research communications
of the nucleoside 2′-deoxyguanosine dimethyl sulfoxide disolvate
aDepartment of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
*Correspondence e-mail: spingler@chem.uzh.ch
The title compound, C10H13N5O4·2C2H6OS, which is of interest with respect to its biological activity, at 183 K has orthorhombic (P212121) crystal symmetry. The structure displays a network of intermolecular N—H⋯N, N—H⋯O and O—H⋯O hydrogen bonds. 2′-Deoxyguanosine molecules are linked to each other and to the two dimethyl sulfoxide solvent molecules by hydrogen bonding.
Keywords: crystal structure; nucleoside; guanine; guanosine; purine.
CCDC reference: 2290127
1. Chemical context
Deoxynucleosides are the building blocks of DNA, the storage place for the genetic information in most organisms. Understanding the properties of DNA is crucial for our knowledge of its reactivity in cellular processes of replication and transcription to yield ). Furthermore, mutagenic reagents can irreversibly alter the structure and function of DNA (Wang et al., 1998). In view of all this, it is of upmost importance to know the precise geometric parameters of all the nucleobases. These parameters are needed for techniques such as macromolecular X-ray crystallography in some cases and (NMR restrained) modelling of (Clowney et al., 1996; Gelbin et al., 1996). Surprisingly, no high-quality of unmodified 2′-deoxyguanosine has been published to date. In the course of studying the interaction of nucleobases with copper(II) (Santangelo et al., 2007), we obtained single crystals of 2′-deoxyguanosine as a solvate with two molecules of dimethyl sulfoxide (DMSO), (I), and characterized it by X-ray diffraction.
(Stryer, 19952. Structural commentary
Nucleobase (I) crystallized in the orthorhombic Sohnke P212121, with four formula units per and one per (Fig. 1). The sugar conformation at the C3′ position (C13) is endo. The torsion angle χ (Alvarez et al., 2019; Schabert et al., 2021) of O14—C11—N9—C4 is −165.6 (1)° (Table 1). The freely refined H atoms of the exocyclic atom N2 were found to be in the plane of the latter and the adjacent six-membered aromatic ring, implying an sp2 of N2. It is of interest to note that in the ligand database (Ligand Expo; Feng et al., 2004) of the Protein Database (Burley et al., 2023) an incorrect Lewis structure of 2′-deoxyguanosine (identifier GNG) is present (Fig. S1 in the supporting information).
3. Supramolecular features
The hydrogen bonds are listed in Table 2. The hydrogen bonding among the guanine nucleobases is a reverse Hoogsteen pairing (Johnson et al., 1992), generating an R22(9) graph set (Bernstein et al., 1995) (Fig. 2). A very similar hydrogen-bonding motif was found for guanine monohydrate (Thewalt et al., 1971) and guanosine dihydrate (Thewalt et al., 1970). Atom O21 of one DMSO molecule is hydrogen bonded to the secondary alcohol group of 2′-deoxyguanosine, while atom O22 of the other DMSO molecule is hydrogen bonded both to the exocyclic amino group of one 2′-deoxyguanosine molecule and to the primary –OH group of another 2′-deoxyguanosine molecule. Analysis of the fingerprint plots of the Hirshfeld surface around the 2′-deoxyguanosine molecule calculated by CrystalExplorer (Spackman et al., 2021) (Fig. 3) indicates that H⋯H contacts account for 38.3% of the surface contacts, O⋯H/H⋯O contacts for 28.4%, N⋯H/H⋯N for 16.5% and C⋯H/H⋯C for 9.9%.
|
4. Database survey
The search of the Cambridge Structural Database (CSD, Version 5.44, April 2023; Groom et al., 2016) was made with ConQuest (Version 2023.1.0; Bruno et al., 2002). The first structure containing 2′-deoxyguanosine (CSD refcode DGUBCY, a cocrystal with 5-bromo-2′-deoxycytidine) was published by Haschemeyer et al. (1965). However, in the corresponding CSD entry, the Lewis diagram of the 2′-deoxyguanosine is wrong (Fig. S2), showing a 2-aminopyrimidin-4-ol moiety, which should be redrawn as a 2-aminopyrimidin-4(3H)-one. The cocrystal structures of (actinomycin D)·2(2′-deoxyguanosine)·12H2O (ACTDGU) and (7-bromoactinomycin)·2(2′-deoxyguanosine)·11H2O (BRAXGU) at room temperature were also reported (Sobell et al., 1971; Jain & Sobell, 1972). In addition, the X-ray structures of four metal complexes containing 2′-deoxyguanosine are known (WEWKEO, UKISEM, WUNXIM and EWOBIN; Shionoya et al., 1994; Ito et al., 2002; Aoki & Salam, 2002; Baruah et al., 2004). Only one of them was recorded at low temperature (Baruah et al., 2004). Still, even for the latter structure, the average C—C bond distance was determined with a rather low precision of 0.009 Å. The present structure, (I), is the only purine nucleoside solvate in the CSD (Groom et al., 2016) with two DMSO molecules per host molecule.
5. Synthesis and crystallization
Single crystals of (I) were obtained upon slow evaporation of 2′-deoxyguanosine (product number D0052, TCI) from DMSO.
6. Refinement
Crystal data, data collection and structure . The structure was solved by with the program SIR97 (Altomare et al., 1999). All C-bonded H atoms were placed in ideal positions, with C—H bond lengths of 0.95 Å for aromatic, 1.00 Å for methine, 0.99 Å for methylene and 0.98 Å for methyl C atoms, and refined as riding atoms, except those of methyl group C23H3 of one DMSO molecule, which makes a relatively close contact to O6. The latter H atoms and those attached to non-C atoms were freely refined. The Uiso(H) values were set at 1.2 times (for CH, NH, NH2 and CH2 units) or 1.5 times (for methyl and OH groups) the Ueq value of the parent atom. The x was −0.00 (6) by classical fit to all intensities and 0.022 (14) by Parsons' method (Parsons et al., 2013), from 2107 selected quotients.
details are summarized in Table 3
|
7. Computational details
The sugar conformations (Table 1) were analysed with PLATON (Spek, 2020), using the published description of such conformations by Saenger (1984). For older structures, where the CSD does not contain H atoms, these were added using OLEX2 (Dolomanov et al., 2009) with default parameters.
Supporting information
CCDC reference: 2290127
https://doi.org/10.1107/S2056989023007405/zv2028sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023007405/zv2028Isup2.hkl
Figures S1 and S2. DOI: https://doi.org/10.1107/S2056989023007405/zv2028sup3.pdf
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C10H13N5O4·2C2H6OS | Dx = 1.459 Mg m−3 |
Mr = 423.51 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 11856 reflections |
a = 9.7590 (1) Å | θ = 2.4–32.7° |
b = 11.7951 (2) Å | µ = 0.32 mm−1 |
c = 16.7553 (2) Å | T = 183 K |
V = 1928.68 (4) Å3 | Needle, colourless |
Z = 4 | 0.44 × 0.24 × 0.17 mm |
F(000) = 896 |
Oxford Diffraction Xcalibur Ruby diffractometer | 5874 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 5295 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 10.4498 pixels mm-1 | θmax = 30.5°, θmin = 2.4° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −14→16 |
Tmin = 0.909, Tmax = 1.000 | l = −22→23 |
19896 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.030 | w = 1/[σ2(Fo2) + (0.045P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.073 | (Δ/σ)max < 0.001 |
S = 1.01 | Δρmax = 0.30 e Å−3 |
5874 reflections | Δρmin = −0.27 e Å−3 |
271 parameters | Absolute structure: Flack x determined using 2107 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: 0.022 (14) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C2 | 0.35188 (19) | 0.60776 (14) | 0.66640 (9) | 0.0159 (3) | |
C4 | 0.31935 (18) | 0.42499 (14) | 0.64001 (9) | 0.0157 (3) | |
C5 | 0.40248 (18) | 0.38572 (15) | 0.70072 (10) | 0.0163 (3) | |
C6 | 0.47568 (18) | 0.46616 (14) | 0.74730 (10) | 0.0183 (3) | |
C8 | 0.32641 (18) | 0.23836 (15) | 0.64098 (10) | 0.0184 (3) | |
H8 | 0.308547 | 0.161923 | 0.626466 | 0.022* | |
C11 | 0.17747 (19) | 0.33364 (15) | 0.53323 (10) | 0.0192 (3) | |
H11 | 0.101178 | 0.388127 | 0.543999 | 0.023* | |
C12 | 0.2513 (2) | 0.36613 (16) | 0.45639 (10) | 0.0242 (4) | |
H12A | 0.190773 | 0.410232 | 0.420577 | 0.029* | |
H12B | 0.334890 | 0.410942 | 0.467733 | 0.029* | |
C13 | 0.2870 (2) | 0.25191 (18) | 0.42025 (10) | 0.0243 (4) | |
H13 | 0.370902 | 0.219466 | 0.445824 | 0.029* | |
C14 | 0.16057 (19) | 0.18386 (15) | 0.44271 (11) | 0.0212 (4) | |
H14 | 0.084806 | 0.204527 | 0.405249 | 0.025* | |
C15 | 0.1745 (2) | 0.05766 (16) | 0.44360 (13) | 0.0296 (4) | |
H15A | 0.088134 | 0.023128 | 0.462851 | 0.035* | |
H15B | 0.191768 | 0.029894 | 0.388760 | 0.035* | |
C23 | 0.0397 (2) | 0.63289 (18) | 0.47584 (13) | 0.0280 (4) | |
H23A | 0.093 (3) | 0.593 (2) | 0.5123 (15) | 0.042* | |
H23B | 0.010 (3) | 0.585 (2) | 0.4328 (16) | 0.042* | |
H23C | −0.038 (3) | 0.668 (2) | 0.4972 (15) | 0.042* | |
C24 | 0.2803 (3) | 0.6683 (2) | 0.40425 (16) | 0.0438 (6) | |
H24A | 0.248599 | 0.617530 | 0.361775 | 0.066* | |
H24B | 0.319500 | 0.623323 | 0.447802 | 0.066* | |
H24C | 0.350235 | 0.719659 | 0.382971 | 0.066* | |
N1 | 0.44138 (16) | 0.57763 (13) | 0.72580 (8) | 0.0173 (3) | |
H1 | 0.483 (2) | 0.6326 (19) | 0.7512 (13) | 0.021* | |
N2 | 0.32939 (19) | 0.71824 (13) | 0.65567 (9) | 0.0218 (3) | |
H2A | 0.281 (3) | 0.737 (2) | 0.6175 (13) | 0.026* | |
H2B | 0.367 (3) | 0.771 (2) | 0.6808 (13) | 0.026* | |
N3 | 0.28910 (16) | 0.53300 (12) | 0.61976 (8) | 0.0169 (3) | |
N7 | 0.40557 (16) | 0.26752 (12) | 0.70054 (8) | 0.0187 (3) | |
N9 | 0.27173 (15) | 0.33028 (12) | 0.60156 (8) | 0.0168 (3) | |
O6 | 0.56048 (15) | 0.44860 (12) | 0.80073 (7) | 0.0270 (3) | |
O13 | 0.3041 (2) | 0.26086 (16) | 0.33678 (8) | 0.0432 (4) | |
H13A | 0.363 (4) | 0.215 (3) | 0.3158 (18) | 0.065* | |
O14 | 0.12431 (14) | 0.22319 (10) | 0.52196 (7) | 0.0219 (3) | |
O15 | 0.28382 (17) | 0.02499 (13) | 0.49400 (10) | 0.0385 (4) | |
H15 | 0.275 (3) | −0.048 (3) | 0.5060 (16) | 0.058* | |
O21 | 0.50822 (19) | 0.11673 (15) | 0.28913 (10) | 0.0440 (4) | |
O22 | 0.19120 (17) | 0.80671 (12) | 0.51554 (8) | 0.0318 (3) | |
S22 | 0.13986 (5) | 0.74863 (4) | 0.44083 (3) | 0.02532 (11) | |
S21 | 0.53507 (5) | 0.01236 (4) | 0.24068 (3) | 0.02556 (11) | |
C22 | 0.4129 (2) | 0.0115 (2) | 0.16179 (12) | 0.0362 (5) | |
H22A | 0.431974 | 0.074434 | 0.125214 | 0.054* | |
H22B | 0.320604 | 0.020153 | 0.183990 | 0.054* | |
H22C | 0.418952 | −0.060392 | 0.132742 | 0.054* | |
C21 | 0.4665 (3) | −0.1037 (2) | 0.29503 (13) | 0.0396 (5) | |
H21A | 0.371508 | −0.087110 | 0.309943 | 0.059* | |
H21B | 0.521108 | −0.116028 | 0.343349 | 0.059* | |
H21C | 0.469085 | −0.172052 | 0.261807 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.0194 (8) | 0.0140 (8) | 0.0144 (7) | 0.0000 (6) | 0.0000 (6) | −0.0005 (6) |
C4 | 0.0175 (8) | 0.0146 (8) | 0.0150 (7) | −0.0013 (6) | 0.0000 (6) | −0.0009 (6) |
C5 | 0.0184 (8) | 0.0146 (8) | 0.0158 (7) | 0.0009 (6) | −0.0004 (6) | 0.0015 (6) |
C6 | 0.0216 (8) | 0.0172 (8) | 0.0160 (7) | 0.0014 (7) | 0.0003 (7) | 0.0009 (6) |
C8 | 0.0208 (8) | 0.0115 (8) | 0.0231 (8) | −0.0016 (7) | 0.0007 (6) | 0.0026 (6) |
C11 | 0.0211 (9) | 0.0129 (8) | 0.0235 (8) | 0.0001 (6) | −0.0063 (7) | −0.0033 (6) |
C12 | 0.0327 (10) | 0.0191 (9) | 0.0207 (8) | −0.0027 (8) | −0.0048 (7) | 0.0022 (7) |
C13 | 0.0301 (9) | 0.0238 (9) | 0.0189 (7) | 0.0038 (8) | −0.0012 (7) | 0.0018 (7) |
C14 | 0.0247 (9) | 0.0165 (9) | 0.0224 (8) | 0.0042 (7) | −0.0097 (7) | −0.0051 (7) |
C15 | 0.0368 (11) | 0.0169 (9) | 0.0350 (10) | 0.0027 (8) | −0.0101 (9) | −0.0059 (8) |
C23 | 0.0255 (10) | 0.0275 (11) | 0.0310 (10) | −0.0040 (9) | 0.0012 (9) | −0.0017 (8) |
C24 | 0.0400 (13) | 0.0350 (13) | 0.0564 (14) | −0.0071 (11) | 0.0217 (11) | −0.0083 (11) |
N1 | 0.0228 (8) | 0.0124 (7) | 0.0166 (6) | −0.0014 (6) | −0.0055 (6) | −0.0015 (5) |
N2 | 0.0317 (9) | 0.0118 (7) | 0.0218 (7) | −0.0004 (6) | −0.0091 (7) | −0.0011 (6) |
N3 | 0.0208 (7) | 0.0127 (7) | 0.0171 (6) | 0.0010 (6) | −0.0035 (5) | −0.0001 (5) |
N7 | 0.0223 (7) | 0.0125 (7) | 0.0212 (7) | 0.0005 (6) | 0.0001 (6) | 0.0032 (5) |
N9 | 0.0191 (7) | 0.0120 (7) | 0.0195 (6) | −0.0018 (6) | −0.0031 (5) | −0.0003 (5) |
O6 | 0.0339 (8) | 0.0236 (7) | 0.0234 (6) | 0.0003 (6) | −0.0129 (6) | 0.0019 (5) |
O13 | 0.0663 (12) | 0.0431 (10) | 0.0201 (7) | 0.0143 (9) | 0.0066 (7) | 0.0027 (7) |
O14 | 0.0225 (6) | 0.0156 (6) | 0.0275 (6) | −0.0048 (5) | −0.0010 (5) | −0.0059 (5) |
O15 | 0.0365 (8) | 0.0198 (8) | 0.0592 (10) | 0.0036 (7) | −0.0145 (7) | 0.0086 (7) |
O21 | 0.0483 (11) | 0.0361 (9) | 0.0477 (10) | 0.0013 (8) | −0.0043 (8) | −0.0179 (7) |
O22 | 0.0463 (9) | 0.0188 (7) | 0.0302 (7) | −0.0004 (7) | −0.0144 (7) | −0.0014 (5) |
S22 | 0.0316 (2) | 0.0205 (2) | 0.0239 (2) | −0.0008 (2) | −0.00666 (18) | 0.00218 (18) |
S21 | 0.0255 (2) | 0.0264 (3) | 0.0248 (2) | −0.00201 (19) | −0.00031 (19) | −0.00260 (17) |
C22 | 0.0353 (11) | 0.0424 (13) | 0.0310 (10) | −0.0071 (10) | −0.0079 (9) | 0.0039 (9) |
C21 | 0.0464 (14) | 0.0379 (13) | 0.0345 (11) | −0.0042 (11) | 0.0051 (11) | 0.0076 (9) |
C2—N1 | 1.371 (2) | C15—H15A | 0.9900 |
C2—N2 | 1.334 (2) | C15—H15B | 0.9900 |
C2—N3 | 1.328 (2) | C15—O15 | 1.414 (2) |
C4—C5 | 1.381 (2) | C23—H23A | 0.93 (3) |
C4—N3 | 1.351 (2) | C23—H23B | 0.96 (3) |
C4—N9 | 1.371 (2) | C23—H23C | 0.94 (3) |
C5—C6 | 1.421 (2) | C23—S22 | 1.778 (2) |
C5—N7 | 1.395 (2) | C24—H24A | 0.9800 |
C6—N1 | 1.404 (2) | C24—H24B | 0.9800 |
C6—O6 | 1.237 (2) | C24—H24C | 0.9800 |
C8—H8 | 0.9500 | C24—S22 | 1.775 (2) |
C8—N7 | 1.308 (2) | N1—H1 | 0.87 (2) |
C8—N9 | 1.377 (2) | N2—H2A | 0.83 (2) |
C11—H11 | 1.0000 | N2—H2B | 0.83 (2) |
C11—C12 | 1.525 (2) | O13—H13A | 0.87 (3) |
C11—N9 | 1.469 (2) | O15—H15 | 0.89 (3) |
C11—O14 | 1.415 (2) | O21—S21 | 1.4978 (17) |
C12—H12A | 0.9900 | O22—S22 | 1.5124 (14) |
C12—H12B | 0.9900 | S21—C22 | 1.780 (2) |
C12—C13 | 1.518 (3) | S21—C21 | 1.775 (2) |
C13—H13 | 1.0000 | C22—H22A | 0.9800 |
C13—C14 | 1.520 (3) | C22—H22B | 0.9800 |
C13—O13 | 1.412 (2) | C22—H22C | 0.9800 |
C14—H14 | 1.0000 | C21—H21A | 0.9800 |
C14—C15 | 1.495 (3) | C21—H21B | 0.9800 |
C14—O14 | 1.450 (2) | C21—H21C | 0.9800 |
N2—C2—N1 | 117.13 (15) | H23A—C23—H23B | 111 (2) |
N3—C2—N1 | 123.30 (15) | H23A—C23—H23C | 115 (2) |
N3—C2—N2 | 119.57 (16) | H23B—C23—H23C | 108 (2) |
N3—C4—C5 | 129.01 (15) | S22—C23—H23A | 107.2 (17) |
N3—C4—N9 | 125.20 (15) | S22—C23—H23B | 111.7 (15) |
N9—C4—C5 | 105.78 (15) | S22—C23—H23C | 103.7 (16) |
C4—C5—C6 | 118.42 (16) | H24A—C24—H24B | 109.5 |
C4—C5—N7 | 110.26 (15) | H24A—C24—H24C | 109.5 |
N7—C5—C6 | 131.13 (16) | H24B—C24—H24C | 109.5 |
N1—C6—C5 | 111.38 (14) | S22—C24—H24A | 109.5 |
O6—C6—C5 | 128.47 (16) | S22—C24—H24B | 109.5 |
O6—C6—N1 | 120.15 (15) | S22—C24—H24C | 109.5 |
N7—C8—H8 | 123.6 | C2—N1—C6 | 125.52 (14) |
N7—C8—N9 | 112.82 (15) | C2—N1—H1 | 117.2 (14) |
N9—C8—H8 | 123.6 | C6—N1—H1 | 117.3 (15) |
C12—C11—H11 | 110.1 | C2—N2—H2A | 117.4 (17) |
N9—C11—H11 | 110.1 | C2—N2—H2B | 125.9 (17) |
N9—C11—C12 | 111.64 (15) | H2A—N2—H2B | 116 (2) |
O14—C11—H11 | 110.1 | C2—N3—C4 | 112.18 (14) |
O14—C11—C12 | 106.99 (14) | C8—N7—C5 | 104.58 (15) |
O14—C11—N9 | 107.98 (14) | C4—N9—C8 | 106.55 (13) |
C11—C12—H12A | 111.2 | C4—N9—C11 | 123.81 (14) |
C11—C12—H12B | 111.2 | C8—N9—C11 | 129.61 (14) |
H12A—C12—H12B | 109.1 | C13—O13—H13A | 116 (2) |
C13—C12—C11 | 102.84 (15) | C11—O14—C14 | 109.10 (14) |
C13—C12—H12A | 111.2 | C15—O15—H15 | 109 (2) |
C13—C12—H12B | 111.2 | C24—S22—C23 | 97.37 (11) |
C12—C13—H13 | 110.9 | O22—S22—C23 | 104.88 (9) |
C12—C13—C14 | 100.59 (15) | O22—S22—C24 | 105.77 (12) |
C14—C13—H13 | 110.9 | O21—S21—C22 | 106.85 (11) |
O13—C13—C12 | 110.84 (16) | O21—S21—C21 | 106.85 (11) |
O13—C13—H13 | 110.9 | C21—S21—C22 | 97.15 (12) |
O13—C13—C14 | 112.36 (17) | S21—C22—H22A | 109.5 |
C13—C14—H14 | 108.4 | S21—C22—H22B | 109.5 |
C15—C14—C13 | 117.04 (17) | S21—C22—H22C | 109.5 |
C15—C14—H14 | 108.4 | H22A—C22—H22B | 109.5 |
O14—C14—C13 | 104.83 (14) | H22A—C22—H22C | 109.5 |
O14—C14—H14 | 108.4 | H22B—C22—H22C | 109.5 |
O14—C14—C15 | 109.36 (16) | S21—C21—H21A | 109.5 |
C14—C15—H15A | 109.6 | S21—C21—H21B | 109.5 |
C14—C15—H15B | 109.6 | S21—C21—H21C | 109.5 |
H15A—C15—H15B | 108.1 | H21A—C21—H21B | 109.5 |
O15—C15—C14 | 110.24 (16) | H21A—C21—H21C | 109.5 |
O15—C15—H15A | 109.6 | H21B—C21—H21C | 109.5 |
O15—C15—H15B | 109.6 | ||
C4—C5—C6—N1 | 4.3 (2) | N3—C4—C5—C6 | −4.4 (3) |
C4—C5—C6—O6 | −175.47 (17) | N3—C4—C5—N7 | −179.94 (17) |
C4—C5—N7—C8 | 0.2 (2) | N3—C4—N9—C8 | −179.89 (17) |
C5—C4—N3—C2 | 0.6 (3) | N3—C4—N9—C11 | −1.5 (3) |
C5—C4—N9—C8 | 0.69 (18) | N7—C5—C6—N1 | 178.83 (18) |
C5—C4—N9—C11 | 179.13 (15) | N7—C5—C6—O6 | −1.0 (3) |
C5—C6—N1—C2 | −1.6 (2) | N7—C8—N9—C4 | −0.6 (2) |
C6—C5—N7—C8 | −174.68 (18) | N7—C8—N9—C11 | −178.96 (16) |
C11—C12—C13—C14 | 36.85 (17) | N9—C4—C5—C6 | 175.04 (15) |
C11—C12—C13—O13 | 155.88 (17) | N9—C4—C5—N7 | −0.55 (19) |
C12—C11—N9—C4 | 77.0 (2) | N9—C4—N3—C2 | −178.67 (16) |
C12—C11—N9—C8 | −104.9 (2) | N9—C8—N7—C5 | 0.3 (2) |
C12—C11—O14—C14 | 0.18 (18) | N9—C11—C12—C13 | 93.88 (17) |
C12—C13—C14—C15 | −159.00 (16) | N9—C11—O14—C14 | −120.12 (15) |
C12—C13—C14—O14 | −37.66 (16) | O6—C6—N1—C2 | 178.24 (16) |
C13—C14—C15—O15 | 55.1 (2) | O13—C13—C14—C15 | 83.1 (2) |
C13—C14—O14—C11 | 23.95 (18) | O13—C13—C14—O14 | −155.58 (16) |
C15—C14—O14—C11 | 150.21 (15) | O14—C11—C12—C13 | −24.05 (18) |
N1—C2—N3—C4 | 2.6 (2) | O14—C11—N9—C4 | −165.65 (15) |
N2—C2—N1—C6 | 178.46 (17) | O14—C11—N9—C8 | 12.4 (2) |
N2—C2—N3—C4 | −178.00 (16) | O14—C14—C15—O15 | −63.8 (2) |
N3—C2—N1—C6 | −2.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C23—H23B···O6i | 0.96 (3) | 2.35 (3) | 3.239 (3) | 153 (2) |
N1—H1···N7ii | 0.87 (2) | 2.09 (2) | 2.962 (2) | 173 (2) |
N2—H2A···O22 | 0.83 (2) | 2.09 (2) | 2.902 (2) | 168 (2) |
N2—H2B···O6ii | 0.83 (2) | 2.24 (2) | 3.012 (2) | 155 (2) |
O13—H13A···O21 | 0.87 (3) | 1.88 (4) | 2.738 (3) | 169 (3) |
O15—H15···O22iii | 0.89 (3) | 1.91 (3) | 2.752 (2) | 159 (3) |
Symmetry codes: (i) −x+1/2, −y+1, z−1/2; (ii) −x+1, y+1/2, −z+3/2; (iii) x, y−1, z. |
Compound | Space group | Sugar conformation | χ (O4'—C1'—N1—C6) (°) | Reference |
2'-Deoxyguanosine·2(DMSO) | P212121 | Envelope, C3'-endo | -165.6 (1) | This work |
(Actinomycin D)·2(2'-deoxyguanosine)·12(H2O) | P212121 | Envelope, C3'-endo; Twisted, C1'-exo/C2'-endo | -86.5; -90.6 | Jain & Sobell (1972) |
(7-Bromoactinomycin D)·2(2'-deoxyguanosine)·11(H2O) | P212121 | Twisted, C2'-exo/C3'-endo; Twisted, C1'-exo/C2'-endo | -86.5; -88.9 | Jain & Sobell (1972) |
(2'-Deoxyguanosine)·(5-bromo-2'-deoxycytidine) | P21212 | Envelope, C2'-endo | 56.7 | Haschemeyer et al. (1965) |
(Guanosine)2·4(H2O) | P21 | Envelope, C2'-endo; Twisted, C1'-exo/C2'-endo | -58.1; -137.2 | Thewalt et al. (1970) |
Funding information
Funding for this research was provided by: University of Zurich.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Alvarez, R., Schabert, G., Soydemir, A., Wick, L., Spitz, U. & Spingler, B. (2019). Cryst. Growth Des. 19, 4019–4028. CrossRef CAS Google Scholar
Aoki, K. & Salam, M. A. (2002). Inorg. Chim. Acta, 339, 427–437. Web of Science CSD CrossRef CAS Google Scholar
Baruah, H., Day, C. S., Wright, M. W. & Bierbach, U. (2004). J. Am. Chem. Soc. 126, 4492–4493. CrossRef PubMed CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chao, H., Chen, L., Craig, P. A., Crichlow, G. V., Dalenberg, K., Duarte, J. M., Dutta, S., Fayazi, M., Feng, Z., Flatt, J. W., Ganesan, S., Ghosh, S., Goodsell, D. S., Green, R. K., Guranovic, V., Henry, J., Hudson, B. P., Khokhriakov, I., Lawson, C. L., Liang, Y., Lowe, R., Peisach, E., Persikova, I., Piehl, D. W., Rose, Y., Sali, A., Segura, J., Sekharan, M., Shao, C., Vallat, B., Voigt, M., Webb, B., Westbrook, J. D., Whetstone, S., Young, J. Y., Zalevsky, A. & Zardecki, C. (2023). Nucleic Acids Res. 51, D488–D508. CrossRef CAS PubMed Google Scholar
Clowney, L., Jain, S. C., Srinivasan, A. R., Westbrook, J., Olson, W. K. & Berman, H. M. (1996). J. Am. Chem. Soc. 118, 509–518. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Feng, Z., Chen, L., Maddula, H., Akcan, O., Oughtred, R., Berman, H. M. & Westbrook, J. (2004). Bioinformatics, 20, 2153–2155. Web of Science CrossRef PubMed CAS Google Scholar
Gelbin, A., Schneider, B., Clowney, L., Hsieh, S.-H., Olson, W. K. & Berman, H. M. (1996). J. Am. Chem. Soc. 118, 519–529. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Haschemeyer, A. E. V. & Sobell, H. M. (1965). Acta Cryst. 19, 125–130. CrossRef IUCr Journals Google Scholar
Ito, K., Somazawa, R., Matsunami, J. & Matsumoto, K. (2002). Inorg. Chim. Acta, 339, 292–296. CrossRef CAS Google Scholar
Jain, S. C. & Sobell, H. M. (1972). J. Mol. Biol. 68, 1–20. CSD CrossRef CAS PubMed Web of Science Google Scholar
Johnson, K. H., Durland, R. H. & Hogan, M. E. (1992). Nucleic Acids Res. 20, 3859–3864. CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Saenger, W. (1984). Principles of Nucleic Acid Structure, 1st ed., p. 556. New York: Springer. Google Scholar
Santangelo, M. G., Medina-Molner, A., Schweiger, A., Mitrikas, G. & Spingler, B. (2007). J. Biol. Inorg. Chem. 12, 767–775. CrossRef PubMed CAS Google Scholar
Schabert, G., Haase, R., Parris, J., Pala, L., Hery-Barranco, A., Spingler, B. & Spitz, U. (2021). Molecules, 26, 2729. CrossRef PubMed Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shionoya, M., Ikeda, T., Kimura, E. & Shiro, M. (1994). J. Am. Chem. Soc. 116, 3848–3859. CSD CrossRef CAS Web of Science Google Scholar
Sobell, H. M., Jain, S. C., Sakore, T. D. & Nordman, C. E. (1971). Nature New Biol. 231, 200–205. CrossRef CAS PubMed Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stryer, L. (1995). Biochemistry, 4th revised ed., p. 1100. New York: W. H. Freeman and Company. Google Scholar
Thewalt, U., Bugg, C. E. & Marsh, R. E. (1970). Acta Cryst. B26, 1089–1101. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Thewalt, U., Bugg, C. E. & Marsh, R. E. (1971). Acta Cryst. B27, 2358–2363. CSD CrossRef IUCr Journals Web of Science Google Scholar
Wang, D., Kreutzer, D. A. & Essigmann, J. M. (1998). Mutat. Res./Fundam. Mol. Mech. Mutagen. 400, 99–115. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.