research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the nucleoside 2′-de­­oxy­guanosine di­methyl sulfoxide disolvate

crossmark logo

aDepartment of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
*Correspondence e-mail: spingler@chem.uzh.ch

Edited by A. S. Batsanov, University of Durham, United Kingdom (Received 13 June 2023; accepted 22 August 2023; online 30 August 2023)

The title com­pound, C10H13N5O4·2C2H6OS, which is of inter­est with respect to its biological activity, at 183 K has ortho­rhom­bic (P212121) crystal symmetry. The structure displays a network of inter­molecular N—H⋯N, N—H⋯O and O—H⋯O hydrogen bonds. 2′-De­oxy­guanosine mol­ecules are linked to each other and to the two dimethyl sulfoxide solvent mol­ecules by hydrogen bonding.

1. Chemical context

De­oxy­nucleosides are the building blocks of DNA, the storage place for the genetic information in most organisms. Understanding the properties of DNA is crucial for our knowledge of its reactivity in cellular processes of replication and transcription to yield transfer RNA (Stryer, 1995[Stryer, L. (1995). Biochemistry, 4th revised ed., p. 1100. New York: W. H. Freeman and Company.]). Furthermore, mutagenic reagents can irreversibly alter the structure and function of DNA (Wang et al., 1998[Wang, D., Kreutzer, D. A. & Essigmann, J. M. (1998). Mutat. Res./Fundam. Mol. Mech. Mutagen. 400, 99-115.]). In view of all this, it is of upmost importance to know the precise geometric parameters of all the nucleobases. These parameters are needed for techniques such as macromolecular X-ray crystallography in some cases and (NMR restrained) modelling of oligonucleotides (Clowney et al., 1996[Clowney, L., Jain, S. C., Srinivasan, A. R., Westbrook, J., Olson, W. K. & Berman, H. M. (1996). J. Am. Chem. Soc. 118, 509-518.]; Gelbin et al., 1996[Gelbin, A., Schneider, B., Clowney, L., Hsieh, S.-H., Olson, W. K. & Berman, H. M. (1996). J. Am. Chem. Soc. 118, 519-529.]). Surprisingly, no high-quality crystal structure of unmodified 2′-de­oxy­guan­osine has been published to date. In the course of studying the inter­action of nucleobases with copper(II) (Santangelo et al., 2007[Santangelo, M. G., Medina-Molner, A., Schweiger, A., Mitrikas, G. & Spingler, B. (2007). J. Biol. Inorg. Chem. 12, 767-775.]), we obtained single crystals of 2′-de­oxy­guanosine as a solvate with two mol­ecules of dimethyl sulfoxide (DMSO), (I), and characterized it by X-ray diffraction.

[Scheme 1]

2. Structural commentary

Nucleobase (I) crystallized in the ortho­rhom­bic Sohnke space group P212121, with four formula units per unit cell and one per asymmetric unit (Fig. 1[link]). The sugar conformation at the C3′ position (C13) is endo. The torsion angle χ (Alvarez et al., 2019[Alvarez, R., Schabert, G., Soydemir, A., Wick, L., Spitz, U. & Spingler, B. (2019). Cryst. Growth Des. 19, 4019-4028.]; Schabert et al., 2021[Schabert, G., Haase, R., Parris, J., Pala, L., Hery-Barranco, A., Spingler, B. & Spitz, U. (2021). Molecules, 26, 2729.]) of O14—C11—N9—C4 is −165.6 (1)° (Table 1[link]). The freely refined H atoms of the exocyclic atom N2 were found to be in the plane of the latter and the adjacent six-membered aromatic ring, implying an sp2 hybridization of N2. It is of inter­est to note that in the ligand database (Ligand Expo; Feng et al., 2004[Feng, Z., Chen, L., Maddula, H., Akcan, O., Oughtred, R., Berman, H. M. & Westbrook, J. (2004). Bioinformatics, 20, 2153-2155.]) of the Protein Database (Burley et al., 2023[Burley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chao, H., Chen, L., Craig, P. A., Crichlow, G. V., Dalenberg, K., Duarte, J. M., Dutta, S., Fayazi, M., Feng, Z., Flatt, J. W., Ganesan, S., Ghosh, S., Goodsell, D. S., Green, R. K., Guranovic, V., Henry, J., Hudson, B. P., Khokhriakov, I., Lawson, C. L., Liang, Y., Lowe, R., Peisach, E., Persikova, I., Piehl, D. W., Rose, Y., Sali, A., Segura, J., Sekharan, M., Shao, C., Vallat, B., Voigt, M., Webb, B., Westbrook, J. D., Whetstone, S., Young, J. Y., Zalevsky, A. & Zardecki, C. (2023). Nucleic Acids Res. 51, D488-D508.]) an incorrect Lewis structure of 2′-de­oxy­guanosine (identifier GNG) is present (Fig. S1 in the supporting information).

