research communications
and Hirshfeld surface analysis of 8-azaniumylquinolinium tetrachloridozincate(II)
aTermez State University, Barkamol avlod street 43, Termez city, Uzbekistan, bTashkent Scientific Research Institute of Chemical Technology, Township Shura-bazar, District of Zangiata, Tashkent 111116, Uzbekistan, and cInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str. 83, Tashkent 700125, Uzbekistan
*Correspondence e-mail: ashurovjamshid1@gmail.com
The reaction of 8-aminoquinoline, zinc chloride and hydrochloric acid in ethanol yielded the title salt, (C9H10N2)[ZnCl4], which consists of a planar 8-azaniumylquinolinium dication and a tetrahedral tetrachlorozincate dianion. The 8-aminoquinoline moiety is protonated at both the amino and the ring N atoms. In the crystal, the cations and anions are connected by intermolecular N—H⋯Cl and C—H⋯Cl hydrogen bonds, forming sheets parallel to (001). Adjacent sheets are linked through π–π interactions involving the pyridine and arene rings of the 8-azaniumylquinolinium dication. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯Cl (48.1%), H⋯H (19.9%), H⋯C/C⋯H (14.3%) (involving the cations) and H⋯Cl (82.6%) (involving the anions) interactions.
Keywords: 8-Aminoquinoline; intermolecular interactions; crystal structure; hydrogen bonding; π–π stacking; Hirshfeld surface.
CCDC reference: 2290822
1. Chemical context
Quinoline and its derivatives comprise an important group of heterocyclic compounds that exhibit a wide range of pharmacological properties, such as antimalarial (Shiraki et al., 2011; Singh et al., 2011; Murugan et al., 2022), antibacterial (Upadhayaya et al., 2009; Zeleke et al., 2020), antimicrobial (Teja et al., 2016), anti-inflammatory (Guirado et al., 2012), anticancer (Abbas et al., 2015), antidiabetic (Kulkarni et al., 2012) and antihistaminic activities (Sridevi et al., 2010). The quinoline moiety is found in many drugs and is useful in the rational design of novel bioactive molecules in medicinal chemistry. The interest in 8-aminoquinoline, which contains functional groups commonly involved in hydrogen bonding, is related to its genotoxic activities, such as mutagenicity (Takahashi et al., 1987), and to its unusually low proton-acceptor ability in solution. Quinolines are also strongly fluorescent and have been employed in the analytical study of heavy metals (Fritsch et al., 2006). They have also been used to prepare highly conducting copolymers (Li et al., 2005). As a ligand, 8-aminoquinoline usually binds in a bidentate fashion via the two N-atom positions (Setifi et al., 2016; Mao et al., 2018; Yang et al., 2019), although examples of bridging–binding modes are also known (Schmidbaur et al., 1991). In addition, 8-aminoquinoline can form π–π stacking interactions with (other) aromatic rings, thus controlling the intergrowth of interpenetrating networks (Khelfa et al., 2021; Rahmati et al., 2018). Zinc, an essential component of life, is an abundant ion in living organisms (Andreini et al., 2006; Cuajungco et al., 2021). A bioinformatics study found that over 50% of zinc-bound proteins are enzymes, and in the vast majority of them, the metal plays a catalytic role (Andreini & Bertini, 2012). About 20% of them feature zinc as a structural component (Banci et al., 2002; Andreini & Bertini, 2012). Zinc complexes exhibit a wide range of coordination numbers and coordination spheres, with tetrahedral (Ashurov et al., 2018; Petrus et al., 2020) and octahedral (Ashurov et al., 2011) environments being the most frequently observed.
In the context given above, we report here the synthesis, 9H10N2)[ZnCl4].
and Hirshfeld surface analysis of the organic–inorganic hybride salt (C2. Structural commentary
The title salt crystallizes with one (C9H10N2)2+ dication and one [ZnCl4]2− dianion in the (Fig. 1). The cation consists of an 8-aminoquinoline moiety that is protonated at both the amino and the ring N atoms. Protonation of the amino group results in a lengthening of the C—N(sp3) bond from 1.377 (3) Å (sp2 N) in 8-aminoquinoline (Van Meervelt et al., 1997) to 1.464 (2) Å. This reflects the loss of the conjugation between the aromatic ring and the lone-pair electrons of the amino N atom when the latter is protonated. The quinoline ring system (atoms C1–C9/N2) is essentially planar; the r.m.s. deviation for the non-H atoms is 0.017 (2) Å, with a maximum deviation from the mean plane of 0.022 (2) Å for the C7 atom. The azaniumyl N atom is almost coplanar with the quinoline plane, deviating from it by only 0.033 (2) Å. The coordination environment of the Zn atom in the [ZnCl4]2− dianion is slightly distorted tetrahedral (τ4 = 0.91; Yang et al., 2007). The mean value of the Zn—Cl bond lengths of the [ZnCl4]2− anion is 2.279 Å, which is in good agreement with the literature value [2.268 (4) Å; Harrison, 2005]. The Cl—Zn—Cl bond angles in the dianion indicate distortions from a regular tetrahedron (109.5°), with a spread of values between 103.058 (19) and 117.08 (2)°. The most acute angle of 103.058 (19)° within the tetrachloridozincate dianion is subtended by atoms Cl1 and Cl4. These atoms are associated with the relatively long Zn—Cl bond lengths, which, in turn, are correlated with the most relevant intermolecular interactions in the structure; atom Cl4 is involved in the shortest and most linear N—H⋯Cl hydrogen bond (see Section 3) and thus represents the most distant ligand in the anion.
3. Supramolecular features and Hirshfeld surface analysis
Each [ZnCl4]2− dianion is connected to four neighbouring organic cations through N—H⋯Cl and C—H⋯Cl interactions involving all the Cl atoms (Table 1). Thus, the N1—H1A⋯Cl1, N2—H2⋯Cl4 and N1—H1C⋯Cl3ii hydrogen bonds generate R22(9) ring motifs (Bernstein et al., 1995) and link the dications and anions into chains parallel to [100] (Fig. 2). These chains are interconnected by N1—H1B⋯Cl2i and C7— H7⋯Cl1iii hydrogen bonds, which generate R43(11) ring motifs, forming sheets parallel to (001) (Fig. 2). In addition, the molecules are linked by pairs of π–π interactions between the pyridine and arene rings of neighbouring dications. The molecules stack along [001] to consolidate the triperiodic supramolecular network (Fig. 3). The relevant centroid-to-centroid distance for π–π stacking interaction between Cg1 (the centroid of pyridine ring C5–C7/N2/C8/C9) and Cg2 (the centroid of arene ring C1–C4/C9/C8) is Cg1⋯Cg2i = 3.7784 (11) Å [symmetry code: (i) −x + 1, −y + 1, −z + 1], with a slippage of 1.613 Å.
The supramolecular interactions were investigated quantitatively and visualized by Hirshfeld surface analysis performed with CrystalExplorer21 (Spackman et al., 2021). It should be noted that the Hirshfeld surfaces and fingerprint plots were calculated separately for the 8-azaniumylquinolinium dication and the [ZnCl4]2− dianion. The respective acceptor and donor atoms showing strong N—H⋯Cl intermolecular hydrogen bonds (for N1—H1A⋯Cl1, N1—H1B⋯Cl2i, N1—H1C⋯Cl3ii and N2—H2⋯Cl4) are indicated as bright-red spots on the Hirshfeld surface (Fig. 4). Classical N—H⋯Cl hydrogen bonds correspond to H⋯Cl contacts [with contributions of 82.6 and 48.1% to the Hirshfeld surface for the [ZnCl4]2− dianion and 8-azaniumylquinolinium dication, respectively; Figs. 5(f) and 5(b)]. These interactions can be seen as spikes with a sharp tip. H⋯H, H⋯C/C⋯H and C⋯C interactions in the dication, and C⋯Cl and Cl⋯Cl interactions in the dianion follow with contributions of 19.9, 14.3, 6.7, 7.4 and 5.4%, respectively (Fig. 5). Other, minor, contributions are from C⋯Cl (6.4%), H⋯N/N⋯H (2.6%), H⋯Zn (0.7%), N⋯Cl (0.6%) and N⋯C/C⋯N (0.1%) contacts in the dication, and from Zn⋯Cl/Cl⋯Zn (1.7%), Zn⋯H (1.1%), N⋯Cl (1.0%) and Zn⋯C (0.8%) contacts in the dianion. The shape-index of the 8-azaniumylquinolinium dication is a tool to visualize π–π stacking by the presence of adjacent red and blue triangles. Fig. 6 gives clear evidence that these interactions exist, as discussed above.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 2022.3.0; Groom et al., 2016) revealed 114 compounds involving the 8-aminoquinoline moiety. Among them, 65 are metal complexes and 20 are organic salts and cocrystals. In all of these metal complexes, 8-aminoquinoline coordinates in a bidentate fashion, although there are examples of bridging–binding (CSD refcode VIZBIP; Schmidbaur et al., 1991) and monodentate (MUDNEG; Xu et al., 2015) modes. Only in the structure of 8-azaniumylquinolinium dichloride (PENHAR; Yan et al., 1998) are both the amino group and the ring N atom protonated.
5. Synthesis and crystallization
Commercially available starting materials were used without further purification. 8-Aminoquinoline (0.144 g, 1 mmol) was dissolved in 10 ml of an ethanol/HCl mixture (9:1 v/v) and added to a solution of ZnCl2 (0.136 g, 1 mmol) in 10 ml of the same ethanol/HCl mixed solvent. The mixture was heated under reflux and stirred for 30 min. A pale-yellow crystalline product was obtained at room temperature after 6 d by slow solvent evaporation [yield: 80%; elemental analysis calculated (%) for C9H10Cl4N2Zn: C 30.59, H 2.85, N 7.93; found: C 30.43, H 2.79, N 7.89].
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were placed in calculated positions and refined using the riding-model approximation, with Uiso(H) = 1.2Ueq(C) and C—H = 0.93 Å for aromatic H atoms. Both the amino and the ring N-bound H atoms were located in a difference Fourier map and refined with bond-length restraints of 0.89 (1) and 0.86 (1) Å, respectively.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2290822
https://doi.org/10.1107/S2056989023007466/wm5692sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023007466/wm5692Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2020); cell
CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).(C9H10N2)[ZnCl4] | F(000) = 704 |
Mr = 353.36 | Dx = 1.840 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 7.52646 (6) Å | Cell parameters from 8253 reflections |
b = 13.40703 (12) Å | θ = 3.3–71.4° |
c = 12.65801 (11) Å | µ = 10.16 mm−1 |
β = 92.8635 (8)° | T = 566 K |
V = 1275.69 (2) Å3 | Block, pale yellow |
Z = 4 | 0.24 × 0.21 × 0.15 mm |
Rigaku XtaLAB Synergy single source diffractometer with a HyPix3000 detector | 2474 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 2341 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.037 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 71.4°, θmin = 4.8° |
ω scans | h = −9→7 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2020) | k = −16→16 |
Tmin = 0.491, Tmax = 1.000 | l = −15→15 |
11239 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.023 | w = 1/[σ2(Fo2) + (0.0362P)2 + 0.3283P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.065 | (Δ/σ)max = 0.001 |
S = 1.06 | Δρmax = 0.32 e Å−3 |
2474 reflections | Δρmin = −0.28 e Å−3 |
162 parameters | Extinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
4 restraints | Extinction coefficient: 0.00359 (19) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.92145 (3) | 0.41694 (2) | 0.17409 (2) | 0.02862 (11) | |
Cl4 | 0.66523 (6) | 0.36967 (4) | 0.07893 (3) | 0.03361 (13) | |
Cl1 | 0.84550 (6) | 0.56627 (3) | 0.24448 (4) | 0.03547 (13) | |
Cl2 | 0.95542 (7) | 0.31035 (3) | 0.31521 (4) | 0.03674 (14) | |
Cl3 | 1.16765 (6) | 0.41294 (4) | 0.08236 (4) | 0.03691 (14) | |
N2 | 0.4715 (2) | 0.39322 (11) | 0.28755 (12) | 0.0269 (3) | |
N1 | 0.4398 (2) | 0.58098 (12) | 0.17865 (12) | 0.0296 (4) | |
C1 | 0.3676 (2) | 0.56492 (13) | 0.28262 (13) | 0.0245 (4) | |
C8 | 0.3848 (2) | 0.47086 (13) | 0.33164 (13) | 0.0228 (3) | |
C9 | 0.3120 (2) | 0.45601 (14) | 0.43180 (14) | 0.0275 (4) | |
C4 | 0.2233 (2) | 0.53608 (16) | 0.47875 (15) | 0.0340 (4) | |
H4 | 0.173175 | 0.526950 | 0.543724 | 0.041* | |
C2 | 0.2837 (2) | 0.64101 (14) | 0.33141 (16) | 0.0320 (4) | |
H2A | 0.274830 | 0.703201 | 0.299033 | 0.038* | |
C7 | 0.4940 (3) | 0.30526 (14) | 0.33447 (16) | 0.0335 (4) | |
H7 | 0.556834 | 0.255296 | 0.301634 | 0.040* | |
C5 | 0.3326 (3) | 0.36147 (16) | 0.47933 (15) | 0.0357 (4) | |
H5 | 0.282864 | 0.349307 | 0.543880 | 0.043* | |
C6 | 0.4245 (3) | 0.28736 (16) | 0.43198 (17) | 0.0391 (5) | |
H6 | 0.440294 | 0.225711 | 0.464797 | 0.047* | |
C3 | 0.2103 (3) | 0.62624 (16) | 0.43029 (16) | 0.0367 (5) | |
H3 | 0.152643 | 0.678533 | 0.462586 | 0.044* | |
H1A | 0.5529 (15) | 0.5639 (17) | 0.179 (2) | 0.042 (7)* | |
H1B | 0.434 (3) | 0.6446 (9) | 0.160 (2) | 0.056 (8)* | |
H1C | 0.381 (3) | 0.5492 (16) | 0.1272 (14) | 0.039 (6)* | |
H2 | 0.518 (3) | 0.3968 (17) | 0.2270 (11) | 0.040 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.02863 (16) | 0.02727 (16) | 0.03004 (16) | 0.00008 (9) | 0.00209 (11) | −0.00273 (9) |
Cl4 | 0.0300 (2) | 0.0444 (3) | 0.0265 (2) | −0.00244 (18) | 0.00214 (17) | −0.00831 (18) |
Cl1 | 0.0422 (3) | 0.0237 (2) | 0.0402 (3) | 0.00109 (18) | −0.0005 (2) | −0.00495 (17) |
Cl2 | 0.0478 (3) | 0.0272 (2) | 0.0354 (2) | 0.00672 (19) | 0.0037 (2) | 0.00296 (17) |
Cl3 | 0.0301 (2) | 0.0450 (3) | 0.0360 (3) | −0.00615 (18) | 0.00597 (19) | −0.00603 (19) |
N2 | 0.0301 (8) | 0.0249 (7) | 0.0258 (7) | −0.0017 (6) | 0.0042 (6) | −0.0003 (6) |
N1 | 0.0371 (9) | 0.0273 (9) | 0.0244 (8) | −0.0017 (7) | 0.0025 (7) | 0.0033 (6) |
C1 | 0.0261 (8) | 0.0257 (8) | 0.0216 (8) | −0.0030 (7) | 0.0006 (7) | 0.0003 (6) |
C8 | 0.0233 (8) | 0.0249 (9) | 0.0203 (8) | −0.0030 (7) | −0.0001 (6) | −0.0014 (6) |
C9 | 0.0261 (8) | 0.0333 (10) | 0.0231 (8) | −0.0076 (7) | 0.0009 (7) | 0.0000 (7) |
C4 | 0.0305 (9) | 0.0469 (12) | 0.0250 (9) | −0.0049 (8) | 0.0058 (7) | −0.0074 (8) |
C2 | 0.0340 (10) | 0.0265 (9) | 0.0352 (10) | 0.0004 (7) | −0.0006 (8) | −0.0025 (7) |
C7 | 0.0315 (10) | 0.0242 (9) | 0.0445 (11) | −0.0002 (7) | −0.0007 (8) | 0.0014 (8) |
C5 | 0.0367 (10) | 0.0440 (11) | 0.0266 (9) | −0.0092 (9) | 0.0020 (8) | 0.0100 (8) |
C6 | 0.0394 (11) | 0.0345 (10) | 0.0428 (11) | −0.0054 (9) | −0.0041 (9) | 0.0161 (9) |
C3 | 0.0337 (10) | 0.0391 (11) | 0.0376 (11) | 0.0012 (8) | 0.0053 (8) | −0.0129 (9) |
Zn1—Cl4 | 2.3108 (5) | C8—C9 | 1.420 (2) |
Zn1—Cl1 | 2.2759 (5) | C9—C4 | 1.411 (3) |
Zn1—Cl2 | 2.2919 (5) | C9—C5 | 1.408 (3) |
Zn1—Cl3 | 2.2360 (5) | C4—H4 | 0.9300 |
N2—C8 | 1.362 (2) | C4—C3 | 1.357 (3) |
N2—C7 | 1.327 (2) | C2—H2A | 0.9300 |
N2—H2 | 0.860 (10) | C2—C3 | 1.407 (3) |
N1—C1 | 1.464 (2) | C7—H7 | 0.9300 |
N1—H1A | 0.882 (10) | C7—C6 | 1.385 (3) |
N1—H1B | 0.884 (10) | C5—H5 | 0.9300 |
N1—H1C | 0.877 (10) | C5—C6 | 1.366 (3) |
C1—C8 | 1.409 (2) | C6—H6 | 0.9300 |
C1—C2 | 1.364 (3) | C3—H3 | 0.9300 |
Cl1—Zn1—Cl4 | 103.058 (19) | C4—C9—C8 | 118.77 (17) |
Cl1—Zn1—Cl2 | 105.30 (2) | C5—C9—C8 | 117.93 (18) |
Cl2—Zn1—Cl4 | 107.04 (2) | C5—C9—C4 | 123.31 (17) |
Cl3—Zn1—Cl4 | 114.479 (19) | C9—C4—H4 | 119.6 |
Cl3—Zn1—Cl1 | 117.08 (2) | C3—C4—C9 | 120.82 (18) |
Cl3—Zn1—Cl2 | 109.07 (2) | C3—C4—H4 | 119.6 |
C8—N2—H2 | 123.2 (16) | C1—C2—H2A | 119.7 |
C7—N2—C8 | 123.26 (16) | C1—C2—C3 | 120.58 (18) |
C7—N2—H2 | 113.6 (16) | C3—C2—H2A | 119.7 |
C1—N1—H1A | 111.1 (17) | N2—C7—H7 | 119.8 |
C1—N1—H1B | 111.1 (18) | N2—C7—C6 | 120.47 (18) |
C1—N1—H1C | 113.6 (16) | C6—C7—H7 | 119.8 |
H1A—N1—H1B | 107 (2) | C9—C5—H5 | 119.5 |
H1A—N1—H1C | 109 (2) | C6—C5—C9 | 120.96 (18) |
H1B—N1—H1C | 105 (2) | C6—C5—H5 | 119.5 |
C8—C1—N1 | 119.84 (15) | C7—C6—H6 | 120.4 |
C2—C1—N1 | 119.86 (16) | C5—C6—C7 | 119.13 (18) |
C2—C1—C8 | 120.31 (17) | C5—C6—H6 | 120.4 |
N2—C8—C1 | 122.61 (15) | C4—C3—C2 | 120.33 (18) |
N2—C8—C9 | 118.20 (16) | C4—C3—H3 | 119.8 |
C1—C8—C9 | 119.18 (16) | C2—C3—H3 | 119.8 |
N2—C8—C9—C4 | 179.45 (15) | C8—C9—C4—C3 | −1.2 (3) |
N2—C8—C9—C5 | −0.5 (2) | C8—C9—C5—C6 | 2.0 (3) |
N2—C7—C6—C5 | 0.0 (3) | C9—C4—C3—C2 | 0.7 (3) |
N1—C1—C8—N2 | 1.9 (2) | C9—C5—C6—C7 | −1.8 (3) |
N1—C1—C8—C9 | −179.12 (16) | C4—C9—C5—C6 | −177.92 (18) |
N1—C1—C2—C3 | 178.65 (17) | C2—C1—C8—N2 | −178.25 (16) |
C1—C8—C9—C4 | 0.5 (2) | C2—C1—C8—C9 | 0.7 (3) |
C1—C8—C9—C5 | −179.45 (16) | C7—N2—C8—C1 | 177.61 (17) |
C1—C2—C3—C4 | 0.5 (3) | C7—N2—C8—C9 | −1.3 (3) |
C8—N2—C7—C6 | 1.6 (3) | C5—C9—C4—C3 | 178.74 (18) |
C8—C1—C2—C3 | −1.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1 | 0.88 (1) | 2.31 (1) | 3.1309 (16) | 154 (2) |
N1—H1B···Cl2i | 0.89 (1) | 2.39 (1) | 3.1747 (17) | 148 (2) |
N1—H1C···Cl3ii | 0.88 (2) | 2.48 (2) | 3.2415 (16) | 145 (2) |
N2—H2···Cl4 | 0.86 (2) | 2.25 (2) | 3.0958 (16) | 166 (2) |
C7—H7···Cl1iii | 0.93 | 2.71 | 3.584 (2) | 157 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) x−1, y, z; (iii) −x+3/2, y−1/2, −z+1/2. |
Acknowledgements
The authors thank the Uzbekistan government for direct financial support of this research. A Grant for Fundamental Research from the Center of Science and Technology of Uzbekistan is gratefully acknowledged.
References
Abbas, H. S., Al-Marhabi, A. R., Eissa, S. I. & Ammar, Y. A. (2015). Bioorg. Med. Chem. 23, 6560–6572. Web of Science CrossRef CAS PubMed Google Scholar
Andreini, C. & Bertini, I. (2012). J. Inorg. Biochem. 111, 150–156. Web of Science CrossRef CAS PubMed Google Scholar
Andreini, I., Banci, L., Bertini, I. & Rosato, A. (2006). J. Proteome Res. 5, 3173–3178. CrossRef PubMed CAS Google Scholar
Ashurov, J., Karimova, G., Mukhamedov, N., Parpiev, N. A. & Ibragimov, B. (2011). Acta Cryst. E67, m432. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ashurov, J. M., Ibragimov, A. B. & Ibragimov, B. T. (2018). IUCrData, 3, x181250. Google Scholar
Banci, L., Bertini, I., Ciofi-Baffoni, S., Finney, L. A., Outten, C. E. & O'Halloran, T. V. (2002). J. Mol. Biol. 323, 883–897. CrossRef PubMed CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Cuajungco, M. P., Ramirez, M. S. & Tolmasky, M. E. (2021). Biomedicines, 9, 208. CrossRef PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fritsch, J. M., Thoreson, K. A. & McNeill, K. (2006). Dalton Trans. pp. 4814–4820. Web of Science CSD CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guirado, A., López Sánchez, J. I., Ruiz-Alcaraz, A. J., Bautista, D. & Gálvez, J. (2012). Eur. J. Med. Chem. 54, 87–94. Web of Science CSD CrossRef CAS PubMed Google Scholar
Harrison, W. T. A. (2005). Acta Cryst. E61, m1951–m1952. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Khelfa, S., Touil, M., Setifi, Z., Setifi, F., Al-Douh, M. H. & Glidewell, C. (2021). IUCrData, 6, x210568. Google Scholar
Kulkarni, N. V., Revankar, V. K., Kirasur, B. N. & Hugar, M. H. (2012). Med. Chem. Res. 21, 663–671. Web of Science CrossRef CAS Google Scholar
Li, X.-G., Hua, Y.-M. & Huang, M.-R. (2005). Chem. Eur. J. 11, 4247–4256. Web of Science CrossRef PubMed CAS Google Scholar
Mao, R., Frey, A., Balon, J. & Hu, X. (2018). Nat. Catal. 1, 120–126. CrossRef CAS Google Scholar
Murugan, K., Panneerselvam, C., Subramaniam, J., Paulpandi, M., Rajaganesh, R., Vasanthakumaran, M., Madhavan, J., Shafi, S. S., Roni, M., Portilla-Pulido, J. S., Mendez, S. C., Duque, J. E., Wang, L., Aziz, A. T., Chandramohan, B., Dinesh, D., Piramanayagam, S. & Hwang, J.-S. (2022). Sci. Rep. 12, 4765. CrossRef PubMed Google Scholar
Petrus, R., Chomiak, K., Utko, J., Wilk-Kozubek, M., Lis, T., Cybińska, J. & Sobota, P. (2020). Inorg. Chem. 59, 8108–8120. CrossRef CAS PubMed Google Scholar
Rahmati, Z., Mirzaei, M., Chahkandi, M. & Mague, J. T. (2018). Inorg. Chim. Acta, 473, 152–159. CrossRef CAS Google Scholar
Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Schmidbaur, H., Mair, A., Müller, G., Lachmann, J. & Gamper, S. (1991). Z. Naturforsch. Teil B, 46, 912–918. CrossRef CAS Google Scholar
Setifi, F., Moon, D., Koen, R., Setifi, Z., Lamsayah, M. & Touzani, R. (2016). Acta Cryst. E72, 1488–1491. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shiraki, H., Kozar, M. P., Melendez, V., Hudson, T. H., Ohrt, C., Magill, A. J. & Lin, A. J. (2011). J. Med. Chem. 54, 131–142. CrossRef CAS PubMed Google Scholar
Singh, B., Chetia, D., Puri, S. K., Srivastava, K. & Prakash, A. (2011). Med. Chem. Res. 20, 1523–1529. CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sridevi, C. H., Balaji, K., Naidu, A. & Sudhakaran, R. (2010). E-J. Chem. 7, 524124. Google Scholar
Takahashi, K., Kaiya, T. & Kawazoe, Y. (1987). Mutat. Res./Genet. Toxicol. 187, 191–197. CrossRef CAS Google Scholar
Teja, R., Kapu, S., Kadiyala, S., Dhanapal, V. & Raman, A. N. (2016). J. Saudi Chem. Soc. 20, S387–S392. Web of Science CrossRef CAS Google Scholar
Upadhayaya, R. S., Vandavasi, J. K., Vasireddy, N. R., Sharma, V., Dixit, S. S. & Chattopadhyaya, J. (2009). Bioorg. Med. Chem. 17, 2830–2841. CrossRef PubMed CAS Google Scholar
Van Meervelt, L., Goethals, M., Leroux, N. & Zeegers-Huyskens, T. (1997). J. Phys. Org. Chem. 10, 680–686. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, H., Xue, Ch. & Huang, R.-Y. (2015). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 45, 1565–1569. CrossRef CAS Google Scholar
Yan, Y. K., Goh, N. K. & Khoo, L. E. (1998). Acta Cryst. C54, 1322–1324. CrossRef CAS IUCr Journals Google Scholar
Yang, F.-L., Chen, X., Wu, W.-H., Zhang, J.-H., Zhao, X.-M., Shi, Y.-H. & Shen, F. (2019). Dalton Trans. 48, 231–241. CrossRef CAS Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zeleke, D., Eswaramoorthy, R., Belay, Z. & Melaku, Y. (2020). J. Chem. 2020, 1324096. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.