research communications
H-1,2,4-triazol-3-yl]methyl}benzo[d]thiazole
of 2-{[5-(methylsulfanyl)-4-phenyl-4aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-braunschweig.de
This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.
In the structure of the title compound, C17H14N4O2, the triazole ring exhibits interplanar angles of 63.86 (2) and 76.96 (2)° with the phenyl and benzothiazole planes, respectively. The C—C—C angle at the methylene group is rather wide at 114.28 (4)°. The packing involves three borderline C—H⋯N contacts, two of which combine to form layers parallel to ac, and a pairing of the triazole rings across an inversion centre [interplanar distance of 3.1852 (2) Å].
Keywords: crystal structure; triazole; benzothiazole; thioether.
CCDC reference: 2287438
1. Chemical context
Benzothiazoles and their derivatives are among the most important et al., 2015). The derivatives involve a wide range of structural variants (Rana et al., 2008), and their pharmacological qualities are reflected in the extensive hunt for new therapeutically active compounds (Wang et al., 2009), which represents a rapidly developing research area (Abdallah et al., 2023a,b; Ammazzalorso et al., 2020; Gill et al., 2015). In particular, several substances based on benzothiazole derivatives have been adapted and/or further developed for clinical practice to treat a wide range of diseases with great therapeutic efficacy (Huang et al., 2009; Seenaiah et al., 2014).
in medicinal chemistry and are essential to many natural products and therapeutic preparations (BondeAs part of our development of synthetic methods for the preparation of benzothiazole-based heterocycles and other pharmaceutically interesting heterocycles (Ahmed et al., 2022; Yakout et al., 1999), we recently described the synthesis and biological activity of a series of 2-pyrimidyl- and 2-pyridyl-benzothiazole derivatives with encouraging cytotoxic activity (Azzam et al. 2020a,b,c, 2022a,b).
As a continuation of this programme, related to our recent results (Elgemeie et al., 2020, 2022; Metwally et al., 2022a,b), the purpose of the present study was to design and synthesize benzothiazolyl-triazole hybrids. The synthesis of our target benzothiazole-2-triazole derivative 5 was achieved by reacting the 2-benzothiazolyl acetohydrazide 1 with phenyl isothiocyanate 2 in the presence of sodium ethoxide, followed by addition of methyl iodide to give 5 in good yield (Fig. 1). The formation of 5 is assumed to proceed via initial formation of adduct 4, with subsequent elimination of water. In order to establish the structure of the product unambiguously, its was determined and is reported here.
2. Structural commentary
The structure of compound 5 is shown in Fig. 2. Bond lengths and angles may be generally regarded as normal; e.g. the two S2—C bond lengths differ appreciably, reflecting the different hybridizations of C10 and C11. One exception may be the angle C2—C8—C9 at the methylene group, which is rather wide at 114.28 (4)° (see below). A selection, mostly involving the heteroatoms, is presented in Table 1. The triazole ring subtends interplanar angles of 63.86 (2) and 76.96 (2)° with the phenyl and benzothiazole planes, respectively. The intramolecular distance S1⋯N1 is 3.4819 (5) Å, far too long to represent any significant interaction, in contrast to the value of 2.7570 (8) Å that we recently observed for the intramolecular S⋯Nimine contact in N-[3-(benzo[d]thiazol-2-yl)-6-bromo-2H-chromen-2-ylidene]-4-methylbenzenamine (Abdallah et al., 2023a).
|
3. Supramolecular features
The molecular packing displays few significant features. There are three borderline C—H⋯N interactions (Table 2), two of which (the first and third in Table 2) connect the molecules by translation to form thick layers parallel to the ac plane (Fig. 3). The triazole rings are associated in pairs (presumably representing a π–π interaction) via the operator 1 − x, −y, 1 − z, with intercentroid, interplanar and offset distances of 3.3222 (3), 3.1852 (2) and 0.94 Å, respectively. This feature is reinforced by the other C—H⋯N interaction, which involves the same operator.
4. Database survey
The searches employed the routine ConQuest (Bruno et al., 2002), part of Version 2022.3.0 of the Cambridge Database (Groom et al., 2016).
Only one other structure containing both a triazole and a benzo[d]thiazole ring system was found, namely 2-(6-phenyl-7H-1,2,4-triazolo[3,4-b]-[1,3,4]thiadiazin-3-yl)-1,3-benzothiazole (refcode AZUYEU; Abdel-Aziz et al., 2011). This, however, contains a further heterocycle fused to the triazole ring.
To see if the C—C—C angle at the methylene group of 5 is unusually wide, a search was performed for all structures with two five-membered rings connected across a methylene group; the one restriction was that both of the outer carbon atoms should be three-coordinated. This led (excluding a few clear outliers) to 445 values in the range 106–122°, with a mean value of 114 (5)°. However, restricting one ring to be a C2-substituted thiazole gave only three hits, with four values of 109.6–112.9° for the angle at the methylene groups. These all involved two planar ring systems of the benzo[d]thiazole type, but with different heteroatoms in some cases (HANSIB and HANSOH, Dauer et al., 2017; KONTAK, Dauer & Stalke, 2014).
5. Synthesis and crystallization
A mixture of 2-benzothiazolyl acetohydrazide 1 (0.01 mol) and phenyl isothiocyanate 2 (0.01 mol) was stirred for 30 min in ethanol (25 mL) in the presence of sodium ethoxide (0.01 mol). After cooling, methyl iodide (0.015 mol) was added. The reaction mixture was stirred for 30 min at room temperature, then refluxed for 1 h. The resulting precipitate was filtered off, washed with water, dried, and recrystallized from ethanol. The title compound was isolated as a white solid; yield 75%; m.p. 429 K; IR (KBr, cm−1): ν 3053 (Ar—CH), 2928 (aliphatic H), 1594 (C=N); 1H NMR (400 MHz, DMSO-d6): δ 2.60 (s, 3H, SCH3), 4.57 (s, 2H, CH2), 7.36–7.50 (m, 7H, 5 Ar-H and 2 benzothiazole-H), 7.89 (d, J = 8.0 Hz, 1H, benzothiazole-H), 8.01 (d, J = 8.0 Hz, 1H, benzothiazole-H); Analysis calculated for C17H14N4S2 (338.45): C 60.33, H 4.17, N 16.55, S 18.95. Found C 60.66; H 4.15; N 16.40; S 18.90%.
6. Refinement
Crystal data, data collection and structure . The methyl group was included as an idealized rigid group allowed to rotate but not tip (C—H = 0.98 Å, H—C—H = 109.5°). Other hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic = 0.95 Å, C—Hmethylene = 0.99 Å). The U(H) values were fixed at 1.5 × Ueq of the parent carbon atoms for the methyl group and 1.2 × Ueq for other hydrogens.
details are summarized in Table 3Supporting information
CCDC reference: 2287438
https://doi.org/10.1107/S2056989023007041/yz2038sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023007041/yz2038Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989023007041/yz2038Isup3.cml
Data collection: CrysAlis PRO 1.171.41.122a (Rigaku OD, 2021); cell
CrysAlis PRO 1.171.41.122a (Rigaku OD, 2021); data reduction: CrysAlis PRO 1.171.41.122a (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/3 (Sheldrick, 2015b); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2019/3 (Sheldrick, 2015b).C17H14N4S2 | Z = 2 |
Mr = 338.44 | F(000) = 352 |
Triclinic, P1 | Dx = 1.410 Mg m−3 |
a = 8.9714 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.3564 (3) Å | Cell parameters from 69237 reflections |
c = 10.4969 (2) Å | θ = 2.3–41.4° |
α = 94.088 (2)° | µ = 0.34 mm−1 |
β = 105.954 (2)° | T = 100 K |
γ = 107.393 (2)° | Tablet, colourless |
V = 797.05 (3) Å3 | 0.17 × 0.12 × 0.10 mm |
XtaLAB Synergy diffractometer | 10466 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source | 9289 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.033 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 41.2°, θmin = 2.1° |
ω scans | h = −16→16 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | k = −17→17 |
Tmin = 0.859, Tmax = 1.000 | l = −19→19 |
102462 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.086 | w = 1/[σ2(Fo2) + (0.0528P)2 + 0.0903P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
10466 reflections | Δρmax = 0.66 e Å−3 |
209 parameters | Δρmin = −0.25 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) - 0.6560 (0.0019) x - 4.9080 (0.0018) y + 9.3027 (0.0011) z = 3.1483 (0.0010) * -0.0006 (0.0003) C12 * 0.0030 (0.0004) C13 * -0.0029 (0.0004) C14 * 0.0003 (0.0004) C15 * 0.0021 (0.0004) C16 * -0.0019 (0.0003) C17 0.0217 (0.0007) N4 Rms deviation of fitted atoms = 0.0021 2.6765 (0.0019) x + 7.5840 (0.0013) y - 0.9757 (0.0024) z = 2.4430 (0.0013) Angle to previous plane (with approximate esd) = 63.863 ( 0.019 ) * -0.0001 (0.0003) N1 * 0.0018 (0.0003) N2 * 0.0025 (0.0002) N4 * -0.0014 (0.0003) C9 * -0.0027 (0.0003) C10 -0.0058 (0.0008) C8 -0.0865 (0.0007) C12 0.0346 (0.0007) S2 Rms deviation of fitted atoms = 0.0019 5.3893 (0.0012) x - 6.3624 (0.0008) y + 5.1564 (0.0013) z = 5.5973 (0.0010) Angle to previous plane (with approximate esd) = 76.957 ( 0.014 ) * -0.0079 (0.0003) S1 * 0.0083 (0.0003) C2 * -0.0011 (0.0004) N3 * 0.0009 (0.0004) C3A * -0.0081 (0.0005) C4 * 0.0025 (0.0005) C5 * 0.0038 (0.0005) C6 * -0.0013 (0.0004) C7 * 0.0028 (0.0004) C7A 0.0979 (0.0006) C8 Rms deviation of fitted atoms = 0.0050 |
x | y | z | Uiso*/Ueq | ||
S1 | 0.86054 (2) | 0.48129 (2) | 0.77843 (2) | 0.01557 (3) | |
S2 | 0.40521 (2) | 0.21180 (2) | 0.21857 (2) | 0.01692 (3) | |
N1 | 0.69326 (5) | 0.14743 (5) | 0.54398 (4) | 0.01461 (6) | |
N2 | 0.64593 (5) | 0.14656 (5) | 0.40548 (4) | 0.01439 (6) | |
N3 | 0.65416 (5) | 0.41599 (5) | 0.91486 (4) | 0.01501 (6) | |
N4 | 0.47354 (4) | 0.21828 (4) | 0.48932 (4) | 0.01123 (5) | |
C2 | 0.68997 (5) | 0.36293 (5) | 0.81379 (5) | 0.01319 (6) | |
C3A | 0.76637 (6) | 0.55937 (6) | 0.97489 (5) | 0.01493 (7) | |
C4 | 0.76214 (7) | 0.64760 (7) | 1.08644 (6) | 0.02094 (9) | |
H4 | 0.678550 | 0.611765 | 1.127062 | 0.025* | |
C5 | 0.88296 (8) | 0.78864 (7) | 1.13624 (6) | 0.02484 (10) | |
H5 | 0.882744 | 0.849356 | 1.212644 | 0.030* | |
C6 | 1.00541 (8) | 0.84304 (7) | 1.07564 (7) | 0.02362 (10) | |
H6 | 1.086509 | 0.940173 | 1.111582 | 0.028* | |
C7 | 1.01035 (7) | 0.75745 (6) | 0.96388 (6) | 0.02010 (9) | |
H7 | 1.092893 | 0.794830 | 0.922535 | 0.024* | |
C7A | 0.88963 (6) | 0.61445 (5) | 0.91440 (5) | 0.01491 (7) | |
C8 | 0.59619 (6) | 0.20550 (5) | 0.73494 (5) | 0.01490 (7) | |
H8A | 0.647569 | 0.133827 | 0.778009 | 0.018* | |
H8B | 0.482421 | 0.175752 | 0.739460 | 0.018* | |
C9 | 0.58961 (5) | 0.18991 (5) | 0.59118 (5) | 0.01228 (6) | |
C10 | 0.51471 (5) | 0.18851 (5) | 0.37612 (5) | 0.01212 (6) | |
C11 | 0.54143 (10) | 0.18497 (8) | 0.12746 (7) | 0.02628 (11) | |
H11A | 0.500730 | 0.200775 | 0.034712 | 0.039* | |
H11B | 0.545540 | 0.081470 | 0.127332 | 0.039* | |
H11C | 0.651920 | 0.258121 | 0.170908 | 0.039* | |
C12 | 0.33320 (5) | 0.25713 (5) | 0.49752 (5) | 0.01169 (6) | |
C13 | 0.17638 (6) | 0.15400 (5) | 0.43243 (6) | 0.01604 (7) | |
H13 | 0.162422 | 0.059676 | 0.382357 | 0.019* | |
C14 | 0.04025 (6) | 0.19174 (6) | 0.44212 (6) | 0.01850 (8) | |
H14 | −0.067511 | 0.123172 | 0.397683 | 0.022* | |
C15 | 0.06206 (6) | 0.32983 (6) | 0.51686 (6) | 0.01743 (8) | |
H15 | −0.030950 | 0.354811 | 0.523584 | 0.021* | |
C16 | 0.21950 (6) | 0.43126 (6) | 0.58166 (5) | 0.01627 (7) | |
H16 | 0.233522 | 0.525098 | 0.632575 | 0.020* | |
C17 | 0.35680 (6) | 0.39572 (5) | 0.57216 (5) | 0.01364 (7) | |
H17 | 0.464502 | 0.464813 | 0.615821 | 0.016* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01412 (5) | 0.01676 (5) | 0.01501 (5) | 0.00285 (4) | 0.00577 (4) | 0.00253 (4) |
S2 | 0.01817 (5) | 0.01874 (5) | 0.01337 (5) | 0.00661 (4) | 0.00344 (4) | 0.00346 (4) |
N1 | 0.01107 (13) | 0.01546 (14) | 0.01739 (16) | 0.00585 (11) | 0.00320 (12) | 0.00174 (12) |
N2 | 0.01163 (13) | 0.01526 (14) | 0.01706 (16) | 0.00536 (11) | 0.00506 (12) | 0.00130 (12) |
N3 | 0.01422 (14) | 0.01645 (15) | 0.01332 (15) | 0.00367 (12) | 0.00428 (12) | 0.00227 (12) |
N4 | 0.00944 (12) | 0.01239 (13) | 0.01242 (14) | 0.00476 (10) | 0.00313 (10) | 0.00170 (10) |
C2 | 0.01226 (15) | 0.01421 (15) | 0.01189 (15) | 0.00350 (12) | 0.00266 (12) | 0.00293 (12) |
C3A | 0.01476 (16) | 0.01592 (16) | 0.01294 (16) | 0.00514 (13) | 0.00257 (13) | 0.00182 (13) |
C4 | 0.0226 (2) | 0.0228 (2) | 0.01640 (19) | 0.00840 (18) | 0.00479 (17) | −0.00129 (16) |
C5 | 0.0265 (2) | 0.0221 (2) | 0.0212 (2) | 0.00883 (19) | 0.00129 (19) | −0.00446 (18) |
C6 | 0.0222 (2) | 0.01629 (19) | 0.0242 (2) | 0.00439 (17) | −0.00227 (18) | −0.00112 (17) |
C7 | 0.01646 (18) | 0.01581 (18) | 0.0226 (2) | 0.00197 (14) | 0.00139 (16) | 0.00295 (16) |
C7A | 0.01367 (16) | 0.01456 (16) | 0.01459 (17) | 0.00406 (13) | 0.00200 (13) | 0.00291 (13) |
C8 | 0.01522 (16) | 0.01389 (15) | 0.01334 (16) | 0.00301 (13) | 0.00283 (13) | 0.00258 (12) |
C9 | 0.01024 (14) | 0.01221 (14) | 0.01353 (16) | 0.00399 (11) | 0.00216 (12) | 0.00169 (12) |
C10 | 0.01095 (14) | 0.01190 (14) | 0.01336 (16) | 0.00363 (11) | 0.00398 (12) | 0.00119 (12) |
C11 | 0.0363 (3) | 0.0289 (3) | 0.0200 (2) | 0.0127 (2) | 0.0159 (2) | 0.00653 (19) |
C12 | 0.00982 (13) | 0.01180 (14) | 0.01430 (16) | 0.00444 (11) | 0.00418 (12) | 0.00211 (12) |
C13 | 0.01030 (14) | 0.01344 (16) | 0.0229 (2) | 0.00391 (12) | 0.00377 (14) | −0.00030 (14) |
C14 | 0.01035 (15) | 0.01583 (17) | 0.0290 (2) | 0.00453 (13) | 0.00582 (15) | 0.00189 (16) |
C15 | 0.01381 (16) | 0.01674 (17) | 0.0259 (2) | 0.00773 (14) | 0.00937 (16) | 0.00506 (15) |
C16 | 0.01628 (17) | 0.01471 (16) | 0.0206 (2) | 0.00720 (14) | 0.00803 (15) | 0.00189 (14) |
C17 | 0.01255 (15) | 0.01250 (15) | 0.01612 (17) | 0.00444 (12) | 0.00489 (13) | 0.00105 (12) |
S1—C7A | 1.7334 (5) | C12—C17 | 1.3928 (6) |
S1—C2 | 1.7503 (5) | C12—C13 | 1.3940 (6) |
S2—C10 | 1.7418 (5) | C13—C14 | 1.3955 (7) |
S2—C11 | 1.8063 (6) | C14—C15 | 1.3939 (7) |
N1—C9 | 1.3094 (6) | C15—C16 | 1.3917 (7) |
N1—N2 | 1.3968 (6) | C16—C17 | 1.3948 (6) |
N2—C10 | 1.3150 (6) | C4—H4 | 0.9500 |
N3—C2 | 1.2973 (6) | C5—H5 | 0.9500 |
N3—C3A | 1.3905 (7) | C6—H6 | 0.9500 |
N4—C10 | 1.3716 (6) | C7—H7 | 0.9500 |
N4—C9 | 1.3754 (6) | C8—H8A | 0.9900 |
N4—C12 | 1.4330 (5) | C8—H8B | 0.9900 |
C2—C8 | 1.5050 (7) | C11—H11A | 0.9800 |
C3A—C4 | 1.3997 (7) | C11—H11B | 0.9800 |
C3A—C7A | 1.4084 (7) | C11—H11C | 0.9800 |
C4—C5 | 1.3873 (9) | C13—H13 | 0.9500 |
C5—C6 | 1.4023 (10) | C14—H14 | 0.9500 |
C6—C7 | 1.3912 (9) | C15—H15 | 0.9500 |
C7—C7A | 1.3994 (7) | C16—H16 | 0.9500 |
C8—C9 | 1.4887 (7) | C17—H17 | 0.9500 |
C7A—S1—C2 | 88.86 (2) | C16—C15—C14 | 120.28 (4) |
C10—S2—C11 | 98.33 (3) | C15—C16—C17 | 120.28 (4) |
C9—N1—N2 | 107.60 (4) | C12—C17—C16 | 118.83 (4) |
C10—N2—N1 | 106.63 (4) | C5—C4—H4 | 120.8 |
C2—N3—C3A | 110.40 (4) | C3A—C4—H4 | 120.8 |
C10—N4—C9 | 104.30 (4) | C4—C5—H5 | 119.5 |
C10—N4—C12 | 127.66 (4) | C6—C5—H5 | 119.5 |
C9—N4—C12 | 127.84 (4) | C7—C6—H6 | 119.4 |
N3—C2—C8 | 122.28 (4) | C5—C6—H6 | 119.4 |
N3—C2—S1 | 116.30 (4) | C6—C7—H7 | 121.1 |
C8—C2—S1 | 121.35 (3) | C7A—C7—H7 | 121.1 |
N3—C3A—C4 | 124.68 (5) | C9—C8—H8A | 108.7 |
N3—C3A—C7A | 115.00 (4) | C2—C8—H8A | 108.7 |
C4—C3A—C7A | 120.32 (5) | C9—C8—H8B | 108.7 |
C5—C4—C3A | 118.40 (6) | C2—C8—H8B | 108.7 |
C4—C5—C6 | 121.08 (6) | H8A—C8—H8B | 107.6 |
C7—C6—C5 | 121.24 (5) | S2—C11—H11A | 109.5 |
C6—C7—C7A | 117.76 (5) | S2—C11—H11B | 109.5 |
C7—C7A—C3A | 121.20 (5) | H11A—C11—H11B | 109.5 |
C7—C7A—S1 | 129.37 (4) | S2—C11—H11C | 109.5 |
C3A—C7A—S1 | 109.43 (3) | H11A—C11—H11C | 109.5 |
C9—C8—C2 | 114.28 (4) | H11B—C11—H11C | 109.5 |
N1—C9—N4 | 110.51 (4) | C12—C13—H13 | 120.6 |
N1—C9—C8 | 124.86 (4) | C14—C13—H13 | 120.6 |
N4—C9—C8 | 124.63 (4) | C15—C14—H14 | 119.9 |
N2—C10—N4 | 110.97 (4) | C13—C14—H14 | 119.9 |
N2—C10—S2 | 126.93 (4) | C16—C15—H15 | 119.9 |
N4—C10—S2 | 122.07 (3) | C14—C15—H15 | 119.9 |
C17—C12—C13 | 121.63 (4) | C15—C16—H16 | 119.9 |
C17—C12—N4 | 119.25 (4) | C17—C16—H16 | 119.9 |
C13—C12—N4 | 119.12 (4) | C12—C17—H17 | 120.6 |
C12—C13—C14 | 118.84 (4) | C16—C17—H17 | 120.6 |
C15—C14—C13 | 120.14 (5) | ||
C9—N1—N2—C10 | −0.19 (5) | C12—N4—C9—N1 | 175.49 (4) |
C3A—N3—C2—C8 | 175.98 (4) | C10—N4—C9—C8 | −179.64 (4) |
C3A—N3—C2—S1 | −1.04 (5) | C12—N4—C9—C8 | −4.54 (7) |
C7A—S1—C2—N3 | 1.07 (4) | C2—C8—C9—N1 | 93.15 (6) |
C7A—S1—C2—C8 | −175.98 (4) | C2—C8—C9—N4 | −86.82 (5) |
C2—N3—C3A—C4 | 179.97 (5) | N1—N2—C10—N4 | 0.44 (5) |
C2—N3—C3A—C7A | 0.43 (6) | N1—N2—C10—S2 | 178.46 (3) |
N3—C3A—C4—C5 | 179.66 (5) | C9—N4—C10—N2 | −0.51 (5) |
C7A—C3A—C4—C5 | −0.82 (8) | C12—N4—C10—N2 | −175.63 (4) |
C3A—C4—C5—C6 | 0.86 (9) | C9—N4—C10—S2 | −178.64 (3) |
C4—C5—C6—C7 | −0.20 (10) | C12—N4—C10—S2 | 6.24 (6) |
C5—C6—C7—C7A | −0.49 (9) | C11—S2—C10—N2 | −6.70 (5) |
C6—C7—C7A—C3A | 0.52 (8) | C11—S2—C10—N4 | 171.12 (4) |
C6—C7—C7A—S1 | 179.73 (4) | C10—N4—C12—C17 | −119.71 (5) |
N3—C3A—C7A—C7 | 179.70 (5) | C9—N4—C12—C17 | 66.28 (6) |
C4—C3A—C7A—C7 | 0.13 (8) | C10—N4—C12—C13 | 61.39 (6) |
N3—C3A—C7A—S1 | 0.35 (5) | C9—N4—C12—C13 | −112.62 (5) |
C4—C3A—C7A—S1 | −179.22 (4) | C17—C12—C13—C14 | 0.38 (8) |
C2—S1—C7A—C7 | 179.99 (5) | N4—C12—C13—C14 | 179.25 (5) |
C2—S1—C7A—C3A | −0.73 (4) | C12—C13—C14—C15 | −0.59 (8) |
N3—C2—C8—C9 | 149.86 (5) | C13—C14—C15—C16 | 0.35 (9) |
S1—C2—C8—C9 | −33.27 (6) | C14—C15—C16—C17 | 0.12 (8) |
N2—N1—C9—N4 | −0.13 (5) | C13—C12—C17—C16 | 0.08 (7) |
N2—N1—C9—C8 | 179.90 (4) | N4—C12—C17—C16 | −178.79 (4) |
C10—N4—C9—N1 | 0.39 (5) | C15—C16—C17—C12 | −0.33 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11A···N3i | 0.98 | 2.68 | 3.3610 (8) | 127 |
C13—H13···N1ii | 0.95 | 2.68 | 3.3609 (6) | 129 |
C14—H14···N2iii | 0.95 | 2.67 | 3.3431 (6) | 129 |
Symmetry codes: (i) x, y, z−1; (ii) −x+1, −y, −z+1; (iii) x−1, y, z. |
Acknowledgements
The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.
References
Abdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2023a). Acta Cryst. E79, 441–445. Web of Science CSD CrossRef IUCr Journals Google Scholar
Abdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2023b). Acta Cryst. E79, 504–507. Web of Science CSD CrossRef IUCr Journals Google Scholar
Abdel-Aziz, H. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2610. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ahmed, E. A., Elgemeie, G. H. & Ahmed, K. A. (2022). Pigm. Resin Technol. 51, 1–5. Web of Science CrossRef CAS Google Scholar
Ammazzalorso, A., Carradori, S., Amoroso, R. & Fernández, I. F. (2020). Eur. J. Med. Chem. 207, 112762. Web of Science CrossRef PubMed Google Scholar
Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2022b). Antibiotics, 11, 1799. Web of Science CrossRef PubMed Google Scholar
Azzam, R. A., Elgemeie, G. H., Elsayed, R. E., Gad, N. M. & Jones, P. G. (2022a). Acta Cryst. E78, 369–372. Web of Science CSD CrossRef IUCr Journals Google Scholar
Azzam, R. A., Elgemeie, G. H. & Osman, R. R. (2020c). J. Mol. Struct. 1201, 127194. Web of Science CSD CrossRef Google Scholar
Azzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020a). ACS Omega, 5, 26182–26194. Web of Science CrossRef CAS PubMed Google Scholar
Azzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020b). ACS Omega, 5, 1640–1655. Web of Science CrossRef CAS PubMed Google Scholar
Bonde, C., Vedala, D. & Bonde, S. (2015). J. Pharm. Res. 9, 573–580. CAS Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dauer, D.-R., Koehne, I., Herbst-Irmer, R. & Stalke, D. (2017). Eur. J. Inorg. Chem. pp. 1966–1978. Web of Science CSD CrossRef Google Scholar
Dauer, D.-R. & Stalke, D. (2014). Dalton Trans. 43, 14432–14439. Web of Science CSD CrossRef CAS PubMed Google Scholar
Elgemeie, G. H., Azzam, R. A. & Osman, R. R. (2020). Inorg. Chim. Acta, 502, 119302. Web of Science CrossRef Google Scholar
Elgemeie, G. H., Azzam, R. A., Zaghary, W. A., Khedr, M. A. & Elsherif, G. E. (2022). Curr. Pharm. Des. 28, 3374–3403. Web of Science CrossRef CAS PubMed Google Scholar
Gill, R. K., Rawal, R. K. & Bariwal, J. (2015). Arch. Pharm. Chem. Life Sci. 348, 155–178. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Huang, Q., Mao, J., Wan, B., Wang, Y., Brun, R., Franzblau, S. G. & Kozikowski, A. P. (2009). J. Med. Chem. 52, 6757–6767. Web of Science CrossRef PubMed CAS Google Scholar
Metwally, N. H., Elgemeie, G. H. & Fahmy, F. G. (2022b). Egypt. J. Chem. 65, 679–686. Google Scholar
Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2022a). Acta Cryst. E78, 445–448. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rana, A., Siddiqui, N., Khan, S. A., Ehtaishamul Haque, S. & Bhat, M. A. (2008). Eur. J. Med. Chem. 43, 1114–1122. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Seenaiah, D., Reddy, P. R., Reddy, G. M., Padmaja, A., Padmavathi, V. & Siva krishna, N. (2014). Eur. J. Med. Chem. 77, 1–7. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA. Google Scholar
Wang, X., Sarris, K., Kage, K., Zhang, D., Brown, S. P., Kolasa, T., Surowy, C., El Kouhen, O. F., Muchmore, S. W., Brioni, J. D. & Stewart, A. O. (2009). J. Med. Chem. 52, 170–180. Web of Science CrossRef PubMed CAS Google Scholar
Yakout, E. M. A., Allam, Y. A. & Nawwar, G. A. M. (1999). Heteroatom Chem. 10, 177–182. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.