Table 1
Sugar conformations in 2′-de­oxy­guanosine, its supra­molecular com­plexes and guanosine

Compound Space group Sugar conformation χ (O4′—C1′—N1—C6) (°) Reference
2′-De­oxy­guanosine·2(DMSO) P212121 Envelope, C3′-endo −165.6 (1) This work
(Actinomycin D)·2(2′-de­oxy­guanosine)·12H2O P212121 Envelope, C3′-endo; Twisted, C1′-exo/C2′-endo −86.5; −90.6 Jain & Sobell (1972[Jain, S. C. & Sobell, H. M. (1972). J. Mol. Biol. 68, 1-20.])
(7-Bromo­actinomycin D)·2(2′-de­oxy­guanosine)·11H2O P212121 Twisted, C2′-exo/C3′-endo; Twisted, C1′-exo/C2′-endo −86.5; −88.9 Jain & Sobell (1972[Jain, S. C. & Sobell, H. M. (1972). J. Mol. Biol. 68, 1-20.])
(2′-De­oxy­guanosine)·(5-bromo-2′-de­oxy­cytidine) P21212 Envelope, C2′-endo 56.7 Haschemeyer et al. (1965[Haschemeyer, A. E. V. & Sobell, H. M. (1965). Acta Cryst. 19, 125-130.])
(Guanosine)2·4H2O P21 Envelope, C2′-endo; Twisted, C1′-exo/C2′-endo −58.1; −137.2 Thewalt et al. (1970[Thewalt, U., Bugg, C. E. & Marsh, R. E. (1970). Acta Cryst. B26, 1089-1101.])
[Figure 1]
Figure 1
Displacement ellipsoid plot (50% probability) of (I).

3. Supra­molecular features

The hydrogen bonds are listed in Table 2[link]. The hydrogen bonding among the guanine nucleobases is a reverse Hoogsteen pairing (Johnson et al., 1992[Johnson, K. H., Durland, R. H. & Hogan, M. E. (1992). Nucleic Acids Res. 20, 3859-3864.]), generating an R22(9) graph set (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) (Fig. 2[link]). A very similar hydrogen-bonding motif was found for guanine monohydrate (Thewalt et al., 1971[Thewalt, U., Bugg, C. E. & Marsh, R. E. (1971). Acta Cryst. B27, 2358-2363.]) and guanosine dihydrate (Thewalt et al., 1970[Thewalt, U., Bugg, C. E. & Marsh, R. E. (1970). Acta Cryst. B26, 1089-1101.]). Atom O21 of one DMSO mol­ecule is hydrogen bonded to the secondary alcohol group of 2′-de­oxy­guanosine, while atom O22 of the other DMSO mol­ecule is hydrogen bonded both to the exocyclic amino group of one 2′-de­oxy­guanosine mol­ecule and to the primary –OH group of another 2′-de­oxy­guanosine mol­ecule. Analysis of the fingerprint plots of the Hirshfeld surface around the 2′-de­oxy­guanosine mol­ecule calculated by CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) (Fig. 3[link]) indicates that H⋯H contacts account for 38.3% of the surface contacts, O⋯H/H⋯O contacts for 28.4%, N⋯H/H⋯N for 16.5% and C⋯H/H⋯C for 9.9%.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23B⋯O6i 0.96 (3) 2.35 (3) 3.239 (3) 153 (2)
N1—H1⋯N7ii 0.87 (2) 2.09 (2) 2.962 (2) 173 (2)
N2—H2A⋯O22 0.83 (2) 2.09 (2) 2.902 (2) 168 (2)
N2—H2B⋯O6ii 0.83 (2) 2.24 (2) 3.012 (2) 155 (2)
O13—H13A⋯O21 0.87 (3) 1.88 (4) 2.738 (3) 169 (3)
O15—H15⋯O22iii 0.89 (3) 1.91 (3) 2.752 (2) 159 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, y-1, z].
[Figure 2]
Figure 2
Hydrogen-bonding pattern of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
Fingerprint plots of (a) the entire Hirshfeld surface of 2′-de­oxy­guanosine within 2′-de­oxy­guanosine·2(DMSO), (b) H⋯H contacts, (c) O⋯H/H⋯O contacts, (d) N⋯H/H⋯N contacts and (e) C⋯H/H⋯C contacts.

4. Database survey

The search of the Cambridge Structural Database (CSD, Version 5.44, April 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) was made with ConQuest (Version 2023.1.0; Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]). The first structure containing 2′-de­oxy­guanosine (CSD refcode DGUBCY, a cocrystal with 5-bromo-2′-de­oxy­cytidine) was published by Haschemeyer et al. (1965[Haschemeyer, A. E. V. & Sobell, H. M. (1965). Acta Cryst. 19, 125-130.]). However, in the corresponding CSD entry, the Lewis diagram of the 2′-de­oxy­guanosine is wrong (Fig. S2), showing a 2-amino­pyrimidin-4-ol moiety, which should be redrawn as a 2-amino­pyrimidin-4(3H)-one. The cocrystal structures of (actinomycin D)·2(2′-de­oxy­guanosine)·12H2O (ACTDGU) and (7-bromo­ac­tino­mycin)·2(2′-de­oxy­guanosine)·11H2O (BRAXGU) at room temperature were also reported (Sobell et al., 1971[Sobell, H. M., Jain, S. C., Sakore, T. D. & Nordman, C. E. (1971). Nature New Biol. 231, 200-205.]; Jain & Sobell, 1972[Jain, S. C. & Sobell, H. M. (1972). J. Mol. Biol. 68, 1-20.]). In addition, the X-ray structures of four metal com­plexes containing 2′-de­oxy­guanosine are known (WEWKEO, UKISEM, WUNXIM and EWOBIN; Shionoya et al., 1994[Shionoya, M., Ikeda, T., Kimura, E. & Shiro, M. (1994). J. Am. Chem. Soc. 116, 3848-3859.]; Ito et al., 2002[Ito, K., Somazawa, R., Matsunami, J. & Matsumoto, K. (2002). Inorg. Chim. Acta, 339, 292-296.]; Aoki & Salam, 2002[Aoki, K. & Salam, M. A. (2002). Inorg. Chim. Acta, 339, 427-437.]; Baruah et al., 2004[Baruah, H., Day, C. S., Wright, M. W. & Bierbach, U. (2004). J. Am. Chem. Soc. 126, 4492-4493.]). Only one of them was recorded at low temperature (Baruah et al., 2004[Baruah, H., Day, C. S., Wright, M. W. & Bierbach, U. (2004). J. Am. Chem. Soc. 126, 4492-4493.]). Still, even for the latter structure, the average C—C bond distance was determined with a rather low precision of 0.009 Å. The present structure, (I), is the only purine nucleoside solvate in the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with two DMSO mol­ecules per host mol­ecule.

5. Synthesis and crystallization

Single crystals of (I) were obtained upon slow evaporation of 2′-de­oxy­guanosine (product number D0052, TCI) from DMSO.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The structure was solved by direct methods with the program SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]). All C-bonded H atoms were placed in ideal positions, with C—H bond lengths of 0.95 Å for aromatic, 1.00 Å for methine, 0.99 Å for methyl­ene and 0.98 Å for methyl C atoms, and refined as riding atoms, except those of methyl group C23H3 of one DMSO mol­ecule, which makes a relatively close contact to O6. The latter H atoms and those attached to non-C atoms were freely refined. The Uiso(H) values were set at 1.2 times (for CH, NH, NH2 and CH2 units) or 1.5 times (for methyl and OH groups) the Ueq value of the parent atom. The Flack parameter x was −0.00 (6) by classical fit to all intensities and 0.022 (14) by Parsons' method (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]), from 2107 selected quotients.

Table 3
Experimental details

Crystal data
Chemical formula C10H13N5O4·2C2H6OS
Mr 423.51
Crystal system, space group Orthorhombic, P212121
Temperature (K) 183
a, b, c (Å) 9.7590 (1), 11.7951 (2), 16.7553 (2)
V3) 1928.68 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.32
Crystal size (mm) 0.44 × 0.24 × 0.17
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Ruby
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.909, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 19896, 5874, 5295
Rint 0.024
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.073, 1.01
No. of reflections 5874
No. of parameters 271
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.27
Absolute structure Flack x determined using 2107 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.022 (14)
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

7. Computational details

The sugar conformations (Table 1[link]) were analysed with PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), using the published description of such conformations by Saenger (1984[Saenger, W. (1984). Principles of Nucleic Acid Structure, 1st ed., p. 556. New York: Springer.]). For older structures, where the CSD does not contain H atoms, these were added using OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) with default parameters.

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2'-Deoxyguanosine dimethyl sulfoxide disolvate top
Crystal data top
C10H13N5O4·2C2H6OSDx = 1.459 Mg m3
Mr = 423.51Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 11856 reflections
a = 9.7590 (1) Åθ = 2.4–32.7°
b = 11.7951 (2) ŵ = 0.32 mm1
c = 16.7553 (2) ÅT = 183 K
V = 1928.68 (4) Å3Needle, colourless
Z = 40.44 × 0.24 × 0.17 mm
F(000) = 896
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
5874 independent reflections
Radiation source: Enhance (Mo) X-ray Source5295 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.4498 pixels mm-1θmax = 30.5°, θmin = 2.4°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1416
Tmin = 0.909, Tmax = 1.000l = 2223
19896 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.045P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.30 e Å3
5874 reflectionsΔρmin = 0.27 e Å3
271 parametersAbsolute structure: Flack x determined using 2107 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.022 (14)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.35188 (19)0.60776 (14)0.66640 (9)0.0159 (3)
C40.31935 (18)0.42499 (14)0.64001 (9)0.0157 (3)
C50.40248 (18)0.38572 (15)0.70072 (10)0.0163 (3)
C60.47568 (18)0.46616 (14)0.74730 (10)0.0183 (3)
C80.32641 (18)0.23836 (15)0.64098 (10)0.0184 (3)
H80.3085470.1619230.6264660.022*
C110.17747 (19)0.33364 (15)0.53323 (10)0.0192 (3)
H110.1011780.3881270.5439990.023*
C120.2513 (2)0.36613 (16)0.45639 (10)0.0242 (4)
H12A0.1907730.4102320.4205770.029*
H12B0.3348900.4109420.4677330.029*
C130.2870 (2)0.25191 (18)0.42025 (10)0.0243 (4)
H130.3709020.2194660.4458240.029*
C140.16057 (19)0.18386 (15)0.44271 (11)0.0212 (4)
H140.0848060.2045270.4052490.025*
C150.1745 (2)0.05766 (16)0.44360 (13)0.0296 (4)
H15A0.0881340.0231280.4628510.035*
H15B0.1917680.0298940.3887600.035*
C230.0397 (2)0.63289 (18)0.47584 (13)0.0280 (4)
H23A0.093 (3)0.593 (2)0.5123 (15)0.042*
H23B0.010 (3)0.585 (2)0.4328 (16)0.042*
H23C0.038 (3)0.668 (2)0.4972 (15)0.042*
C240.2803 (3)0.6683 (2)0.40425 (16)0.0438 (6)
H24A0.2485990.6175300.3617750.066*
H24B0.3195000.6233230.4478020.066*
H24C0.3502350.7196590.3829710.066*
N10.44138 (16)0.57763 (13)0.72580 (8)0.0173 (3)
H10.483 (2)0.6326 (19)0.7512 (13)0.021*
N20.32939 (19)0.71824 (13)0.65567 (9)0.0218 (3)
H2A0.281 (3)0.737 (2)0.6175 (13)0.026*
H2B0.367 (3)0.771 (2)0.6808 (13)0.026*
N30.28910 (16)0.53300 (12)0.61976 (8)0.0169 (3)
N70.40557 (16)0.26752 (12)0.70054 (8)0.0187 (3)
N90.27173 (15)0.33028 (12)0.60156 (8)0.0168 (3)
O60.56048 (15)0.44860 (12)0.80073 (7)0.0270 (3)
O130.3041 (2)0.26086 (16)0.33678 (8)0.0432 (4)
H13A0.363 (4)0.215 (3)0.3158 (18)0.065*
O140.12431 (14)0.22319 (10)0.52196 (7)0.0219 (3)
O150.28382 (17)0.02499 (13)0.49400 (10)0.0385 (4)
H150.275 (3)0.048 (3)0.5060 (16)0.058*
O210.50822 (19)0.11673 (15)0.28913 (10)0.0440 (4)
O220.19120 (17)0.80671 (12)0.51554 (8)0.0318 (3)
S220.13986 (5)0.74863 (4)0.44083 (3)0.02532 (11)
S210.53507 (5)0.01236 (4)0.24068 (3)0.02556 (11)
C220.4129 (2)0.0115 (2)0.16179 (12)0.0362 (5)
H22A0.4319740.0744340.1252140.054*
H22B0.3206040.0201530.1839900.054*
H22C0.4189520.0603920.1327420.054*
C210.4665 (3)0.1037 (2)0.29503 (13)0.0396 (5)
H21A0.3715080.0871100.3099430.059*
H21B0.5211080.1160280.3433490.059*
H21C0.4690850.1720520.2618070.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0194 (8)0.0140 (8)0.0144 (7)0.0000 (6)0.0000 (6)0.0005 (6)
C40.0175 (8)0.0146 (8)0.0150 (7)0.0013 (6)0.0000 (6)0.0009 (6)
C50.0184 (8)0.0146 (8)0.0158 (7)0.0009 (6)0.0004 (6)0.0015 (6)
C60.0216 (8)0.0172 (8)0.0160 (7)0.0014 (7)0.0003 (7)0.0009 (6)
C80.0208 (8)0.0115 (8)0.0231 (8)0.0016 (7)0.0007 (6)0.0026 (6)
C110.0211 (9)0.0129 (8)0.0235 (8)0.0001 (6)0.0063 (7)0.0033 (6)
C120.0327 (10)0.0191 (9)0.0207 (8)0.0027 (8)0.0048 (7)0.0022 (7)
C130.0301 (9)0.0238 (9)0.0189 (7)0.0038 (8)0.0012 (7)0.0018 (7)
C140.0247 (9)0.0165 (9)0.0224 (8)0.0042 (7)0.0097 (7)0.0051 (7)
C150.0368 (11)0.0169 (9)0.0350 (10)0.0027 (8)0.0101 (9)0.0059 (8)
C230.0255 (10)0.0275 (11)0.0310 (10)0.0040 (9)0.0012 (9)0.0017 (8)
C240.0400 (13)0.0350 (13)0.0564 (14)0.0071 (11)0.0217 (11)0.0083 (11)
N10.0228 (8)0.0124 (7)0.0166 (6)0.0014 (6)0.0055 (6)0.0015 (5)
N20.0317 (9)0.0118 (7)0.0218 (7)0.0004 (6)0.0091 (7)0.0011 (6)
N30.0208 (7)0.0127 (7)0.0171 (6)0.0010 (6)0.0035 (5)0.0001 (5)
N70.0223 (7)0.0125 (7)0.0212 (7)0.0005 (6)0.0001 (6)0.0032 (5)
N90.0191 (7)0.0120 (7)0.0195 (6)0.0018 (6)0.0031 (5)0.0003 (5)
O60.0339 (8)0.0236 (7)0.0234 (6)0.0003 (6)0.0129 (6)0.0019 (5)
O130.0663 (12)0.0431 (10)0.0201 (7)0.0143 (9)0.0066 (7)0.0027 (7)
O140.0225 (6)0.0156 (6)0.0275 (6)0.0048 (5)0.0010 (5)0.0059 (5)
O150.0365 (8)0.0198 (8)0.0592 (10)0.0036 (7)0.0145 (7)0.0086 (7)
O210.0483 (11)0.0361 (9)0.0477 (10)0.0013 (8)0.0043 (8)0.0179 (7)
O220.0463 (9)0.0188 (7)0.0302 (7)0.0004 (7)0.0144 (7)0.0014 (5)
S220.0316 (2)0.0205 (2)0.0239 (2)0.0008 (2)0.00666 (18)0.00218 (18)
S210.0255 (2)0.0264 (3)0.0248 (2)0.00201 (19)0.00031 (19)0.00260 (17)
C220.0353 (11)0.0424 (13)0.0310 (10)0.0071 (10)0.0079 (9)0.0039 (9)
C210.0464 (14)0.0379 (13)0.0345 (11)0.0042 (11)0.0051 (11)0.0076 (9)
Geometric parameters (Å, º) top
C2—N11.371 (2)C15—H15A0.9900
C2—N21.334 (2)C15—H15B0.9900
C2—N31.328 (2)C15—O151.414 (2)
C4—C51.381 (2)C23—H23A0.93 (3)
C4—N31.351 (2)C23—H23B0.96 (3)
C4—N91.371 (2)C23—H23C0.94 (3)
C5—C61.421 (2)C23—S221.778 (2)
C5—N71.395 (2)C24—H24A0.9800
C6—N11.404 (2)C24—H24B0.9800
C6—O61.237 (2)C24—H24C0.9800
C8—H80.9500C24—S221.775 (2)
C8—N71.308 (2)N1—H10.87 (2)
C8—N91.377 (2)N2—H2A0.83 (2)
C11—H111.0000N2—H2B0.83 (2)
C11—C121.525 (2)O13—H13A0.87 (3)
C11—N91.469 (2)O15—H150.89 (3)
C11—O141.415 (2)O21—S211.4978 (17)
C12—H12A0.9900O22—S221.5124 (14)
C12—H12B0.9900S21—C221.780 (2)
C12—C131.518 (3)S21—C211.775 (2)
C13—H131.0000C22—H22A0.9800
C13—C141.520 (3)C22—H22B0.9800
C13—O131.412 (2)C22—H22C0.9800
C14—H141.0000C21—H21A0.9800
C14—C151.495 (3)C21—H21B0.9800
C14—O141.450 (2)C21—H21C0.9800
N2—C2—N1117.13 (15)H23A—C23—H23B111 (2)
N3—C2—N1123.30 (15)H23A—C23—H23C115 (2)
N3—C2—N2119.57 (16)H23B—C23—H23C108 (2)
N3—C4—C5129.01 (15)S22—C23—H23A107.2 (17)
N3—C4—N9125.20 (15)S22—C23—H23B111.7 (15)
N9—C4—C5105.78 (15)S22—C23—H23C103.7 (16)
C4—C5—C6118.42 (16)H24A—C24—H24B109.5
C4—C5—N7110.26 (15)H24A—C24—H24C109.5
N7—C5—C6131.13 (16)H24B—C24—H24C109.5
N1—C6—C5111.38 (14)S22—C24—H24A109.5
O6—C6—C5128.47 (16)S22—C24—H24B109.5
O6—C6—N1120.15 (15)S22—C24—H24C109.5
N7—C8—H8123.6C2—N1—C6125.52 (14)
N7—C8—N9112.82 (15)C2—N1—H1117.2 (14)
N9—C8—H8123.6C6—N1—H1117.3 (15)
C12—C11—H11110.1C2—N2—H2A117.4 (17)
N9—C11—H11110.1C2—N2—H2B125.9 (17)
N9—C11—C12111.64 (15)H2A—N2—H2B116 (2)
O14—C11—H11110.1C2—N3—C4112.18 (14)
O14—C11—C12106.99 (14)C8—N7—C5104.58 (15)
O14—C11—N9107.98 (14)C4—N9—C8106.55 (13)
C11—C12—H12A111.2C4—N9—C11123.81 (14)
C11—C12—H12B111.2C8—N9—C11129.61 (14)
H12A—C12—H12B109.1C13—O13—H13A116 (2)
C13—C12—C11102.84 (15)C11—O14—C14109.10 (14)
C13—C12—H12A111.2C15—O15—H15109 (2)
C13—C12—H12B111.2C24—S22—C2397.37 (11)
C12—C13—H13110.9O22—S22—C23104.88 (9)
C12—C13—C14100.59 (15)O22—S22—C24105.77 (12)
C14—C13—H13110.9O21—S21—C22106.85 (11)
O13—C13—C12110.84 (16)O21—S21—C21106.85 (11)
O13—C13—H13110.9C21—S21—C2297.15 (12)
O13—C13—C14112.36 (17)S21—C22—H22A109.5
C13—C14—H14108.4S21—C22—H22B109.5
C15—C14—C13117.04 (17)S21—C22—H22C109.5
C15—C14—H14108.4H22A—C22—H22B109.5
O14—C14—C13104.83 (14)H22A—C22—H22C109.5
O14—C14—H14108.4H22B—C22—H22C109.5
O14—C14—C15109.36 (16)S21—C21—H21A109.5
C14—C15—H15A109.6S21—C21—H21B109.5
C14—C15—H15B109.6S21—C21—H21C109.5
H15A—C15—H15B108.1H21A—C21—H21B109.5
O15—C15—C14110.24 (16)H21A—C21—H21C109.5
O15—C15—H15A109.6H21B—C21—H21C109.5
O15—C15—H15B109.6
C4—C5—C6—N14.3 (2)N3—C4—C5—C64.4 (3)
C4—C5—C6—O6175.47 (17)N3—C4—C5—N7179.94 (17)
C4—C5—N7—C80.2 (2)N3—C4—N9—C8179.89 (17)
C5—C4—N3—C20.6 (3)N3—C4—N9—C111.5 (3)
C5—C4—N9—C80.69 (18)N7—C5—C6—N1178.83 (18)
C5—C4—N9—C11179.13 (15)N7—C5—C6—O61.0 (3)
C5—C6—N1—C21.6 (2)N7—C8—N9—C40.6 (2)
C6—C5—N7—C8174.68 (18)N7—C8—N9—C11178.96 (16)
C11—C12—C13—C1436.85 (17)N9—C4—C5—C6175.04 (15)
C11—C12—C13—O13155.88 (17)N9—C4—C5—N70.55 (19)
C12—C11—N9—C477.0 (2)N9—C4—N3—C2178.67 (16)
C12—C11—N9—C8104.9 (2)N9—C8—N7—C50.3 (2)
C12—C11—O14—C140.18 (18)N9—C11—C12—C1393.88 (17)
C12—C13—C14—C15159.00 (16)N9—C11—O14—C14120.12 (15)
C12—C13—C14—O1437.66 (16)O6—C6—N1—C2178.24 (16)
C13—C14—C15—O1555.1 (2)O13—C13—C14—C1583.1 (2)
C13—C14—O14—C1123.95 (18)O13—C13—C14—O14155.58 (16)
C15—C14—O14—C11150.21 (15)O14—C11—C12—C1324.05 (18)
N1—C2—N3—C42.6 (2)O14—C11—N9—C4165.65 (15)
N2—C2—N1—C6178.46 (17)O14—C11—N9—C812.4 (2)
N2—C2—N3—C4178.00 (16)O14—C14—C15—O1563.8 (2)
N3—C2—N1—C62.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23B···O6i0.96 (3)2.35 (3)3.239 (3)153 (2)
N1—H1···N7ii0.87 (2)2.09 (2)2.962 (2)173 (2)
N2—H2A···O220.83 (2)2.09 (2)2.902 (2)168 (2)
N2—H2B···O6ii0.83 (2)2.24 (2)3.012 (2)155 (2)
O13—H13A···O210.87 (3)1.88 (4)2.738 (3)169 (3)
O15—H15···O22iii0.89 (3)1.91 (3)2.752 (2)159 (3)
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y1, z.
Sugar conformations in 2'-deoxyguanosine, its supramolecular complexes and guanosine top
CompoundSpace groupSugar conformationχ (O4'—C1'—N1—C6) (°)Reference
2'-Deoxyguanosine·2(DMSO)P212121Envelope, C3'-endo-165.6 (1)This work
(Actinomycin D)·2(2'-deoxyguanosine)·12(H2O)P212121Envelope, C3'-endo; Twisted, C1'-exo/C2'-endo-86.5; -90.6Jain & Sobell (1972)
(7-Bromoactinomycin D)·2(2'-deoxyguanosine)·11(H2O)P212121Twisted, C2'-exo/C3'-endo; Twisted, C1'-exo/C2'-endo-86.5; -88.9Jain & Sobell (1972)
(2'-Deoxyguanosine)·(5-bromo-2'-deoxycytidine)P21212Envelope, C2'-endo56.7Haschemeyer et al. (1965)
(Guanosine)2·4(H2O)P21Envelope, C2'-endo; Twisted, C1'-exo/C2'-endo-58.1; -137.2Thewalt et al. (1970)
 

Funding information

Funding for this research was provided by: University of Zurich.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAlvarez, R., Schabert, G., Soydemir, A., Wick, L., Spitz, U. & Spingler, B. (2019). Cryst. Growth Des. 19, 4019–4028.  CrossRef CAS Google Scholar
First citationAoki, K. & Salam, M. A. (2002). Inorg. Chim. Acta, 339, 427–437.  Web of Science CSD CrossRef CAS Google Scholar
First citationBaruah, H., Day, C. S., Wright, M. W. & Bierbach, U. (2004). J. Am. Chem. Soc. 126, 4492–4493.  CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chao, H., Chen, L., Craig, P. A., Crichlow, G. V., Dalenberg, K., Duarte, J. M., Dutta, S., Fayazi, M., Feng, Z., Flatt, J. W., Ganesan, S., Ghosh, S., Goodsell, D. S., Green, R. K., Guranovic, V., Henry, J., Hudson, B. P., Khokhriakov, I., Lawson, C. L., Liang, Y., Lowe, R., Peisach, E., Persikova, I., Piehl, D. W., Rose, Y., Sali, A., Segura, J., Sekharan, M., Shao, C., Vallat, B., Voigt, M., Webb, B., Westbrook, J. D., Whetstone, S., Young, J. Y., Zalevsky, A. & Zardecki, C. (2023). Nucleic Acids Res. 51, D488–D508.  CrossRef CAS PubMed Google Scholar
First citationClowney, L., Jain, S. C., Srinivasan, A. R., Westbrook, J., Olson, W. K. & Berman, H. M. (1996). J. Am. Chem. Soc. 118, 509–518.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeng, Z., Chen, L., Maddula, H., Akcan, O., Oughtred, R., Berman, H. M. & Westbrook, J. (2004). Bioinformatics, 20, 2153–2155.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGelbin, A., Schneider, B., Clowney, L., Hsieh, S.-H., Olson, W. K. & Berman, H. M. (1996). J. Am. Chem. Soc. 118, 519–529.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaschemeyer, A. E. V. & Sobell, H. M. (1965). Acta Cryst. 19, 125–130.  CrossRef IUCr Journals Google Scholar
First citationIto, K., Somazawa, R., Matsunami, J. & Matsumoto, K. (2002). Inorg. Chim. Acta, 339, 292–296.  CrossRef CAS Google Scholar
First citationJain, S. C. & Sobell, H. M. (1972). J. Mol. Biol. 68, 1–20.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationJohnson, K. H., Durland, R. H. & Hogan, M. E. (1992). Nucleic Acids Res. 20, 3859–3864.  CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSaenger, W. (1984). Principles of Nucleic Acid Structure, 1st ed., p. 556. New York: Springer.  Google Scholar
First citationSantangelo, M. G., Medina-Molner, A., Schweiger, A., Mitrikas, G. & Spingler, B. (2007). J. Biol. Inorg. Chem. 12, 767–775.  CrossRef PubMed CAS Google Scholar
First citationSchabert, G., Haase, R., Parris, J., Pala, L., Hery-Barranco, A., Spingler, B. & Spitz, U. (2021). Molecules, 26, 2729.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShionoya, M., Ikeda, T., Kimura, E. & Shiro, M. (1994). J. Am. Chem. Soc. 116, 3848–3859.  CSD CrossRef CAS Web of Science Google Scholar
First citationSobell, H. M., Jain, S. C., Sakore, T. D. & Nordman, C. E. (1971). Nature New Biol. 231, 200–205.  CrossRef CAS PubMed Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStryer, L. (1995). Biochemistry, 4th revised ed., p. 1100. New York: W. H. Freeman and Company.  Google Scholar
First citationThewalt, U., Bugg, C. E. & Marsh, R. E. (1970). Acta Cryst. B26, 1089–1101.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationThewalt, U., Bugg, C. E. & Marsh, R. E. (1971). Acta Cryst. B27, 2358–2363.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationWang, D., Kreutzer, D. A. & Essigmann, J. M. (1998). Mutat. Res./Fundam. Mol. Mech. Mutagen. 400, 99–115.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds