research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a 1:1 co-crystal of quabodepistat (OPC-167832) with 2,5-di­hy­droxy­benzoic acid using microcrystal electron diffraction

crossmark logo

aPreformulation Research Laboratory, CMC Headquarters, Otsuka Pharmaceutical Co., Ltd., Tokushima, 771-0182, Japan
*Correspondence e-mail: Sakamoto.Nasa@otsuka.jp

Edited by G. Diaz de Delgado, Universidad de Los Andes Mérida, Venezuela (Received 27 July 2022; accepted 10 July 2023; online 19 September 2023)

Quabodepistat [(5-{[(3R,4R)-1-(4-chloro-2,6-di­fluoro­phen­yl)-3,4-di­hydroxy­piperidin-4-yl]meth­oxy}-8-fluoro-3,4-di­hydro­quinolin-2(1H)-one); C21H20ClF3N2O4] and 2,5-di­hydroxy­benzoic acid (2,5DHBA; C7H6O4) were successfully co-crystallized. Given the small size of the crystals (1 × 0.2 × 0.2 µm) the structure was solved via microcrystal electron diffraction (MicroED). The C—O and C=O bond-length ratio of the carb­oxy­lic group in 2,5DHBA is 1.08 (1.34 Å/1.24 Å), suggesting that 2,5DHBA remains protonated. Therefore, the material is a co-crystal rather than a salt. The amide group of quabodepistat participates in a cyclic hydrogen bond with the carb­oxy­lic group of the 2,5DHBA. Additional hydrogen bonds involving the quabodepistat amide and hydroxyl groups result in a three-dimensional network.

1. Chemical context

Quabodepistat (OPC-167832), discovered by Otsuka Pharmaceutical Co., Ltd. as an anti-tuberculosis drug (Hariguchi et al., 2020[Hariguchi, N., Chen, X., Hayashi, Y., Kawano, Y., Fujiwara, M., Matsuba, M., Shimizu, H., Ohba, Y., Nakamura, I., Kitamoto, R., Shinohara, T., Uematsu, Y., Ishikawa, S., Itotani, M., Haraguchi, Y., Takemura, I. & Matsumoto, M. (2020). Antimicrob. Agents Chemother. 64, e02020-19.]), has a mode of action that involves inhibiting the DprE1 enzyme of M. tuberculosis. 2,5-di­hydroxy­benzoic acid (2,5DHBA) – a derivative of benzoic acid or salicylic acid – is one of the hepatic metabolites of acetyl­salicylic acid (aspirin) (Levy & Tsuchiya, 1972[Levy, G. & Tsuchiya, T. (1972). N. Engl. J. Med. 287, 430-432.]). In the pharmaceutical industry, crystal-engineering approaches such as co-crystallization have been useful techniques for modifying the physicochemical properties [e.g., solubility (Yoshimura et al., 2017[Yoshimura, M., Miyake, M., Kawato, T., Bando, M., Toda, M., Kato, Y., Fukami, T. & Ozeki, T. (2017). Cryst. Growth Des. 17, 550-557.]) or tabletability (Wang et al., 2021[Wang, J., Dai, X., Lu, T. & Chen, J. (2021). Cryst. Growth Des. 21, 838-846.])] of an active pharmaceutical ingredient. We obtained the quabodepistat co-crystal with 2,5DHBA by the anti-solvent crystallization method and then attempted to solve its crystal structure using a conventional X-ray diffractometer; however, the crystal size was too small (1 × 0.2 × 0.2 µm). Therefore, we used MicroED (XtaLAB Synergy-ED, Rigaku Corporation, Tokyo, Japan), which is a powerful tool to solve crystal structures when the crystal size is smaller than 1 µm (Ito et al., 2021[Ito, S., White, F., Okunishi, E., Aoyama, Y., Yamano, A., Sato, H., Ferrara, J., Jasnowski, M. & Meyer, M. (2021). ChemRxiv. https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/612e43f042198e340e68fb89/original/structure-determination-of-small-molecule-compounds-by-an-electron-diffractometer-for-3d-ed-micro-ed.pdf]). Here, we report the crystal structure of the 1:1 co-crystal between quabodepistat and 2,5DHBA, solved using MicroED.

[Scheme 1]

2. Structural commentary

Quabodepistat and 2,5DHBA co-crystallize in a 1:1 stoichiometric ratio in the monoclinic system, space group P21, with Z = 2. Unusual bond lengths and angles are expected given the low crystal quality and the current limitations of the technique. A Mogul geometry analysis (Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]) indicated that the bonds C8—N7, O42—C36, F30—C28, C6—N7, O1—C2, and O41—C33, are unusual (z-score > 3). The angles O21—C16—C17, F30—C28—C23, C6—N7—C8, C9—C10—C11, O1—C14—C15, and C6—C11—C2 also have z-score values greater than 3.

All rings expected to be planar due to aromaticity (C2–C6/C11, C23–C28, and C32–C37) exhibit χ2 values (PLATON; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) indicating good planarity. The six-membered ring formed by C15–C17/N18/C19–C20 displays a slight chair conformation. The best plane constructed through atoms C23–C28 makes an angle of 20.9 (11)° with the best plane through C2–C6/N7/C8–C11.

3. Supra­molecular features

Inter­molecular inter­actions via hydrogen bonds are observed between quabodepistat and 2,5DHBA. One of the inter­actions is between a carb­oxy­lic group and an amide. As shown in Fig. 1[link], they form the common synthon: (amide of quabo­depistat) N7—H7⋯O40=C38 (carb­oxy­lic group of 2,5DHBA) and (amide of quabodepistat) C8=O12⋯H39—O39 (carb­oxy­lic group of 2,5DHBA). Moreover, the C8=O12 of the amide inter­acts with a hydroxyl group of a neighboring quabodepistat (O12⋯H22—O22), and the H22—O22 inter­acts with another hydroxyl of quabodepistat (O22⋯H21—O21). These inter­actions form a three-dimensional network (Figs. 2[link] and 3[link], Table 1[link]). It is worth mentioning that the C—O:C=O bond-length ratio of the carb­oxy­lic group in 2,5DHBA is 1.08 (1.34 Å/1.24 Å), which suggests that protonation has not occurred for complex binding. Therefore, this material is a co-crystal instead of a salt. The compound TAK-020 has also been reported as a co-crystal with 2,5DHBA (Kimoto et al., 2020[Kimoto, K., Yamamoto, M., Karashima, M., Hohokabe, M., Takeda, J., Yamamoto, K. & Ikeda, Y. (2020). Crystals, 10, 211.]). Therein, a carb­oxy­lic group of 2,5DHBA inter­acts with an amide moiety of the triazolinone of TAK-020, which is similar to the synthon observed in the compound reported in this contribution.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O42i 0.93 2.71 3.40 (7) 131
C9—H9B⋯O22ii 0.97 2.94 3.49 (11) 117
N7—H7⋯O40ii 1.01 1.93 2.93 (9) 169
C34—H34⋯O42iii 0.93 2.69 3.48 (7) 143
O42—H42⋯O41iv 0.82 2.48 3.23 (6) 152
O39—H39⋯O12v 0.82 1.92 2.73 (10) 169
O21—H21⋯O22vi 0.82 2.02 2.84 (18) 175
O22—H22⋯O12v 0.82 2.11 2.90 (7) 164
Symmetry codes: (i) x+1, y, z; (ii) [x-1, y+1, z]; (iii) [-x+1, y-{\script{1\over 2}}, -z+2]; (iv) [-x+1, y+{\script{1\over 2}}, -z+2]; (v) [x+1, y-1, z]; (vi) [x-1, y, z].
[Figure 1]
Figure 1
The mol­ecular structure of the quabodepistat:2,5DHBA co-crystal showing the carb­oxy­lic group and amide hydrogen bond synthon. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Inter­molecular inter­actions via hydrogen bonds in the quabodepistat:2,5DHBA co-crystal.
[Figure 3]
Figure 3
Crystal packing viewed down the a axis of the quabodepistat:2,5DHBA co-crystal.

4. Database survey

A search for co-crystals with 2,5-di­hydroxy­benzoic acid (or gentisic acid) in the Cambridge Structural Database (WebCSD, accessed June 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave a total of 55 hits. In contrast, a search for co-crystals of quabodepistat with 2,5DHBA in the SciFinder database gave a total of two hits (Sakamoto & Miyata, 2021[Sakamoto, N. & Miyata, K. (2021). WO2021230198 A1 2021-11-18. https://patents. google. com/patent/WO2021230198A1/en.]).

5. Synthesis and crystallization

Quabodepistat was synthesized at Otsuka Pharmaceutical Co., Ltd. (Tokushima, Japan). Tetra­hydro­furan (THF) and hexane were purchased from FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan). 2,5DHBA was purchased from Tokyo Kasei Kogyo Co., Ltd. (Tokyo, Japan). Quabodepistat (5 g) and 2,5DHBA (16.9 g, stoichiometric ratio 1:10) were dissolved in 100 mL of THF. 250 mL of hexane were added while stirring. Precipitation occurred as soon as hexane was added. The THF/hexane was stirred at room temperature (approximately 298 K) for three days. After filtration, it was dried at room temperature for 24 h, then heated at 383 K for 20 h.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Two data sets were merged to obtain 93.1% data completeness to 0.9 Å resolution. Crystals were illuminated at an electron dose rate of ∼0.01 eÅ−2 s−1. Contiguous diffraction frames were collected every 0.5° from each crystal by continuously rotating the sample stage at a goniometer rotation speed of 1° s−1; the sample stage was rotated from −40° to 40° for the first crystal (crystal 1) and from −60° to 60° for the second crystal (crystal 2). The structure was refined kinematically. Refinement with SHELXL was carried out using the scattering factors for electron diffraction (Saha et al., 2022[Saha, A., Nia, S. & Rodríguez, J. (2022). Chem. Rev. 122, 13883-13914.]). Pseudo-merohedric twinning was identified and refined as described by Parkin (2021[Parkin, S. R. (2021). Acta Cryst. E77, 452-465.]). For absolute structure determination, dynamical refinement is required. However, it was not performed since the absolute configuration of quabodepistat, which has two stereocenters, is known. Extinction was high because of the dynamical effects of electron diffraction (Saha et al., 2022[Saha, A., Nia, S. & Rodríguez, J. (2022). Chem. Rev. 122, 13883-13914.]). In spite of the presence of some unusual bond lengths and angles, no unusual inter­molecular contacts are observed. This indicates that the structural model presented is correct.

Table 2
Experimental details

Crystal data
Chemical formula C21H20ClF3N2O4·C7H6O4
Mr 610.96
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 5.6 (3), 9.6 (3), 28.2 (3)
β (°) 90.30 (9)
V3) 1516 (109)
Z 2
Radiation type Electron, λ = 0.0251 Å
Crystal size (μm) 1.0 × 0.2 × 0.2
 
Data collection
Diffractometer Rigaku XtaLAB Synergy-ED
No. of measured, independent and observed [I > 2σ(I)] reflections 8548, 4096, 2030
Rint 0.149
θmax (°) 0.8
(sin θ/λ)max−1) 0.556
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.160, 0.480, 1.08
No. of reflections 4096
No. of parameters 348
No. of restraints 537
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.15
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXD (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

5-{[(3R,4R)-1-(4-Chloro-2,6-difluorophenyl)-3,4-dihydroxypiperidin-4-yl]methoxy}-8-fluoro-3,4-dihydroquinolin-2(1H)-one–2,5-dihydroxybenzoic acid (1/1) top
Crystal data top
C21H20ClF3N2O4·C7H6O4F(000) = 224
Mr = 610.96Dx = 1.338 Mg m3
Monoclinic, P21Electron radiation, λ = 0.0251 Å
a = 5.6 (3) ÅCell parameters from 411 reflections
b = 9.6 (3) Åθ = 0.1–0.8°
c = 28.2 (3) ŵ = 0.000 mm1
β = 90.30 (9)°T = 293 K
V = 1516 (109) Å3Thin platelets, colourless
Z = 21 × 0.2 × 0.2 mm
Data collection top
Rigaku XtaLAB Synergy-ED
diffractometer
2030 reflections with I > 2σ(I)
Radiation source: thermionic-emission electron gunRint = 0.149
Detector resolution: 10.0 pixels mm-1θmax = 0.8°, θmin = 0.1°
rotation scansh = 66
8548 measured reflectionsk = 1010
4096 independent reflectionsl = 3131
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.2805P)2 + 0.170P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.160(Δ/σ)max = 0.001
wR(F2) = 0.480Δρmax = 0.15 e Å3
S = 1.08Δρmin = 0.15 e Å3
4096 reflectionsExtinction correction: 'SHELXL2018/3 (Sheldrick, 2015)', Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
348 parametersExtinction coefficient: 368 (31)
537 restraintsAbsolute structure: All f" are zero, so absolute structure could not be determined
Hydrogen site location: inferred from neighbouring sites
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.960 (3)0.5589 (17)0.7945 (6)0.070 (5)
C110.804 (4)0.6700 (17)0.7886 (5)0.068 (4)
C60.660 (3)0.7121 (17)0.8261 (6)0.063 (4)
C50.673 (3)0.6431 (19)0.8694 (6)0.072 (5)
C40.829 (3)0.5320 (19)0.8752 (5)0.075 (5)
H40.8375830.4858530.9042200.090*
C30.973 (3)0.4899 (16)0.8378 (6)0.073 (5)
H31.0773240.4155970.8416800.087*
C100.796 (5)0.753 (2)0.7416 (8)0.069 (5)
H10A0.9579750.7850320.7358930.083*
H10B0.7596020.6863970.7166840.083*
C90.631 (5)0.878 (3)0.7338 (10)0.075 (5)
H9A0.5283420.8599990.7066300.090*
H9B0.7267510.9592100.7269080.090*
C80.476 (5)0.906 (3)0.7778 (9)0.068 (5)
N70.479 (5)0.824 (2)0.8206 (10)0.067 (5)
H70.3592490.8428590.8466240.080*
C320.785 (2)0.0552 (14)0.9171 (6)0.053 (4)
C370.611 (3)0.1500 (15)0.9033 (5)0.054 (4)
H370.6088910.1845410.8724680.065*
C360.440 (2)0.1933 (15)0.9357 (6)0.057 (5)
C350.443 (2)0.1417 (17)0.9818 (6)0.059 (5)
H350.3279330.1706611.0034120.071*
C340.617 (3)0.0469 (18)0.9955 (5)0.064 (5)
H340.6192000.0123431.0263630.076*
C330.789 (2)0.0036 (15)0.9632 (6)0.059 (4)
O401.128 (4)0.085 (2)0.8909 (11)0.069 (6)
C151.307 (4)0.340 (2)0.7081 (11)0.081 (5)
C380.975 (3)0.005 (2)0.8818 (8)0.053 (4)
O420.251 (4)0.291 (2)0.9211 (10)0.061 (6)
H420.1564680.3020440.9430370.092*
C141.241 (6)0.397 (3)0.7565 (12)0.082 (5)
H14A1.1516050.3269330.7736900.099*
H14B1.3864750.4156600.7742960.099*
O120.319 (5)1.000 (2)0.7774 (9)0.075 (7)
O410.958 (4)0.099 (2)0.9792 (11)0.076 (7)
H411.0438870.1217980.9569390.114*
F130.511 (6)0.688 (2)0.9048 (10)0.079 (7)
O11.104 (4)0.520 (2)0.7540 (12)0.077 (5)
O390.968 (4)0.071 (2)0.8400 (11)0.066 (5)
H391.0721000.0391390.8226070.099*
C171.138 (5)0.243 (2)0.6290 (10)0.090 (6)
H17A1.2321760.1585930.6284000.108*
H17B0.9883010.2251250.6127650.108*
O210.972 (5)0.185 (3)0.7110 (12)0.098 (8)
H210.8283590.2005910.7114080.148*
C201.438 (5)0.447 (2)0.6775 (10)0.089 (6)
H20A1.3463280.5329110.6780270.106*
H20B1.5912130.4669270.6924420.106*
O221.469 (3)0.224 (2)0.7149 (14)0.083 (7)
H221.4014360.1618320.7296670.125*
C161.087 (4)0.283 (2)0.6810 (9)0.083 (5)
H160.9765170.3618260.6790040.100*
C231.265 (6)0.344 (3)0.5511 (9)0.131 (7)
C281.434 (5)0.264 (3)0.5280 (10)0.150 (8)
C271.440 (5)0.261 (3)0.4787 (10)0.164 (9)
H271.5537040.2066570.4631850.197*
C261.277 (6)0.339 (4)0.4525 (9)0.170 (9)
C251.108 (5)0.419 (3)0.4756 (10)0.162 (9)
H250.9986390.4714060.4580990.194*
C241.102 (5)0.422 (3)0.5249 (10)0.148 (8)
Cl311.268 (6)0.322 (4)0.3905 (9)0.215 (12)
F290.929 (10)0.501 (5)0.548 (2)0.172 (14)
F301.615 (9)0.176 (5)0.551 (2)0.158 (13)
C191.485 (4)0.410 (3)0.6254 (10)0.092 (6)
H19A1.5348900.4922100.6082410.111*
H19B1.6124020.3419210.6236960.111*
N181.268 (5)0.353 (3)0.6034 (11)0.101 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.078 (9)0.057 (8)0.076 (10)0.029 (7)0.010 (9)0.005 (8)
C110.085 (9)0.056 (8)0.062 (9)0.030 (7)0.008 (8)0.011 (7)
C60.087 (9)0.043 (7)0.059 (9)0.034 (7)0.009 (8)0.015 (7)
C50.088 (10)0.063 (9)0.066 (10)0.037 (8)0.007 (9)0.024 (8)
C40.081 (11)0.069 (10)0.074 (11)0.037 (8)0.002 (10)0.020 (9)
C30.082 (11)0.059 (9)0.076 (11)0.032 (9)0.002 (10)0.008 (8)
C100.089 (10)0.058 (9)0.060 (10)0.031 (8)0.009 (10)0.011 (8)
C90.096 (11)0.067 (9)0.062 (11)0.040 (9)0.015 (10)0.018 (9)
C80.090 (10)0.058 (8)0.055 (10)0.045 (8)0.011 (9)0.013 (8)
N70.096 (10)0.045 (8)0.059 (10)0.040 (8)0.015 (9)0.009 (7)
C320.051 (7)0.050 (7)0.057 (9)0.005 (6)0.002 (7)0.002 (7)
C370.055 (8)0.052 (8)0.055 (10)0.010 (7)0.008 (8)0.004 (8)
C360.049 (8)0.064 (9)0.059 (10)0.015 (7)0.004 (8)0.004 (8)
C350.052 (9)0.063 (9)0.062 (10)0.001 (7)0.009 (9)0.003 (9)
C340.064 (9)0.063 (9)0.064 (10)0.000 (8)0.004 (9)0.012 (9)
C330.061 (8)0.053 (8)0.065 (10)0.004 (7)0.006 (8)0.009 (8)
O400.047 (10)0.078 (12)0.083 (17)0.016 (9)0.025 (12)0.016 (12)
C150.062 (8)0.062 (8)0.118 (11)0.038 (7)0.019 (9)0.020 (8)
C380.044 (8)0.053 (9)0.063 (10)0.001 (7)0.001 (8)0.008 (8)
O420.048 (10)0.065 (11)0.072 (16)0.022 (8)0.004 (12)0.005 (11)
C140.072 (10)0.059 (9)0.116 (12)0.033 (9)0.018 (10)0.011 (9)
O120.106 (15)0.062 (11)0.058 (15)0.059 (11)0.015 (13)0.020 (11)
O410.087 (14)0.055 (10)0.087 (17)0.001 (9)0.013 (14)0.024 (12)
F130.134 (17)0.045 (9)0.059 (14)0.041 (11)0.023 (13)0.025 (10)
O10.071 (9)0.057 (8)0.103 (12)0.030 (8)0.018 (10)0.007 (9)
O390.046 (10)0.084 (12)0.069 (13)0.001 (10)0.000 (11)0.005 (11)
C170.075 (10)0.072 (10)0.124 (13)0.041 (9)0.019 (11)0.018 (10)
O210.068 (12)0.092 (14)0.14 (2)0.016 (10)0.013 (15)0.031 (14)
C200.074 (10)0.067 (9)0.125 (13)0.034 (8)0.020 (11)0.026 (10)
O220.049 (10)0.057 (10)0.14 (2)0.036 (9)0.027 (13)0.012 (12)
C160.062 (9)0.065 (9)0.122 (12)0.039 (8)0.019 (10)0.018 (9)
C230.123 (13)0.128 (12)0.143 (14)0.041 (12)0.019 (14)0.012 (13)
C280.146 (15)0.149 (15)0.154 (16)0.043 (14)0.018 (16)0.007 (15)
C270.165 (16)0.162 (16)0.166 (18)0.041 (15)0.017 (18)0.011 (17)
C260.174 (16)0.168 (16)0.168 (17)0.040 (15)0.015 (18)0.007 (16)
C250.161 (16)0.159 (16)0.165 (18)0.040 (15)0.015 (18)0.005 (17)
C240.144 (15)0.146 (15)0.153 (17)0.045 (14)0.018 (16)0.012 (15)
Cl310.23 (2)0.22 (2)0.19 (2)0.06 (2)0.01 (2)0.01 (2)
F290.17 (3)0.18 (3)0.16 (3)0.05 (2)0.02 (3)0.02 (2)
F300.16 (2)0.14 (2)0.17 (3)0.05 (2)0.01 (3)0.05 (2)
C190.078 (11)0.072 (10)0.127 (13)0.041 (9)0.025 (12)0.030 (11)
N180.088 (10)0.090 (10)0.126 (12)0.035 (9)0.022 (11)0.023 (10)
Geometric parameters (Å, º) top
C2—C111.3900C15—O221.45 (5)
C2—C31.3900C15—C161.54 (6)
C2—O11.45 (4)C38—O391.34 (4)
C11—C61.3900O42—H420.8200
C11—C101.55 (2)C14—H14A0.9700
C6—C51.3900C14—H14B0.9700
C6—N71.49 (6)C14—O11.41 (5)
C5—C41.3900O41—H410.8200
C5—F131.42 (5)O39—H390.8200
C4—H40.9300C17—H17A0.9700
C4—C31.3900C17—H17B0.9700
C3—H30.9300C17—C161.54 (2)
C10—H10A0.9700C17—N181.47 (4)
C10—H10B0.9700O21—H210.8200
C10—C91.53 (5)O21—C161.42 (3)
C9—H9A0.9700C20—H20A0.9700
C9—H9B0.9700C20—H20B0.9700
C9—C81.54 (4)C20—C191.53 (2)
C8—N71.44 (4)O22—H220.8200
C8—O121.26 (5)C16—H160.9800
N7—H71.0100C23—C281.3900
C32—C371.3900C23—C241.3900
C32—C331.3900C23—N181.47 (4)
C32—C381.53 (5)C28—C271.3900
C37—H370.9300C28—F301.46 (7)
C37—C361.3900C27—H270.9300
C36—C351.3900C27—C261.3900
C36—O421.47 (6)C26—C251.3900
C35—H350.9300C26—Cl311.75 (3)
C35—C341.3900C25—H250.9300
C34—H340.9300C25—C241.3900
C34—C331.3900C24—F291.40 (7)
C33—O411.44 (5)C19—H19A0.9700
O40—C381.24 (5)C19—H19B0.9700
C15—C141.52 (4)C19—N181.46 (6)
C15—C201.54 (4)
C11—C2—C3120.0O40—C38—C32124 (3)
C11—C2—O1117 (2)O40—C38—O39122 (2)
C3—C2—O1123 (2)O39—C38—C32114 (2)
C2—C11—C10120.8 (16)C36—O42—H42109.5
C6—C11—C2120.0C15—C14—H14A108.9
C6—C11—C10119.2 (19)C15—C14—H14B108.9
C11—C6—N7122 (2)H14A—C14—H14B107.7
C5—C6—C11120.0O1—C14—C15113 (3)
C5—C6—N7117.9 (18)O1—C14—H14A108.9
C6—C5—C4120.0O1—C14—H14B108.9
C6—C5—F13116 (2)C33—O41—H41109.5
C4—C5—F13124 (2)C14—O1—C2119 (3)
C5—C4—H4120.0C38—O39—H39109.5
C3—C4—C5120.0H17A—C17—H17B107.9
C3—C4—H4120.0C16—C17—H17A109.1
C2—C3—H3120.0C16—C17—H17B109.1
C4—C3—C2120.0N18—C17—H17A109.1
C4—C3—H3120.0N18—C17—H17B109.1
C11—C10—H10A106.6N18—C17—C16112 (2)
C11—C10—H10B106.6C16—O21—H21109.5
H10A—C10—H10B106.6C15—C20—H20A107.9
C9—C10—C11123 (2)C15—C20—H20B107.9
C9—C10—H10A106.6H20A—C20—H20B107.2
C9—C10—H10B106.6C19—C20—C15117 (2)
C10—C9—H9A109.3C19—C20—H20A107.9
C10—C9—H9B109.3C19—C20—H20B107.9
C10—C9—C8111 (3)C15—O22—H22109.5
H9A—C9—H9B108.0C15—C16—H16105.0
C8—C9—H9A109.3C17—C16—C15114 (3)
C8—C9—H9B109.3C17—C16—H16105.0
N7—C8—C9125 (2)O21—C16—C15107 (3)
O12—C8—C9121 (3)O21—C16—C17119 (3)
O12—C8—N7114 (3)O21—C16—H16105.0
C6—N7—H7120.4C28—C23—C24120.0
C8—N7—C6119 (3)C28—C23—N18120 (2)
C8—N7—H7120.4C24—C23—N18120 (2)
C37—C32—C33120.0C23—C28—C27120.0
C37—C32—C38121 (2)C23—C28—F30126 (3)
C33—C32—C38119.1 (19)C27—C28—F30114 (3)
C32—C37—H37120.0C28—C27—H27120.0
C36—C37—C32120.0C26—C27—C28120.0
C36—C37—H37120.0C26—C27—H27120.0
C37—C36—C35120.0C27—C26—Cl31119.7 (11)
C37—C36—O42120 (3)C25—C26—C27120.0
C35—C36—O42119.6 (18)C25—C26—Cl31120.1 (13)
C36—C35—H35120.0C26—C25—H25120.0
C34—C35—C36120.0C26—C25—C24120.0
C34—C35—H35120.0C24—C25—H25120.0
C35—C34—H34120.0C23—C24—F29120 (4)
C35—C34—C33120.0C25—C24—C23120.0
C33—C34—H34120.0C25—C24—F29120 (3)
C32—C33—O41122.8 (19)C20—C19—H19A109.6
C34—C33—C32120.0C20—C19—H19B109.6
C34—C33—O41117 (3)H19A—C19—H19B108.1
C14—C15—C20112 (3)N18—C19—C20110 (3)
C14—C15—C16112 (3)N18—C19—H19A109.6
C20—C15—C16110 (3)N18—C19—H19B109.6
O22—C15—C14109 (3)C17—N18—C23116 (3)
O22—C15—C20107 (4)C19—N18—C17118 (3)
O22—C15—C16107 (4)C19—N18—C23117 (3)
C2—C11—C6—C50.0C14—C15—C16—C17172 (2)
C2—C11—C6—N7176 (2)C14—C15—C16—O2154 (3)
C2—C11—C10—C9179 (2)O12—C8—N7—C6178 (2)
C11—C2—C3—C40.0F13—C5—C4—C3176 (2)
C11—C2—O1—C14172 (2)O1—C2—C11—C6179.7 (19)
C11—C6—C5—C40.0O1—C2—C11—C103 (2)
C11—C6—C5—F13177 (2)O1—C2—C3—C4180 (2)
C11—C6—N7—C810 (3)C20—C15—C14—O156 (4)
C11—C10—C9—C81 (4)C20—C15—C16—C1746 (3)
C6—C11—C10—C92 (4)C20—C15—C16—O21180 (2)
C6—C5—C4—C30.0C20—C19—N18—C1748 (3)
C5—C6—N7—C8174 (2)C20—C19—N18—C23165 (2)
C5—C4—C3—C20.0O22—C15—C14—O1174 (2)
C3—C2—C11—C60.0O22—C15—C20—C1969 (3)
C3—C2—C11—C10177 (2)O22—C15—C16—C1770 (3)
C3—C2—O1—C148 (3)O22—C15—C16—O2165 (3)
C10—C11—C6—C5177 (2)C16—C15—C14—O169 (4)
C10—C11—C6—N77 (2)C16—C15—C20—C1946 (3)
C10—C9—C8—N72 (4)C16—C17—N18—C23163 (3)
C10—C9—C8—O12176 (3)C16—C17—N18—C1951 (4)
C9—C8—N7—C67 (5)C23—C28—C27—C260.0
N7—C6—C5—C4176 (2)C28—C23—C24—C250.0
N7—C6—C5—F131 (2)C28—C23—C24—F29178.7 (11)
C32—C37—C36—C350.0C28—C23—N18—C1786 (5)
C32—C37—C36—O42178.6 (16)C28—C23—N18—C1961 (5)
C37—C32—C33—C340.0C28—C27—C26—C250.0
C37—C32—C33—O41177.5 (17)C28—C27—C26—Cl31174 (3)
C37—C32—C38—O40175.6 (19)C27—C26—C25—C240.0
C37—C32—C38—O396 (2)C26—C25—C24—C230.0
C37—C36—C35—C340.0C26—C25—C24—F29178.7 (11)
C36—C35—C34—C330.0C24—C23—C28—C270.0
C35—C34—C33—C320.0C24—C23—C28—F30179 (3)
C35—C34—C33—O41177.7 (17)C24—C23—N18—C1797 (5)
C33—C32—C37—C360.0C24—C23—N18—C19116 (4)
C33—C32—C38—O404 (3)Cl31—C26—C25—C24174 (3)
C33—C32—C38—O39174.3 (16)F30—C28—C27—C26179 (3)
C15—C14—O1—C2159 (2)N18—C17—C16—C1549 (3)
C15—C20—C19—N1847 (3)N18—C17—C16—O21177 (2)
C38—C32—C37—C36179.5 (14)N18—C23—C28—C27177 (3)
C38—C32—C33—C34179.5 (14)N18—C23—C28—F304 (3)
C38—C32—C33—O412 (2)N18—C23—C24—C25177 (3)
O42—C36—C35—C34178.6 (16)N18—C23—C24—F295 (3)
C14—C15—C20—C19172 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O42i0.932.713.40 (7)131
C9—H9B···O22ii0.972.943.49 (11)117
N7—H7···O40ii1.011.932.93 (9)169
C34—H34···O42iii0.932.693.48 (7)143
O42—H42···O41iv0.822.483.23 (6)152
O39—H39···O12v0.821.922.73 (10)169
O21—H21···O22vi0.822.022.84 (18)175
O22—H22···O12v0.822.112.90 (7)164
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1, z; (iii) x+1, y1/2, z+2; (iv) x+1, y+1/2, z+2; (v) x+1, y1, z; (vi) x1, y, z.
 

Acknowledgements

The authors thank Dr Yamano (Rigaku Corporation) for technical advice on microED. The authors also thank Dr Kawato (Otsuka Pharmaceutical Co., Ltd.) for helpful discussions of the single-crystal structure.

References

First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHariguchi, N., Chen, X., Hayashi, Y., Kawano, Y., Fujiwara, M., Matsuba, M., Shimizu, H., Ohba, Y., Nakamura, I., Kitamoto, R., Shinohara, T., Uematsu, Y., Ishikawa, S., Itotani, M., Haraguchi, Y., Takemura, I. & Matsumoto, M. (2020). Antimicrob. Agents Chemother. 64, e02020–19.  CrossRef PubMed Google Scholar
First citationIto, S., White, F., Okunishi, E., Aoyama, Y., Yamano, A., Sato, H., Ferrara, J., Jasnowski, M. & Meyer, M. (2021). ChemRxiv. https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/612e43f042198e340e68fb89/original/structure-determination-of-small-molecule-compounds-by-an-electron-diffractometer-for-3d-ed-micro-ed.pdf  Google Scholar
First citationKimoto, K., Yamamoto, M., Karashima, M., Hohokabe, M., Takeda, J., Yamamoto, K. & Ikeda, Y. (2020). Crystals, 10, 211.  CrossRef Google Scholar
First citationLevy, G. & Tsuchiya, T. (1972). N. Engl. J. Med. 287, 430–432.  CrossRef CAS PubMed Google Scholar
First citationParkin, S. R. (2021). Acta Cryst. E77, 452–465.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSaha, A., Nia, S. & Rodríguez, J. (2022). Chem. Rev. 122, 13883–13914.  CrossRef CAS PubMed Google Scholar
First citationSakamoto, N. & Miyata, K. (2021). WO2021230198 A1 2021-11-18. https://patents. google. com/patent/WO2021230198A1/en.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, J., Dai, X., Lu, T. & Chen, J. (2021). Cryst. Growth Des. 21, 838–846.  CSD CrossRef CAS Google Scholar
First citationYoshimura, M., Miyake, M., Kawato, T., Bando, M., Toda, M., Kato, Y., Fukami, T. & Ozeki, T. (2017). Cryst. Growth Des. 17, 550–557.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds