research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 8-aza­niumylquinolinium tetra­chlorido­zincate(II)

crossmark logo

aTermez State University, Barkamol avlod street 43, Termez city, Uzbekistan, bTashkent Scientific Research Institute of Chemical Technology, Township Shura-bazar, District of Zangiata, Tashkent 111116, Uzbekistan, and cInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str. 83, Tashkent 700125, Uzbekistan
*Correspondence e-mail: ashurovjamshid1@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 7 August 2023; accepted 25 August 2023; online 30 August 2023)

The reaction of 8-amino­quinoline, zinc chloride and hydro­chloric acid in ethanol yielded the title salt, (C9H10N2)[ZnCl4], which consists of a planar 8-aza­n­ium­yl­quinolinium dication and a tetra­hedral tetra­chloro­zincate dianion. The 8-amino­quinoline moiety is protonated at both the amino and the ring N atoms. In the crystal, the cations and anions are connected by inter­molecular N—H⋯Cl and C—H⋯Cl hydrogen bonds, forming sheets parallel to (001). Adjacent sheets are linked through ππ inter­actions involving the pyridine and arene rings of the 8-aza­niumylquinolinium dication. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯Cl (48.1%), H⋯H (19.9%), H⋯C/C⋯H (14.3%) (involving the cations) and H⋯Cl (82.6%) (involving the anions) interactions.

1. Chemical context

Quinoline and its derivatives com­prise an important group of heterocyclic com­pounds that exhibit a wide range of pharmacological properties, such as anti­malarial (Shiraki et al., 2011[Shiraki, H., Kozar, M. P., Melendez, V., Hudson, T. H., Ohrt, C., Magill, A. J. & Lin, A. J. (2011). J. Med. Chem. 54, 131-142.]; Singh et al., 2011[Singh, B., Chetia, D., Puri, S. K., Srivastava, K. & Prakash, A. (2011). Med. Chem. Res. 20, 1523-1529.]; Murugan et al., 2022[Murugan, K., Panneerselvam, C., Subramaniam, J., Paulpandi, M., Rajaganesh, R., Vasanthakumaran, M., Madhavan, J., Shafi, S. S., Roni, M., Portilla-Pulido, J. S., Mendez, S. C., Duque, J. E., Wang, L., Aziz, A. T., Chandramohan, B., Dinesh, D., Piramanayagam, S. & Hwang, J.-S. (2022). Sci. Rep. 12, 4765.]), anti­bacterial (Upadhayaya et al., 2009[Upadhayaya, R. S., Vandavasi, J. K., Vasireddy, N. R., Sharma, V., Dixit, S. S. & Chattopadhyaya, J. (2009). Bioorg. Med. Chem. 17, 2830-2841.]; Zeleke et al., 2020[Zeleke, D., Eswaramoorthy, R., Belay, Z. & Melaku, Y. (2020). J. Chem. 2020, 1324096.]), anti­microbial (Teja et al., 2016[Teja, R., Kapu, S., Kadiyala, S., Dhanapal, V. & Raman, A. N. (2016). J. Saudi Chem. Soc. 20, S387-S392.]), anti-inflammatory (Guirado et al., 2012[Guirado, A., López Sánchez, J. I., Ruiz-Alcaraz, A. J., Bautista, D. & Gálvez, J. (2012). Eur. J. Med. Chem. 54, 87-94.]), anti­cancer (Abbas et al., 2015[Abbas, H. S., Al-Marhabi, A. R., Eissa, S. I. & Ammar, Y. A. (2015). Bioorg. Med. Chem. 23, 6560-6572.]), anti­diabetic (Kulkarni et al., 2012[Kulkarni, N. V., Revankar, V. K., Kirasur, B. N. & Hugar, M. H. (2012). Med. Chem. Res. 21, 663-671.]) and anti­histaminic activities (Sridevi et al., 2010[Sridevi, C. H., Balaji, K., Naidu, A. & Sudhakaran, R. (2010). E-J. Chem. 7, 524124.]). The quinoline moiety is found in many drugs and is useful in the rational design of novel bioactive mol­ecules in medicinal chemistry. The inter­est in 8-amino­quinoline, which contains functional groups commonly involved in hydrogen bonding, is related to its genotoxic activities, such as mutagenicity (Takahashi et al., 1987[Takahashi, K., Kaiya, T. & Kawazoe, Y. (1987). Mutat. Res./Genet. Toxicol. 187, 191-197.]), and to its unusually low proton-acceptor ability in solution. Quinolines are also strongly fluorescent and have been employed in the analytical study of heavy metals (Fritsch et al., 2006[Fritsch, J. M., Thoreson, K. A. & McNeill, K. (2006). Dalton Trans. pp. 4814-4820.]). They have also been used to prepare highly conducting copolymers (Li et al., 2005[Li, X.-G., Hua, Y.-M. & Huang, M.-R. (2005). Chem. Eur. J. 11, 4247-4256.]). As a ligand, 8-amino­quinoline usually binds in a bidentate fashion via the two N-atom positions (Setifi et al., 2016[Setifi, F., Moon, D., Koen, R., Setifi, Z., Lamsayah, M. & Touzani, R. (2016). Acta Cryst. E72, 1488-1491.]; Mao et al., 2018[Mao, R., Frey, A., Balon, J. & Hu, X. (2018). Nat. Catal. 1, 120-126.]; Yang et al., 2019[Yang, F.-L., Chen, X., Wu, W.-H., Zhang, J.-H., Zhao, X.-M., Shi, Y.-H. & Shen, F. (2019). Dalton Trans. 48, 231-241.]), although examples of bridging–binding modes are also known (Schmidbaur et al., 1991[Schmidbaur, H., Mair, A., Müller, G., Lachmann, J. & Gamper, S. (1991). Z. Naturforsch. Teil B, 46, 912-918.]). In addition, 8-amino­quinoline can form ππ stacking inter­actions with (other) aromatic rings, thus controlling the inter­growth of inter­penetrating networks (Khelfa et al., 2021[Khelfa, S., Touil, M., Setifi, Z., Setifi, F., Al-Douh, M. H. & Glidewell, C. (2021). IUCrData, 6, x210568.]; Rahmati et al., 2018[Rahmati, Z., Mirzaei, M., Chahkandi, M. & Mague, J. T. (2018). Inorg. Chim. Acta, 473, 152-159.]). Zinc, an essential com­ponent of life, is an abundant ion in living organisms (Andreini et al., 2006[Andreini, I., Banci, L., Bertini, I. & Rosato, A. (2006). J. Proteome Res. 5, 3173-3178.]; Cuajungco et al., 2021[Cuajungco, M. P., Ramirez, M. S. & Tolmasky, M. E. (2021). Biomedicines, 9, 208.]). A bioinformatics study found that over 50% of zinc-bound proteins are enzymes, and in the vast majority of them, the metal plays a catalytic role (Andreini & Bertini, 2012[Andreini, C. & Bertini, I. (2012). J. Inorg. Biochem. 111, 150-156.]). About 20% of them feature zinc as a structural com­ponent (Banci et al., 2002[Banci, L., Bertini, I., Ciofi-Baffoni, S., Finney, L. A., Outten, C. E. & O'Halloran, T. V. (2002). J. Mol. Biol. 323, 883-897.]; Andreini & Bertini, 2012[Andreini, C. & Bertini, I. (2012). J. Inorg. Biochem. 111, 150-156.]). Zinc com­plexes exhibit a wide range of coordination numbers and coordination spheres, with tetra­hedral (Ashurov et al., 2018[Ashurov, J. M., Ibragimov, A. B. & Ibragimov, B. T. (2018). IUCrData, 3, x181250.]; Petrus et al., 2020[Petrus, R., Chomiak, K., Utko, J., Wilk-Kozubek, M., Lis, T., Cybińska, J. & Sobota, P. (2020). Inorg. Chem. 59, 8108-8120.]) and octa­hedral (Ashurov et al., 2011[Ashurov, J., Karimova, G., Mukhamedov, N., Parpiev, N. A. & Ibragimov, B. (2011). Acta Cryst. E67, m432.]) environments being the most frequently observed.

[Scheme 1]

In the context given above, we report here the synthesis, crystal structure and Hirshfeld surface analysis of the organic–inorganic hybride salt (C9H10N2)[ZnCl4].

2. Structural commentary

The title salt crystallizes with one (C9H10N2)2+ dication and one [ZnCl4]2− dianion in the asymmetric unit (Fig. 1[link]). The cation consists of an 8-amino­quinoline moiety that is proton­ated at both the amino and the ring N atoms. Protonation of the amino group results in a lengthening of the C—N(sp3) bond from 1.377 (3) Å (sp2 N) in 8-amino­quinoline (Van Meervelt et al., 1997[Van Meervelt, L., Goethals, M., Leroux, N. & Zeegers-Huyskens, T. (1997). J. Phys. Org. Chem. 10, 680-686.]) to 1.464 (2) Å. This reflects the loss of the conjugation between the aromatic ring and the lone-pair electrons of the amino N atom when the latter is protonated. The quinoline ring system (atoms C1–C9/N2) is essentially planar; the r.m.s. deviation for the non-H atoms is 0.017 (2) Å, with a maximum deviation from the mean plane of 0.022 (2) Å for the C7 atom. The aza­niumyl N atom is almost coplanar with the quinoline plane, deviating from it by only 0.033 (2) Å. The coordination environment of the Zn atom in the [ZnCl4]2− dianion is slightly distorted tetra­hedral (τ4 = 0.91; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). The mean value of the Zn—Cl bond lengths of the [ZnCl4]2− anion is 2.279 Å, which is in good agreement with the literature value [2.268 (4) Å; Harrison, 2005[Harrison, W. T. A. (2005). Acta Cryst. E61, m1951-m1952.]]. The Cl—Zn—Cl bond angles in the dianion indicate distortions from a regular tetra­hedron (109.5°), with a spread of values between 103.058 (19) and 117.08 (2)°. The most acute angle of 103.058 (19)° within the tetra­chlorido­zincate dianion is sub­tended by atoms Cl1 and Cl4. These atoms are associated with the relatively long Zn—Cl bond lengths, which, in turn, are correlated with the most relevant inter­molecular inter­actions in the structure; atom Cl4 is involved in the shortest and most linear N—H⋯Cl hydrogen bond (see Section 3[link]) and thus represents the most distant ligand in the anion.

[Figure 1]
Figure 1
View of the asymmetric unit of the title salt, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius and hydrogen bonds are shown as dashed lines.

3. Supra­molecular features and Hirshfeld surface analysis

Each [ZnCl4]2− dianion is connected to four neighbouring organic cations through N—H⋯Cl and C—H⋯Cl inter­actions involving all the Cl atoms (Table 1[link]). Thus, the N1—H1A⋯Cl1, N2—H2⋯Cl4 and N1—H1C⋯Cl3ii hydrogen bonds generate R22(9) ring motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) and link the dications and anions into chains parallel to [100] (Fig. 2[link]). These chains are inter­connected by N1—H1B⋯Cl2i and C7— H7⋯Cl1iii hydrogen bonds, which generate R43(11) ring motifs, forming sheets parallel to (001) (Fig. 2[link]). In addition, the mol­ecules are linked by pairs of ππ inter­actions between the pyridine and arene rings of neighbouring dications. The mol­ecules stack along [001] to consolidate the triperiodic supra­molecular network (Fig. 3[link]). The relevant centroid-to-centroid distance for ππ stacking inter­action between Cg1 (the centroid of pyridine ring C5–C7/N2/C8/C9) and Cg2 (the centroid of arene ring C1–C4/C9/C8) is Cg1⋯Cg2i = 3.7784 (11) Å [symmetry code: (i) −x + 1, −y + 1, −z + 1], with a slippage of 1.613 Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1 0.88 (1) 2.31 (1) 3.1309 (16) 154 (2)
N1—H1B⋯Cl2i 0.89 (1) 2.39 (1) 3.1747 (17) 148 (2)
N1—H1C⋯Cl3ii 0.88 (2) 2.48 (2) 3.2415 (16) 145 (2)
N2—H2⋯Cl4 0.86 (2) 2.25 (2) 3.0958 (16) 166 (2)
C7—H7⋯Cl1iii 0.93 2.71 3.584 (2) 157
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-1, y, z]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The formation of N1—H1A⋯Cl1, N1—H1B⋯Cl2i, N1—H1C⋯Cl3ii, N2—H2⋯Cl4 and C7—H7⋯Cl1iii hydrogen bonds (dashed blue lines) in the crystal structure, leading to R22(9) and R43(11) graph-set motifs. The symmetry codes are as in Table 1[link].
[Figure 3]
Figure 3
The crystal packing viewed along [100]. N—H⋯Cl and C—H⋯Cl hydrogen bonds are shown as blue dashed lines, while the ππ stacking inter­actions are shown as red dashed lines.

The supra­molecular inter­actions were investigated qu­anti­tatively and visualized by Hirshfeld surface analysis per­form­ed with CrystalExplorer21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). It should be noted that the Hirshfeld surfaces and fingerprint plots were calculated separately for the 8-aza­niumyl­quino­lin­ium dication and the [ZnCl4]2− dianion. The respective acceptor and donor atoms showing strong N—H⋯Cl inter­molecular hydrogen bonds (for N1—H1A⋯Cl1, N1—H1B⋯Cl2i, N1—H1C⋯Cl3ii and N2—H2⋯Cl4) are indicated as bright-red spots on the Hirshfeld surface (Fig. 4[link]). Classical N—H⋯Cl hydrogen bonds correspond to H⋯Cl contacts [with contributions of 82.6 and 48.1% to the Hirshfeld surface for the [ZnCl4]2− dianion and 8-aza­niumylquinolinium dication, respectively; Figs. 5[link](f) and 5(b)]. These inter­actions can be seen as spikes with a sharp tip. H⋯H, H⋯C/C⋯H and C⋯C inter­actions in the dication, and C⋯Cl and Cl⋯Cl inter­actions in the dianion follow with contributions of 19.9, 14.3, 6.7, 7.4 and 5.4%, respectively (Fig. 5[link]). Other, minor, con­tributions are from C⋯Cl (6.4%), H⋯N/N⋯H (2.6%), H⋯Zn (0.7%), N⋯Cl (0.6%) and N⋯C/C⋯N (0.1%) contacts in the dication, and from Zn⋯Cl/Cl⋯Zn (1.7%), Zn⋯H (1.1%), N⋯Cl (1.0%) and Zn⋯C (0.8%) contacts in the dianion. The shape-index of the 8-aza­niumylquinolinium di­cation is a tool to visualize ππ stacking by the presence of adjacent red and blue triangles. Fig. 6[link] gives clear evidence that these inter­actions exist, as discussed above.

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface for the (C9H10N2)2+ dication and the [ZnCl4]2− dianion plotted over dnorm. Parts (a) and (b) show the front and back sides, respectively, of the (C9H10N2)2+ dication. Parts (c) and (d) show the front and back sides, respectively, of the [ZnCl4]2− dianion.
[Figure 5]
Figure 5
Two-dimensional Hirshfeld surface fingerprint plots for the (C9H10N2)2+ dication [panels (a), (b), (c) and (d)] and the [ZnCl4]2− dianion [panels (e), (f), (g) and (h)]. The di and de values are the closest inter­nal and external distances (in Å) from a given point on the Hirshfeld surface.
[Figure 6]
Figure 6
The Hirshfeld surface of the (C9H10N2)2+ dication plotted over shape-index.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 2022.3.0; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 114 com­pounds involving the 8-amino­quinoline moiety. Among them, 65 are metal com­plexes and 20 are organic salts and cocrystals. In all of these metal com­plexes, 8-amino­quinoline coordinates in a bidentate fashion, although there are examples of bridging–binding (CSD refcode VIZBIP; Schmidbaur et al., 1991[Schmidbaur, H., Mair, A., Müller, G., Lachmann, J. & Gamper, S. (1991). Z. Naturforsch. Teil B, 46, 912-918.]) and monodentate (MUDNEG; Xu et al., 2015[Xu, H., Xue, Ch. & Huang, R.-Y. (2015). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 45, 1565-1569.]) modes. Only in the structure of 8-aza­niumylquinolinium dichloride (PENHAR; Yan et al., 1998[Yan, Y. K., Goh, N. K. & Khoo, L. E. (1998). Acta Cryst. C54, 1322-1324.]) are both the amino group and the ring N atom protonated.

5. Synthesis and crystallization

Commercially available starting materials were used without further purification. 8-Amino­quinoline (0.144 g, 1 mmol) was dissolved in 10 ml of an ethanol/HCl mixture (9:1 v/v) and added to a solution of ZnCl2 (0.136 g, 1 mmol) in 10 ml of the same ethanol/HCl mixed solvent. The mixture was heated under reflux and stirred for 30 min. A pale-yellow crystalline product was obtained at room temperature after 6 d by slow solvent evaporation [yield: 80%; elemental analysis calculated (%) for C9H10Cl4N2Zn: C 30.59, H 2.85, N 7.93; found: C 30.43, H 2.79, N 7.89].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were placed in calculated positions and refined using the riding-model approximation, with Uiso(H) = 1.2Ueq(C) and C—H = 0.93 Å for aromatic H atoms. Both the amino and the ring N-bound H atoms were located in a difference Fourier map and refined with bond-length restraints of 0.89 (1) and 0.86 (1) Å, res­pectively.

Table 2
Experimental details

Crystal data
Chemical formula (C9H10N2)[ZnCl4]
Mr 353.36
Crystal system, space group Monoclinic, P21/n
Temperature (K) 566
a, b, c (Å) 7.52646 (6), 13.40703 (12), 12.65801 (11)
β (°) 92.8635 (8)
V3) 1275.69 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 10.16
Crystal size (mm) 0.24 × 0.21 × 0.15
 
Data collection
Diffractometer Rigaku XtaLAB Synergy single source diffractometer with a HyPix3000 detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.491, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11239, 2474, 2341
Rint 0.037
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.065, 1.06
No. of reflections 2474
No. of parameters 162
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.28
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2020); cell refinement: CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

8-Azaniumylquinolinium tetrachloridozincate(II) top
Crystal data top
(C9H10N2)[ZnCl4]F(000) = 704
Mr = 353.36Dx = 1.840 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 7.52646 (6) ÅCell parameters from 8253 reflections
b = 13.40703 (12) Åθ = 3.3–71.4°
c = 12.65801 (11) ŵ = 10.16 mm1
β = 92.8635 (8)°T = 566 K
V = 1275.69 (2) Å3Block, pale yellow
Z = 40.24 × 0.21 × 0.15 mm
Data collection top
Rigaku XtaLAB Synergy single source
diffractometer with a HyPix3000 detector
2474 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2341 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 10.0000 pixels mm-1θmax = 71.4°, θmin = 4.8°
ω scansh = 97
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2020)
k = 1616
Tmin = 0.491, Tmax = 1.000l = 1515
11239 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0362P)2 + 0.3283P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.32 e Å3
2474 reflectionsΔρmin = 0.28 e Å3
162 parametersExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
4 restraintsExtinction coefficient: 0.00359 (19)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.92145 (3)0.41694 (2)0.17409 (2)0.02862 (11)
Cl40.66523 (6)0.36967 (4)0.07893 (3)0.03361 (13)
Cl10.84550 (6)0.56627 (3)0.24448 (4)0.03547 (13)
Cl20.95542 (7)0.31035 (3)0.31521 (4)0.03674 (14)
Cl31.16765 (6)0.41294 (4)0.08236 (4)0.03691 (14)
N20.4715 (2)0.39322 (11)0.28755 (12)0.0269 (3)
N10.4398 (2)0.58098 (12)0.17865 (12)0.0296 (4)
C10.3676 (2)0.56492 (13)0.28262 (13)0.0245 (4)
C80.3848 (2)0.47086 (13)0.33164 (13)0.0228 (3)
C90.3120 (2)0.45601 (14)0.43180 (14)0.0275 (4)
C40.2233 (2)0.53608 (16)0.47875 (15)0.0340 (4)
H40.1731750.5269500.5437240.041*
C20.2837 (2)0.64101 (14)0.33141 (16)0.0320 (4)
H2A0.2748300.7032010.2990330.038*
C70.4940 (3)0.30526 (14)0.33447 (16)0.0335 (4)
H70.5568340.2552960.3016340.040*
C50.3326 (3)0.36147 (16)0.47933 (15)0.0357 (4)
H50.2828640.3493070.5438800.043*
C60.4245 (3)0.28736 (16)0.43198 (17)0.0391 (5)
H60.4402940.2257110.4647970.047*
C30.2103 (3)0.62624 (16)0.43029 (16)0.0367 (5)
H30.1526430.6785330.4625860.044*
H1A0.5529 (15)0.5639 (17)0.179 (2)0.042 (7)*
H1B0.434 (3)0.6446 (9)0.160 (2)0.056 (8)*
H1C0.381 (3)0.5492 (16)0.1272 (14)0.039 (6)*
H20.518 (3)0.3968 (17)0.2270 (11)0.040 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02863 (16)0.02727 (16)0.03004 (16)0.00008 (9)0.00209 (11)0.00273 (9)
Cl40.0300 (2)0.0444 (3)0.0265 (2)0.00244 (18)0.00214 (17)0.00831 (18)
Cl10.0422 (3)0.0237 (2)0.0402 (3)0.00109 (18)0.0005 (2)0.00495 (17)
Cl20.0478 (3)0.0272 (2)0.0354 (2)0.00672 (19)0.0037 (2)0.00296 (17)
Cl30.0301 (2)0.0450 (3)0.0360 (3)0.00615 (18)0.00597 (19)0.00603 (19)
N20.0301 (8)0.0249 (7)0.0258 (7)0.0017 (6)0.0042 (6)0.0003 (6)
N10.0371 (9)0.0273 (9)0.0244 (8)0.0017 (7)0.0025 (7)0.0033 (6)
C10.0261 (8)0.0257 (8)0.0216 (8)0.0030 (7)0.0006 (7)0.0003 (6)
C80.0233 (8)0.0249 (9)0.0203 (8)0.0030 (7)0.0001 (6)0.0014 (6)
C90.0261 (8)0.0333 (10)0.0231 (8)0.0076 (7)0.0009 (7)0.0000 (7)
C40.0305 (9)0.0469 (12)0.0250 (9)0.0049 (8)0.0058 (7)0.0074 (8)
C20.0340 (10)0.0265 (9)0.0352 (10)0.0004 (7)0.0006 (8)0.0025 (7)
C70.0315 (10)0.0242 (9)0.0445 (11)0.0002 (7)0.0007 (8)0.0014 (8)
C50.0367 (10)0.0440 (11)0.0266 (9)0.0092 (9)0.0020 (8)0.0100 (8)
C60.0394 (11)0.0345 (10)0.0428 (11)0.0054 (9)0.0041 (9)0.0161 (9)
C30.0337 (10)0.0391 (11)0.0376 (11)0.0012 (8)0.0053 (8)0.0129 (9)
Geometric parameters (Å, º) top
Zn1—Cl42.3108 (5)C8—C91.420 (2)
Zn1—Cl12.2759 (5)C9—C41.411 (3)
Zn1—Cl22.2919 (5)C9—C51.408 (3)
Zn1—Cl32.2360 (5)C4—H40.9300
N2—C81.362 (2)C4—C31.357 (3)
N2—C71.327 (2)C2—H2A0.9300
N2—H20.860 (10)C2—C31.407 (3)
N1—C11.464 (2)C7—H70.9300
N1—H1A0.882 (10)C7—C61.385 (3)
N1—H1B0.884 (10)C5—H50.9300
N1—H1C0.877 (10)C5—C61.366 (3)
C1—C81.409 (2)C6—H60.9300
C1—C21.364 (3)C3—H30.9300
Cl1—Zn1—Cl4103.058 (19)C4—C9—C8118.77 (17)
Cl1—Zn1—Cl2105.30 (2)C5—C9—C8117.93 (18)
Cl2—Zn1—Cl4107.04 (2)C5—C9—C4123.31 (17)
Cl3—Zn1—Cl4114.479 (19)C9—C4—H4119.6
Cl3—Zn1—Cl1117.08 (2)C3—C4—C9120.82 (18)
Cl3—Zn1—Cl2109.07 (2)C3—C4—H4119.6
C8—N2—H2123.2 (16)C1—C2—H2A119.7
C7—N2—C8123.26 (16)C1—C2—C3120.58 (18)
C7—N2—H2113.6 (16)C3—C2—H2A119.7
C1—N1—H1A111.1 (17)N2—C7—H7119.8
C1—N1—H1B111.1 (18)N2—C7—C6120.47 (18)
C1—N1—H1C113.6 (16)C6—C7—H7119.8
H1A—N1—H1B107 (2)C9—C5—H5119.5
H1A—N1—H1C109 (2)C6—C5—C9120.96 (18)
H1B—N1—H1C105 (2)C6—C5—H5119.5
C8—C1—N1119.84 (15)C7—C6—H6120.4
C2—C1—N1119.86 (16)C5—C6—C7119.13 (18)
C2—C1—C8120.31 (17)C5—C6—H6120.4
N2—C8—C1122.61 (15)C4—C3—C2120.33 (18)
N2—C8—C9118.20 (16)C4—C3—H3119.8
C1—C8—C9119.18 (16)C2—C3—H3119.8
N2—C8—C9—C4179.45 (15)C8—C9—C4—C31.2 (3)
N2—C8—C9—C50.5 (2)C8—C9—C5—C62.0 (3)
N2—C7—C6—C50.0 (3)C9—C4—C3—C20.7 (3)
N1—C1—C8—N21.9 (2)C9—C5—C6—C71.8 (3)
N1—C1—C8—C9179.12 (16)C4—C9—C5—C6177.92 (18)
N1—C1—C2—C3178.65 (17)C2—C1—C8—N2178.25 (16)
C1—C8—C9—C40.5 (2)C2—C1—C8—C90.7 (3)
C1—C8—C9—C5179.45 (16)C7—N2—C8—C1177.61 (17)
C1—C2—C3—C40.5 (3)C7—N2—C8—C91.3 (3)
C8—N2—C7—C61.6 (3)C5—C9—C4—C3178.74 (18)
C8—C1—C2—C31.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.88 (1)2.31 (1)3.1309 (16)154 (2)
N1—H1B···Cl2i0.89 (1)2.39 (1)3.1747 (17)148 (2)
N1—H1C···Cl3ii0.88 (2)2.48 (2)3.2415 (16)145 (2)
N2—H2···Cl40.86 (2)2.25 (2)3.0958 (16)166 (2)
C7—H7···Cl1iii0.932.713.584 (2)157
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Uzbekistan government for direct financial support of this research. A Grant for Fundamental Research from the Center of Science and Technology of Uzbekistan is gratefully acknowledged.

References

First citationAbbas, H. S., Al-Marhabi, A. R., Eissa, S. I. & Ammar, Y. A. (2015). Bioorg. Med. Chem. 23, 6560–6572.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAndreini, C. & Bertini, I. (2012). J. Inorg. Biochem. 111, 150–156.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAndreini, I., Banci, L., Bertini, I. & Rosato, A. (2006). J. Proteome Res. 5, 3173–3178.  CrossRef PubMed CAS Google Scholar
First citationAshurov, J., Karimova, G., Mukhamedov, N., Parpiev, N. A. & Ibragimov, B. (2011). Acta Cryst. E67, m432.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAshurov, J. M., Ibragimov, A. B. & Ibragimov, B. T. (2018). IUCrData, 3, x181250.  Google Scholar
First citationBanci, L., Bertini, I., Ciofi-Baffoni, S., Finney, L. A., Outten, C. E. & O'Halloran, T. V. (2002). J. Mol. Biol. 323, 883–897.  CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCuajungco, M. P., Ramirez, M. S. & Tolmasky, M. E. (2021). Biomedicines, 9, 208.  CrossRef PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFritsch, J. M., Thoreson, K. A. & McNeill, K. (2006). Dalton Trans. pp. 4814–4820.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuirado, A., López Sánchez, J. I., Ruiz-Alcaraz, A. J., Bautista, D. & Gálvez, J. (2012). Eur. J. Med. Chem. 54, 87–94.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHarrison, W. T. A. (2005). Acta Cryst. E61, m1951–m1952.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKhelfa, S., Touil, M., Setifi, Z., Setifi, F., Al-Douh, M. H. & Glidewell, C. (2021). IUCrData, 6, x210568.  Google Scholar
First citationKulkarni, N. V., Revankar, V. K., Kirasur, B. N. & Hugar, M. H. (2012). Med. Chem. Res. 21, 663–671.  Web of Science CrossRef CAS Google Scholar
First citationLi, X.-G., Hua, Y.-M. & Huang, M.-R. (2005). Chem. Eur. J. 11, 4247–4256.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMao, R., Frey, A., Balon, J. & Hu, X. (2018). Nat. Catal. 1, 120–126.  CrossRef CAS Google Scholar
First citationMurugan, K., Panneerselvam, C., Subramaniam, J., Paulpandi, M., Rajaganesh, R., Vasanthakumaran, M., Madhavan, J., Shafi, S. S., Roni, M., Portilla-Pulido, J. S., Mendez, S. C., Duque, J. E., Wang, L., Aziz, A. T., Chandramohan, B., Dinesh, D., Piramanayagam, S. & Hwang, J.-S. (2022). Sci. Rep. 12, 4765.  CrossRef PubMed Google Scholar
First citationPetrus, R., Chomiak, K., Utko, J., Wilk-Kozubek, M., Lis, T., Cybińska, J. & Sobota, P. (2020). Inorg. Chem. 59, 8108–8120.  CrossRef CAS PubMed Google Scholar
First citationRahmati, Z., Mirzaei, M., Chahkandi, M. & Mague, J. T. (2018). Inorg. Chim. Acta, 473, 152–159.  CrossRef CAS Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSchmidbaur, H., Mair, A., Müller, G., Lachmann, J. & Gamper, S. (1991). Z. Naturforsch. Teil B, 46, 912–918.  CrossRef CAS Google Scholar
First citationSetifi, F., Moon, D., Koen, R., Setifi, Z., Lamsayah, M. & Touzani, R. (2016). Acta Cryst. E72, 1488–1491.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShiraki, H., Kozar, M. P., Melendez, V., Hudson, T. H., Ohrt, C., Magill, A. J. & Lin, A. J. (2011). J. Med. Chem. 54, 131–142.  CrossRef CAS PubMed Google Scholar
First citationSingh, B., Chetia, D., Puri, S. K., Srivastava, K. & Prakash, A. (2011). Med. Chem. Res. 20, 1523–1529.  CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridevi, C. H., Balaji, K., Naidu, A. & Sudhakaran, R. (2010). E-J. Chem. 7, 524124.  Google Scholar
First citationTakahashi, K., Kaiya, T. & Kawazoe, Y. (1987). Mutat. Res./Genet. Toxicol. 187, 191–197.  CrossRef CAS Google Scholar
First citationTeja, R., Kapu, S., Kadiyala, S., Dhanapal, V. & Raman, A. N. (2016). J. Saudi Chem. Soc. 20, S387–S392.  Web of Science CrossRef CAS Google Scholar
First citationUpadhayaya, R. S., Vandavasi, J. K., Vasireddy, N. R., Sharma, V., Dixit, S. S. & Chattopadhyaya, J. (2009). Bioorg. Med. Chem. 17, 2830–2841.  CrossRef PubMed CAS Google Scholar
First citationVan Meervelt, L., Goethals, M., Leroux, N. & Zeegers-Huyskens, T. (1997). J. Phys. Org. Chem. 10, 680–686.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H., Xue, Ch. & Huang, R.-Y. (2015). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 45, 1565–1569.  CrossRef CAS Google Scholar
First citationYan, Y. K., Goh, N. K. & Khoo, L. E. (1998). Acta Cryst. C54, 1322–1324.  CrossRef CAS IUCr Journals Google Scholar
First citationYang, F.-L., Chen, X., Wu, W.-H., Zhang, J.-H., Zhao, X.-M., Shi, Y.-H. & Shen, F. (2019). Dalton Trans. 48, 231–241.  CrossRef CAS Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZeleke, D., Eswaramoorthy, R., Belay, Z. & Melaku, Y. (2020). J. Chem. 2020, 1324096.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds