research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-{[5-(methyl­sulfan­yl)-4-phenyl-4H-1,2,4-triazol-3-yl]meth­yl}benzo[d]thia­zole

crossmark logo

aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-braunschweig.de

Edited by C. Schulzke, Universität Greifswald, Germany (Received 3 July 2023; accepted 8 August 2023; online 23 August 2023)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

In the structure of the title compound, C17H14N4O2, the triazole ring exhibits inter­planar angles of 63.86 (2) and 76.96 (2)° with the phenyl and benzo­thia­zole planes, respectively. The C—C—C angle at the methyl­ene group is rather wide at 114.28 (4)°. The packing involves three borderline C—H⋯N contacts, two of which combine to form layers parallel to ac, and a pairing of the triazole rings across an inversion centre [inter­planar distance of 3.1852 (2) Å].

1. Chemical context

Benzo­thia­zoles and their derivatives are among the most important heterocyclic compounds in medicinal chemistry and are essential to many natural products and therapeutic preparations (Bonde et al., 2015[Bonde, C., Vedala, D. & Bonde, S. (2015). J. Pharm. Res. 9, 573-580.]). The derivatives involve a wide range of structural variants (Rana et al., 2008[Rana, A., Siddiqui, N., Khan, S. A., Ehtaishamul Haque, S. & Bhat, M. A. (2008). Eur. J. Med. Chem. 43, 1114-1122.]), and their pharmacological qualities are reflected in the extensive hunt for new therapeutically active compounds (Wang et al., 2009[Wang, X., Sarris, K., Kage, K., Zhang, D., Brown, S. P., Kolasa, T., Surowy, C., El Kouhen, O. F., Muchmore, S. W., Brioni, J. D. & Stewart, A. O. (2009). J. Med. Chem. 52, 170-180.]), which represents a rapidly developing research area (Abdallah et al., 2023a[Abdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2023a). Acta Cryst. E79, 441-445.],b[Abdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2023b). Acta Cryst. E79, 504-507.]; Ammazzalorso et al., 2020[Ammazzalorso, A., Carradori, S., Amoroso, R. & Fernández, I. F. (2020). Eur. J. Med. Chem. 207, 112762.]; Gill et al., 2015[Gill, R. K., Rawal, R. K. & Bariwal, J. (2015). Arch. Pharm. Chem. Life Sci. 348, 155-178.]). In particular, several substances based on benzo­thia­zole derivatives have been adapted and/or further developed for clinical practice to treat a wide range of diseases with great therapeutic efficacy (Huang et al., 2009[Huang, Q., Mao, J., Wan, B., Wang, Y., Brun, R., Franzblau, S. G. & Kozikowski, A. P. (2009). J. Med. Chem. 52, 6757-6767.]; Seenaiah et al., 2014[Seenaiah, D., Reddy, P. R., Reddy, G. M., Padmaja, A., Padmavathi, V. & Siva krishna, N. (2014). Eur. J. Med. Chem. 77, 1-7.]).

As part of our development of synthetic methods for the preparation of benzo­thia­zole-based heterocycles and other pharmaceutically inter­esting heterocycles (Ahmed et al., 2022[Ahmed, E. A., Elgemeie, G. H. & Ahmed, K. A. (2022). Pigm. Resin Technol. 51, 1-5.]; Yakout et al., 1999[Yakout, E. M. A., Allam, Y. A. & Nawwar, G. A. M. (1999). Hetero­atom Chem. 10, 177-182.]), we recently described the synthesis and biological activity of a series of 2-pyrimidyl- and 2-pyridyl-benzo­thia­zole derivatives with encouraging cytotoxic activity (Azzam et al. 2020a[Azzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020a). ACS Omega, 5, 26182-26194.],b[Azzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020b). ACS Omega, 5, 1640-1655.],c[Azzam, R. A., Elgemeie, G. H. & Osman, R. R. (2020c). J. Mol. Struct. 1201, 127194.], 2022a[Azzam, R. A., Elgemeie, G. H., Elsayed, R. E., Gad, N. M. & Jones, P. G. (2022a). Acta Cryst. E78, 369-372.],b[Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2022b). Antibiotics, 11, 1799.]).

[Scheme 1]

As a continuation of this programme, related to our recent results (Elgemeie et al., 2020[Elgemeie, G. H., Azzam, R. A. & Osman, R. R. (2020). Inorg. Chim. Acta, 502, 119302.], 2022[Elgemeie, G. H., Azzam, R. A., Zaghary, W. A., Khedr, M. A. & Elsherif, G. E. (2022). Curr. Pharm. Des. 28, 3374-3403.]; Metwally et al., 2022a[Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2022a). Acta Cryst. E78, 445-448.],b[Metwally, N. H., Elgemeie, G. H. & Fahmy, F. G. (2022b). Egypt. J. Chem. 65, 679-686.]), the purpose of the present study was to design and synthesize benzo­thia­zolyl-triazole hybrids. The synthesis of our target benzo­thia­zole-2-triazole derivative 5 was achieved by reacting the 2-benzo­thia­zolyl acetohydrazide 1 with phenyl iso­thio­cyanate 2 in the presence of sodium ethoxide, followed by addition of methyl iodide to give 5 in good yield (Fig. 1[link]). The formation of 5 is assumed to proceed via initial formation of adduct 4, with subsequent elimination of water. In order to establish the structure of the product unambiguously, its crystal structure was determined and is reported here.

[Figure 1]
Figure 1
Reaction scheme for the synthesis of 5.

2. Structural commentary

The structure of compound 5 is shown in Fig. 2[link]. Bond lengths and angles may be generally regarded as normal; e.g. the two S2—C bond lengths differ appreciably, reflecting the different hybridizations of C10 and C11. One exception may be the angle C2—C8—C9 at the methyl­ene group, which is rather wide at 114.28 (4)° (see below). A selection, mostly involving the heteroatoms, is presented in Table 1[link]. The triazole ring subtends inter­planar angles of 63.86 (2) and 76.96 (2)° with the phenyl and benzo­thia­zole planes, respectively. The intra­molecular distance S1⋯N1 is 3.4819 (5) Å, far too long to represent any significant inter­action, in contrast to the value of 2.7570 (8) Å that we recently observed for the intra­molecular S⋯Nimine contact in N-[3-(benzo[d]thia­zol-2-yl)-6-bromo-2H-chromen-2-yl­idene]-4-methyl­benzenamine (Abdallah et al., 2023a[Abdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2023a). Acta Cryst. E79, 441-445.]).

Table 1
Selected geometric parameters (Å, °)

S1—C7A 1.7334 (5) N2—C10 1.3150 (6)
S1—C2 1.7503 (5) N3—C2 1.2973 (6)
S2—C10 1.7418 (5) N3—C3A 1.3905 (7)
S2—C11 1.8063 (6) N4—C10 1.3716 (6)
N1—C9 1.3094 (6) N4—C9 1.3754 (6)
N1—N2 1.3968 (6)    
       
C7A—S1—C2 88.86 (2) C10—N4—C9 104.30 (4)
C10—S2—C11 98.33 (3) N3—C2—S1 116.30 (4)
C9—N1—N2 107.60 (4) C9—C8—C2 114.28 (4)
C10—N2—N1 106.63 (4) N1—C9—N4 110.51 (4)
C2—N3—C3A 110.40 (4) N2—C10—N4 110.97 (4)
[Figure 2]
Figure 2
The mol­ecule of compound 5 in the crystal. Ellipsoids represent 50% probability levels.

3. Supra­molecular features

The mol­ecular packing displays few significant features. There are three borderline C—H⋯N inter­actions (Table 2[link]), two of which (the first and third in Table 2[link]) connect the mol­ecules by translation to form thick layers parallel to the ac plane (Fig. 3[link]). The triazole rings are associated in pairs (presumably representing a ππ inter­action) via the operator 1 − x, −y, 1 − z, with inter­centroid, inter­planar and offset distances of 3.3222 (3), 3.1852 (2) and 0.94 Å, respectively. This feature is reinforced by the other C—H⋯N inter­action, which involves the same operator.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯N3i 0.98 2.68 3.3610 (8) 127
C13—H13⋯N1ii 0.95 2.68 3.3609 (6) 129
C14—H14⋯N2iii 0.95 2.67 3.3431 (6) 129
Symmetry codes: (i) [x, y, z-1]; (ii) [-x+1, -y, -z+1]; (iii) [x-1, y, z].
[Figure 3]
Figure 3
Packing diagram of compound 5, showing the layer structure parallel to ac in the region y ≃ 0.25. Thick dashed bonds represent `weak' C—H⋯N hydrogen bonds. The labelled atoms indicate the asymmetric unit.

4. Database survey

The searches employed the routine ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), part of Version 2022.3.0 of the Cambridge Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

Only one other structure containing both a triazole and a benzo[d]thia­zole ring system was found, namely 2-(6-phenyl-7H-1,2,4-triazolo[3,4-b]-[1,3,4]thia­diazin-3-yl)-1,3-benzo­thia­zole (refcode AZUYEU; Abdel-Aziz et al., 2011[Abdel-Aziz, H. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2610.]). This, however, contains a further heterocycle fused to the triazole ring.

To see if the C—C—C angle at the methyl­ene group of 5 is unusually wide, a search was performed for all structures with two five-membered rings connected across a methyl­ene group; the one restriction was that both of the outer carbon atoms should be three-coordinated. This led (excluding a few clear outliers) to 445 values in the range 106–122°, with a mean value of 114 (5)°. However, restricting one ring to be a C2-substituted thia­zole gave only three hits, with four values of 109.6–112.9° for the angle at the methyl­ene groups. These all involved two planar ring systems of the benzo[d]thia­zole type, but with different heteroatoms in some cases (HANSIB and HANSOH, Dauer et al., 2017[Dauer, D.-R., Koehne, I., Herbst-Irmer, R. & Stalke, D. (2017). Eur. J. Inorg. Chem. pp. 1966-1978.]; KONTAK, Dauer & Stalke, 2014[Dauer, D.-R. & Stalke, D. (2014). Dalton Trans. 43, 14432-14439.]).

5. Synthesis and crystallization

A mixture of 2-benzo­thia­zolyl acetohydrazide 1 (0.01 mol) and phenyl iso­thio­cyanate 2 (0.01 mol) was stirred for 30 min in ethanol (25 mL) in the presence of sodium ethoxide (0.01 mol). After cooling, methyl iodide (0.015 mol) was added. The reaction mixture was stirred for 30 min at room temperature, then refluxed for 1 h. The resulting precipitate was filtered off, washed with water, dried, and recrystallized from ethanol. The title compound was isolated as a white solid; yield 75%; m.p. 429 K; IR (KBr, cm−1): ν 3053 (Ar—CH), 2928 (aliphatic H), 1594 (C=N); 1H NMR (400 MHz, DMSO-d6): δ 2.60 (s, 3H, SCH3), 4.57 (s, 2H, CH2), 7.36–7.50 (m, 7H, 5 Ar-H and 2 benzo­thia­zole-H), 7.89 (d, J = 8.0 Hz, 1H, benzo­thia­zole-H), 8.01 (d, J = 8.0 Hz, 1H, benzo­thia­zole-H); Analysis calculated for C17H14N4S2 (338.45): C 60.33, H 4.17, N 16.55, S 18.95. Found C 60.66; H 4.15; N 16.40; S 18.90%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The methyl group was included as an idealized rigid group allowed to rotate but not tip (C—H = 0.98 Å, H—C—H = 109.5°). Other hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic = 0.95 Å, C—Hmethyl­ene = 0.99 Å). The U(H) values were fixed at 1.5 × Ueq of the parent carbon atoms for the methyl group and 1.2 × Ueq for other hydrogens.

Table 3
Experimental details

Crystal data
Chemical formula C17H14N4S2
Mr 338.44
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.9714 (2), 9.3564 (3), 10.4969 (2)
α, β, γ (°) 94.088 (2), 105.954 (2), 107.393 (2)
V3) 797.05 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.34
Crystal size (mm) 0.17 × 0.12 × 0.10
 
Data collection
Diffractometer XtaLAB Synergy
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.859, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 102462, 10466, 9289
Rint 0.033
(sin θ/λ)max−1) 0.927
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.086, 1.04
No. of reflections 10466
No. of parameters 209
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.66, −0.25
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.41.122a (Rigaku OD, 2021); cell refinement: CrysAlis PRO 1.171.41.122a (Rigaku OD, 2021); data reduction: CrysAlis PRO 1.171.41.122a (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/3 (Sheldrick, 2015b); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2019/3 (Sheldrick, 2015b).

2-{[5-(Methylsulfanyl)-4-phenyl-4H-1,2,4-triazol-3-yl]methyl}benzo[d]thiazole top
Crystal data top
C17H14N4S2Z = 2
Mr = 338.44F(000) = 352
Triclinic, P1Dx = 1.410 Mg m3
a = 8.9714 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3564 (3) ÅCell parameters from 69237 reflections
c = 10.4969 (2) Åθ = 2.3–41.4°
α = 94.088 (2)°µ = 0.34 mm1
β = 105.954 (2)°T = 100 K
γ = 107.393 (2)°Tablet, colourless
V = 797.05 (3) Å30.17 × 0.12 × 0.10 mm
Data collection top
XtaLAB Synergy
diffractometer
10466 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source9289 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 10.0000 pixels mm-1θmax = 41.2°, θmin = 2.1°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
k = 1717
Tmin = 0.859, Tmax = 1.000l = 1919
102462 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.0903P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
10466 reflectionsΔρmax = 0.66 e Å3
209 parametersΔρmin = 0.25 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 0.6560 (0.0019) x - 4.9080 (0.0018) y + 9.3027 (0.0011) z = 3.1483 (0.0010)

* -0.0006 (0.0003) C12 * 0.0030 (0.0004) C13 * -0.0029 (0.0004) C14 * 0.0003 (0.0004) C15 * 0.0021 (0.0004) C16 * -0.0019 (0.0003) C17 0.0217 (0.0007) N4

Rms deviation of fitted atoms = 0.0021

2.6765 (0.0019) x + 7.5840 (0.0013) y - 0.9757 (0.0024) z = 2.4430 (0.0013)

Angle to previous plane (with approximate esd) = 63.863 ( 0.019 )

* -0.0001 (0.0003) N1 * 0.0018 (0.0003) N2 * 0.0025 (0.0002) N4 * -0.0014 (0.0003) C9 * -0.0027 (0.0003) C10 -0.0058 (0.0008) C8 -0.0865 (0.0007) C12 0.0346 (0.0007) S2

Rms deviation of fitted atoms = 0.0019

5.3893 (0.0012) x - 6.3624 (0.0008) y + 5.1564 (0.0013) z = 5.5973 (0.0010)

Angle to previous plane (with approximate esd) = 76.957 ( 0.014 )

* -0.0079 (0.0003) S1 * 0.0083 (0.0003) C2 * -0.0011 (0.0004) N3 * 0.0009 (0.0004) C3A * -0.0081 (0.0005) C4 * 0.0025 (0.0005) C5 * 0.0038 (0.0005) C6 * -0.0013 (0.0004) C7 * 0.0028 (0.0004) C7A 0.0979 (0.0006) C8

Rms deviation of fitted atoms = 0.0050

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.86054 (2)0.48129 (2)0.77843 (2)0.01557 (3)
S20.40521 (2)0.21180 (2)0.21857 (2)0.01692 (3)
N10.69326 (5)0.14743 (5)0.54398 (4)0.01461 (6)
N20.64593 (5)0.14656 (5)0.40548 (4)0.01439 (6)
N30.65416 (5)0.41599 (5)0.91486 (4)0.01501 (6)
N40.47354 (4)0.21828 (4)0.48932 (4)0.01123 (5)
C20.68997 (5)0.36293 (5)0.81379 (5)0.01319 (6)
C3A0.76637 (6)0.55937 (6)0.97489 (5)0.01493 (7)
C40.76214 (7)0.64760 (7)1.08644 (6)0.02094 (9)
H40.6785500.6117651.1270620.025*
C50.88296 (8)0.78864 (7)1.13624 (6)0.02484 (10)
H50.8827440.8493561.2126440.030*
C61.00541 (8)0.84304 (7)1.07564 (7)0.02362 (10)
H61.0865090.9401731.1115820.028*
C71.01035 (7)0.75745 (6)0.96388 (6)0.02010 (9)
H71.0928930.7948300.9225350.024*
C7A0.88963 (6)0.61445 (5)0.91440 (5)0.01491 (7)
C80.59619 (6)0.20550 (5)0.73494 (5)0.01490 (7)
H8A0.6475690.1338270.7780090.018*
H8B0.4824210.1757520.7394600.018*
C90.58961 (5)0.18991 (5)0.59118 (5)0.01228 (6)
C100.51471 (5)0.18851 (5)0.37612 (5)0.01212 (6)
C110.54143 (10)0.18497 (8)0.12746 (7)0.02628 (11)
H11A0.5007300.2007750.0347120.039*
H11B0.5455400.0814700.1273320.039*
H11C0.6519200.2581210.1709080.039*
C120.33320 (5)0.25713 (5)0.49752 (5)0.01169 (6)
C130.17638 (6)0.15400 (5)0.43243 (6)0.01604 (7)
H130.1624220.0596760.3823570.019*
C140.04025 (6)0.19174 (6)0.44212 (6)0.01850 (8)
H140.0675110.1231720.3976830.022*
C150.06206 (6)0.32983 (6)0.51686 (6)0.01743 (8)
H150.0309500.3548110.5235840.021*
C160.21950 (6)0.43126 (6)0.58166 (5)0.01627 (7)
H160.2335220.5250980.6325750.020*
C170.35680 (6)0.39572 (5)0.57216 (5)0.01364 (7)
H170.4645020.4648130.6158210.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01412 (5)0.01676 (5)0.01501 (5)0.00285 (4)0.00577 (4)0.00253 (4)
S20.01817 (5)0.01874 (5)0.01337 (5)0.00661 (4)0.00344 (4)0.00346 (4)
N10.01107 (13)0.01546 (14)0.01739 (16)0.00585 (11)0.00320 (12)0.00174 (12)
N20.01163 (13)0.01526 (14)0.01706 (16)0.00536 (11)0.00506 (12)0.00130 (12)
N30.01422 (14)0.01645 (15)0.01332 (15)0.00367 (12)0.00428 (12)0.00227 (12)
N40.00944 (12)0.01239 (13)0.01242 (14)0.00476 (10)0.00313 (10)0.00170 (10)
C20.01226 (15)0.01421 (15)0.01189 (15)0.00350 (12)0.00266 (12)0.00293 (12)
C3A0.01476 (16)0.01592 (16)0.01294 (16)0.00514 (13)0.00257 (13)0.00182 (13)
C40.0226 (2)0.0228 (2)0.01640 (19)0.00840 (18)0.00479 (17)0.00129 (16)
C50.0265 (2)0.0221 (2)0.0212 (2)0.00883 (19)0.00129 (19)0.00446 (18)
C60.0222 (2)0.01629 (19)0.0242 (2)0.00439 (17)0.00227 (18)0.00112 (17)
C70.01646 (18)0.01581 (18)0.0226 (2)0.00197 (14)0.00139 (16)0.00295 (16)
C7A0.01367 (16)0.01456 (16)0.01459 (17)0.00406 (13)0.00200 (13)0.00291 (13)
C80.01522 (16)0.01389 (15)0.01334 (16)0.00301 (13)0.00283 (13)0.00258 (12)
C90.01024 (14)0.01221 (14)0.01353 (16)0.00399 (11)0.00216 (12)0.00169 (12)
C100.01095 (14)0.01190 (14)0.01336 (16)0.00363 (11)0.00398 (12)0.00119 (12)
C110.0363 (3)0.0289 (3)0.0200 (2)0.0127 (2)0.0159 (2)0.00653 (19)
C120.00982 (13)0.01180 (14)0.01430 (16)0.00444 (11)0.00418 (12)0.00211 (12)
C130.01030 (14)0.01344 (16)0.0229 (2)0.00391 (12)0.00377 (14)0.00030 (14)
C140.01035 (15)0.01583 (17)0.0290 (2)0.00453 (13)0.00582 (15)0.00189 (16)
C150.01381 (16)0.01674 (17)0.0259 (2)0.00773 (14)0.00937 (16)0.00506 (15)
C160.01628 (17)0.01471 (16)0.0206 (2)0.00720 (14)0.00803 (15)0.00189 (14)
C170.01255 (15)0.01250 (15)0.01612 (17)0.00444 (12)0.00489 (13)0.00105 (12)
Geometric parameters (Å, º) top
S1—C7A1.7334 (5)C12—C171.3928 (6)
S1—C21.7503 (5)C12—C131.3940 (6)
S2—C101.7418 (5)C13—C141.3955 (7)
S2—C111.8063 (6)C14—C151.3939 (7)
N1—C91.3094 (6)C15—C161.3917 (7)
N1—N21.3968 (6)C16—C171.3948 (6)
N2—C101.3150 (6)C4—H40.9500
N3—C21.2973 (6)C5—H50.9500
N3—C3A1.3905 (7)C6—H60.9500
N4—C101.3716 (6)C7—H70.9500
N4—C91.3754 (6)C8—H8A0.9900
N4—C121.4330 (5)C8—H8B0.9900
C2—C81.5050 (7)C11—H11A0.9800
C3A—C41.3997 (7)C11—H11B0.9800
C3A—C7A1.4084 (7)C11—H11C0.9800
C4—C51.3873 (9)C13—H130.9500
C5—C61.4023 (10)C14—H140.9500
C6—C71.3912 (9)C15—H150.9500
C7—C7A1.3994 (7)C16—H160.9500
C8—C91.4887 (7)C17—H170.9500
C7A—S1—C288.86 (2)C16—C15—C14120.28 (4)
C10—S2—C1198.33 (3)C15—C16—C17120.28 (4)
C9—N1—N2107.60 (4)C12—C17—C16118.83 (4)
C10—N2—N1106.63 (4)C5—C4—H4120.8
C2—N3—C3A110.40 (4)C3A—C4—H4120.8
C10—N4—C9104.30 (4)C4—C5—H5119.5
C10—N4—C12127.66 (4)C6—C5—H5119.5
C9—N4—C12127.84 (4)C7—C6—H6119.4
N3—C2—C8122.28 (4)C5—C6—H6119.4
N3—C2—S1116.30 (4)C6—C7—H7121.1
C8—C2—S1121.35 (3)C7A—C7—H7121.1
N3—C3A—C4124.68 (5)C9—C8—H8A108.7
N3—C3A—C7A115.00 (4)C2—C8—H8A108.7
C4—C3A—C7A120.32 (5)C9—C8—H8B108.7
C5—C4—C3A118.40 (6)C2—C8—H8B108.7
C4—C5—C6121.08 (6)H8A—C8—H8B107.6
C7—C6—C5121.24 (5)S2—C11—H11A109.5
C6—C7—C7A117.76 (5)S2—C11—H11B109.5
C7—C7A—C3A121.20 (5)H11A—C11—H11B109.5
C7—C7A—S1129.37 (4)S2—C11—H11C109.5
C3A—C7A—S1109.43 (3)H11A—C11—H11C109.5
C9—C8—C2114.28 (4)H11B—C11—H11C109.5
N1—C9—N4110.51 (4)C12—C13—H13120.6
N1—C9—C8124.86 (4)C14—C13—H13120.6
N4—C9—C8124.63 (4)C15—C14—H14119.9
N2—C10—N4110.97 (4)C13—C14—H14119.9
N2—C10—S2126.93 (4)C16—C15—H15119.9
N4—C10—S2122.07 (3)C14—C15—H15119.9
C17—C12—C13121.63 (4)C15—C16—H16119.9
C17—C12—N4119.25 (4)C17—C16—H16119.9
C13—C12—N4119.12 (4)C12—C17—H17120.6
C12—C13—C14118.84 (4)C16—C17—H17120.6
C15—C14—C13120.14 (5)
C9—N1—N2—C100.19 (5)C12—N4—C9—N1175.49 (4)
C3A—N3—C2—C8175.98 (4)C10—N4—C9—C8179.64 (4)
C3A—N3—C2—S11.04 (5)C12—N4—C9—C84.54 (7)
C7A—S1—C2—N31.07 (4)C2—C8—C9—N193.15 (6)
C7A—S1—C2—C8175.98 (4)C2—C8—C9—N486.82 (5)
C2—N3—C3A—C4179.97 (5)N1—N2—C10—N40.44 (5)
C2—N3—C3A—C7A0.43 (6)N1—N2—C10—S2178.46 (3)
N3—C3A—C4—C5179.66 (5)C9—N4—C10—N20.51 (5)
C7A—C3A—C4—C50.82 (8)C12—N4—C10—N2175.63 (4)
C3A—C4—C5—C60.86 (9)C9—N4—C10—S2178.64 (3)
C4—C5—C6—C70.20 (10)C12—N4—C10—S26.24 (6)
C5—C6—C7—C7A0.49 (9)C11—S2—C10—N26.70 (5)
C6—C7—C7A—C3A0.52 (8)C11—S2—C10—N4171.12 (4)
C6—C7—C7A—S1179.73 (4)C10—N4—C12—C17119.71 (5)
N3—C3A—C7A—C7179.70 (5)C9—N4—C12—C1766.28 (6)
C4—C3A—C7A—C70.13 (8)C10—N4—C12—C1361.39 (6)
N3—C3A—C7A—S10.35 (5)C9—N4—C12—C13112.62 (5)
C4—C3A—C7A—S1179.22 (4)C17—C12—C13—C140.38 (8)
C2—S1—C7A—C7179.99 (5)N4—C12—C13—C14179.25 (5)
C2—S1—C7A—C3A0.73 (4)C12—C13—C14—C150.59 (8)
N3—C2—C8—C9149.86 (5)C13—C14—C15—C160.35 (9)
S1—C2—C8—C933.27 (6)C14—C15—C16—C170.12 (8)
N2—N1—C9—N40.13 (5)C13—C12—C17—C160.08 (7)
N2—N1—C9—C8179.90 (4)N4—C12—C17—C16178.79 (4)
C10—N4—C9—N10.39 (5)C15—C16—C17—C120.33 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···N3i0.982.683.3610 (8)127
C13—H13···N1ii0.952.683.3609 (6)129
C14—H14···N2iii0.952.673.3431 (6)129
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+1; (iii) x1, y, z.
 

Acknowledgements

The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

References

First citationAbdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2023a). Acta Cryst. E79, 441–445.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAbdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2023b). Acta Cryst. E79, 504–507.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAbdel-Aziz, H. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2610.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhmed, E. A., Elgemeie, G. H. & Ahmed, K. A. (2022). Pigm. Resin Technol. 51, 1–5.  Web of Science CrossRef CAS Google Scholar
First citationAmmazzalorso, A., Carradori, S., Amoroso, R. & Fernández, I. F. (2020). Eur. J. Med. Chem. 207, 112762.  Web of Science CrossRef PubMed Google Scholar
First citationAzzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2022b). Antibiotics, 11, 1799.  Web of Science CrossRef PubMed Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Elsayed, R. E., Gad, N. M. & Jones, P. G. (2022a). Acta Cryst. E78, 369–372.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elgemeie, G. H. & Osman, R. R. (2020c). J. Mol. Struct. 1201, 127194.  Web of Science CSD CrossRef Google Scholar
First citationAzzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020a). ACS Omega, 5, 26182–26194.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAzzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020b). ACS Omega, 5, 1640–1655.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBonde, C., Vedala, D. & Bonde, S. (2015). J. Pharm. Res. 9, 573–580.  CAS Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDauer, D.-R., Koehne, I., Herbst-Irmer, R. & Stalke, D. (2017). Eur. J. Inorg. Chem. pp. 1966–1978.  Web of Science CSD CrossRef Google Scholar
First citationDauer, D.-R. & Stalke, D. (2014). Dalton Trans. 43, 14432–14439.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationElgemeie, G. H., Azzam, R. A. & Osman, R. R. (2020). Inorg. Chim. Acta, 502, 119302.  Web of Science CrossRef Google Scholar
First citationElgemeie, G. H., Azzam, R. A., Zaghary, W. A., Khedr, M. A. & Elsherif, G. E. (2022). Curr. Pharm. Des. 28, 3374–3403.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGill, R. K., Rawal, R. K. & Bariwal, J. (2015). Arch. Pharm. Chem. Life Sci. 348, 155–178.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuang, Q., Mao, J., Wan, B., Wang, Y., Brun, R., Franzblau, S. G. & Kozikowski, A. P. (2009). J. Med. Chem. 52, 6757–6767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMetwally, N. H., Elgemeie, G. H. & Fahmy, F. G. (2022b). Egypt. J. Chem. 65, 679–686.  Google Scholar
First citationMetwally, N. H., Elgemeie, G. H. & Jones, P. G. (2022a). Acta Cryst. E78, 445–448.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRana, A., Siddiqui, N., Khan, S. A., Ehtaishamul Haque, S. & Bhat, M. A. (2008). Eur. J. Med. Chem. 43, 1114–1122.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSeenaiah, D., Reddy, P. R., Reddy, G. M., Padmaja, A., Padmavathi, V. & Siva krishna, N. (2014). Eur. J. Med. Chem. 77, 1–7.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA.  Google Scholar
First citationWang, X., Sarris, K., Kage, K., Zhang, D., Brown, S. P., Kolasa, T., Surowy, C., El Kouhen, O. F., Muchmore, S. W., Brioni, J. D. & Stewart, A. O. (2009). J. Med. Chem. 52, 170–180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYakout, E. M. A., Allam, Y. A. & Nawwar, G. A. M. (1999). Hetero­atom Chem. 10, 177–182.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds