­ryan et al., 2018[Ghazaryan, V. V., Giester, G., Fleck, M. & Petrosyan, A. M. (2018). J. Mol. Struct. 1163, 428-441.]) are similar to the title compound with either a piperidinium ring or a tri­methyl­ammonium group, respectively, in the place of the tri­ethyl­ammonium groups. Both compounds were isolated with a halide counter-ion: ALUNIE was isolated with one chloride anion and CIVKUQ was isolated as the iodide salt.

5. Synthesis and crystallization

Dibutyl phosphite (1.4 ml, 1.4 g, 7.17 mmol) was added via syringe to a two-necked 25 ml round-bottom flask under an atmosphere of nitro­gen. The reagent was dissolved in 7.0 ml of di­chloro­methane and the flask was placed in an ice–water bath. Benzyl bromo­acetate (1.1 ml, 1.6 g, 6.94 mmol) and tri­ethyl­amine (1.4 ml, 1.0 g, 10.0 mmol) were added and the reaction mixture was stirred for 15 minutes in the ice bath followed by one hour at room temperature. Water (10 ml) was added to the reaction, and the aqueous layer was washed with ethyl acetate (3×10 ml). The organic extracts were combined and washed with 1 M HCl (3×10 ml) and brine (1×10 ml), then dried over MgSO4. The title compound crystallized serendipitously from the combined aqueous washings after standing for ca three days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms bonded to carbon atoms were placed in calculated positions and refined as riding: C—H = 0.95 – 1.00 Å with Uiso(H) = 1.2Ueq(C) for methyl­ene hydrogen atoms and Uiso(H) = 1.5Ueq(C) for the hydrogen atoms of the methyl groups. The carb­oxy­lic acid hydrogen atom H1 was located using electron-density difference maps. The position of this hydrogen atom was fixed and the occupancy constrained to 0.5. Its isotropic displacement parameter was refined as suggested by Fábry (2018[Fábry, J. (2018). Acta Cryst. E74, 1344-1357.]).

Table 2
Experimental details

Crystal data
Chemical formula C8H18NO2+·Br·C8H17NO2
Mr 399.37
Crystal system, space group Monoclinic, I2/a
Temperature (K) 100
a, b, c (Å) 12.6692 (4), 7.0967 (3), 22.3413 (9)
β (°) 103.022 (4)
V3) 1957.04 (13)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.03
Crystal size (mm) 0.42 × 0.13 × 0.02
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.568, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6198, 1998, 1785
Rint 0.052
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.08
No. of reflections 1998
No. of parameters 109
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.89, −0.42
Computer programs: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009; Bourhis et al., 2015).

(Carboxymethyl)triethylazanium bromide–2-(triethylazaniumyl)acetate (1/1) top
Crystal data top
C8H18NO2+·Br·C8H17NO2F(000) = 848
Mr = 399.37Dx = 1.355 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 12.6692 (4) ÅCell parameters from 3269 reflections
b = 7.0967 (3) Åθ = 6.6–79.4°
c = 22.3413 (9) ŵ = 3.03 mm1
β = 103.022 (4)°T = 100 K
V = 1957.04 (13) Å3Plate, colourless
Z = 40.42 × 0.13 × 0.02 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1785 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.052
ω scansθmax = 80.0°, θmin = 4.1°
Absorption correction: gaussian
(CrysAlisPro; Oxford Diffraction, 2006)
h = 1116
Tmin = 0.568, Tmax = 1.000k = 88
6198 measured reflectionsl = 2825
1998 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0638P)2 + 1.4873P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1998 reflectionsΔρmax = 0.89 e Å3
109 parametersΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.2500000.39582 (5)0.5000000.01824 (16)
O10.70415 (15)0.3474 (3)0.28191 (9)0.0250 (4)
H10.7347980.2801690.2520980.07 (3)*0.5
O20.57904 (15)0.1209 (3)0.27312 (9)0.0235 (4)
N10.49061 (15)0.3014 (3)0.36825 (9)0.0146 (4)
C10.61984 (19)0.2698 (4)0.29428 (11)0.0181 (5)
C20.57456 (19)0.3923 (3)0.33887 (12)0.0155 (5)
H2A0.6358170.4341900.3720160.019*
H2B0.5420090.5063340.3165890.019*
C30.5279 (2)0.1112 (3)0.39641 (12)0.0187 (5)
H3A0.5222780.0179110.3628870.022*
H3B0.4779800.0708880.4222520.022*
C40.6431 (2)0.1076 (4)0.43539 (14)0.0242 (6)
H4A0.6942240.1323440.4092760.036*
H4B0.6582030.0165350.4546580.036*
H4C0.6511440.2045480.4673200.036*
C50.47364 (19)0.4306 (4)0.41955 (11)0.0168 (5)
H5A0.4196920.3717580.4396110.020*
H5B0.5427240.4396470.4507050.020*
C60.4358 (2)0.6278 (4)0.39983 (14)0.0255 (6)
H6A0.3696690.6211070.3672230.038*
H6B0.4924340.6934610.3844590.038*
H6C0.4208810.6966500.4350420.038*
C70.38591 (18)0.2757 (4)0.31950 (11)0.0170 (5)
H7A0.3606830.4008040.3024610.020*
H7B0.4015580.1988220.2855500.020*
C80.2954 (2)0.1824 (4)0.34289 (13)0.0242 (6)
H8A0.2289520.1829440.3104020.036*
H8B0.2830920.2516920.3786340.036*
H8C0.3156810.0520790.3547550.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0155 (2)0.0211 (2)0.0191 (2)0.0000.00614 (14)0.000
O10.0209 (9)0.0313 (10)0.0264 (10)0.0062 (8)0.0132 (8)0.0083 (8)
O20.0214 (9)0.0270 (10)0.0242 (10)0.0037 (7)0.0091 (8)0.0089 (7)
N10.0128 (8)0.0161 (10)0.0154 (10)0.0009 (7)0.0043 (8)0.0001 (8)
C10.0161 (10)0.0229 (13)0.0149 (12)0.0010 (9)0.0029 (9)0.0013 (9)
C20.0138 (10)0.0171 (12)0.0162 (12)0.0029 (8)0.0050 (9)0.0002 (9)
C30.0212 (12)0.0158 (12)0.0186 (12)0.0001 (8)0.0035 (10)0.0024 (9)
C40.0213 (12)0.0252 (14)0.0233 (14)0.0057 (10)0.0010 (10)0.0019 (10)
C50.0151 (10)0.0214 (12)0.0140 (11)0.0015 (9)0.0033 (9)0.0002 (9)
C60.0315 (14)0.0214 (14)0.0255 (15)0.0075 (10)0.0107 (12)0.0003 (10)
C70.0136 (9)0.0218 (12)0.0145 (11)0.0025 (9)0.0008 (9)0.0003 (9)
C80.0159 (11)0.0331 (15)0.0231 (13)0.0068 (10)0.0032 (10)0.0005 (11)
Geometric parameters (Å, º) top
O1—H10.9686C4—H4B0.9800
O1—C11.286 (3)C4—H4C0.9800
O2—C11.224 (3)C5—H5A0.9900
N1—C21.514 (3)C5—H5B0.9900
N1—C31.519 (3)C5—C61.512 (4)
N1—C51.520 (3)C6—H6A0.9800
N1—C71.526 (3)C6—H6B0.9800
C1—C21.528 (3)C6—H6C0.9800
C2—H2A0.9900C7—H7A0.9900
C2—H2B0.9900C7—H7B0.9900
C3—H3A0.9900C7—C81.515 (3)
C3—H3B0.9900C8—H8A0.9800
C3—C41.522 (4)C8—H8B0.9800
C4—H4A0.9800C8—H8C0.9800
C1—O1—H1114.7H4A—C4—H4C109.5
C2—N1—C3112.00 (18)H4B—C4—H4C109.5
C2—N1—C5107.61 (18)N1—C5—H5A108.4
C2—N1—C7108.91 (18)N1—C5—H5B108.4
C3—N1—C5107.89 (19)H5A—C5—H5B107.5
C3—N1—C7109.20 (19)C6—C5—N1115.3 (2)
C5—N1—C7111.24 (17)C6—C5—H5A108.4
O1—C1—C2110.4 (2)C6—C5—H5B108.4
O2—C1—O1125.8 (2)C5—C6—H6A109.5
O2—C1—C2123.7 (2)C5—C6—H6B109.5
N1—C2—C1116.35 (19)C5—C6—H6C109.5
N1—C2—H2A108.2H6A—C6—H6B109.5
N1—C2—H2B108.2H6A—C6—H6C109.5
C1—C2—H2A108.2H6B—C6—H6C109.5
C1—C2—H2B108.2N1—C7—H7A108.7
H2A—C2—H2B107.4N1—C7—H7B108.7
N1—C3—H3A108.5H7A—C7—H7B107.6
N1—C3—H3B108.5C8—C7—N1114.2 (2)
N1—C3—C4114.9 (2)C8—C7—H7A108.7
H3A—C3—H3B107.5C8—C7—H7B108.7
C4—C3—H3A108.5C7—C8—H8A109.5
C4—C3—H3B108.5C7—C8—H8B109.5
C3—C4—H4A109.5C7—C8—H8C109.5
C3—C4—H4B109.5H8A—C8—H8B109.5
C3—C4—H4C109.5H8A—C8—H8C109.5
H4A—C4—H4B109.5H8B—C8—H8C109.5
O1—C1—C2—N1167.3 (2)C3—N1—C7—C856.4 (3)
O2—C1—C2—N113.8 (4)C5—N1—C2—C1168.8 (2)
C2—N1—C3—C446.5 (3)C5—N1—C3—C471.8 (3)
C2—N1—C5—C659.1 (3)C5—N1—C7—C862.6 (3)
C2—N1—C7—C8179.0 (2)C7—N1—C2—C170.5 (3)
C3—N1—C2—C150.4 (3)C7—N1—C3—C4167.2 (2)
C3—N1—C5—C6179.9 (2)C7—N1—C5—C660.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.971.502.457 (4)167
C3—H3A···O20.992.392.969 (3)116
C7—H7B···O20.992.393.068 (3)125
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the GVSU Chemistry Department Weldon Fund and the Library Open Access fund for financial support, and Professor Randy Winchester (GVSU) for fruitful conversations regarding the chemistry described in this paper.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1725699 to SB; grant No. CHE-2102576 to SB; grant No. CHE-1919565 to RJS).

References

First citationAndo, K. (1999). J. Org. Chem. 64, 8406–8408.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBabecki, R., Platt, A. W. G. & Fawcett, J. (1992). J. Chem. Soc. Dalton Trans. pp. 675–681.  CSD CrossRef Web of Science Google Scholar
First citationBabecki, R., Platt, A. W. G. & Russell, D. R. (1990). Inorg. Chim. Acta, 171, 25–28.  CSD CrossRef CAS Web of Science Google Scholar
First citationBabecki, R., Platt, A. W. G., Tebby, J. C., Fawcett, J., Russell, D. R. & Little, R. (1989). Polyhedron, 8, 1357–1360.  CSD CrossRef CAS Web of Science Google Scholar
First citationBisceglia, J. A. & Orelli, L. R. (2015). Curr. Org. Chem. 19, 744–775.  CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDega-Szafran, Z., Petryna, M., Dutkiewicz, G. & Kosturkiewicz, Z. (2003). Pol. J. Chem. 77, 1501–1504.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFábry, J. (2018). Acta Cryst. E74, 1344–1357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGhazaryan, V. V., Giester, G., Fleck, M. & Petrosyan, A. M. (2018). J. Mol. Struct. 1163, 428–441.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHorner, L., Hoffmann, H. & Wippel, H. G. (1958). Chem. Ber. 91, 61–63.  CrossRef CAS Web of Science Google Scholar
First citationLeach, E. G., Shady, J. R., Boyden, A. C., Emig, A., Henry, A. T., Connor, E. K., Staples, R. J., Schaertel, S., Werner, E. J. & Biros, S. M. (2017). Dalton Trans. 46, 15458–15469.  Web of Science CAS PubMed Google Scholar
First citationNahringbauer, I. (1969). Acta Chem. Scand. 23, 1653–1666.  CSD CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.  Google Scholar
First citationSartain, H. T., McGraw, S. N., Lawrence, C. T., Werner, E. J. & Biros, S. M. (2015). Inorg. Chim. Acta, 426, 126–135.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWadsworth, W. S. & Emmons, W. D. (1961). J. Am. Chem. Soc. 83, 1733–1738.  CrossRef CAS Web of Science Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds