research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and thermal behavior of tetra­kis­(3-cyano­pyridine N-oxide-κO)bis­­(thio­cyanato-κN)cobalt(II), which shows strong pseudo­symmetry

crossmark logo

aInstitut für Anorganische Chemie, Universität Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 30 June 2023; accepted 4 August 2023; online 8 September 2023)

The title compound, [Co(SCN)2(C6H4N2O)4], was prepared by the reaction of cobalt(II)thio­cyanate with 3-cyano­pyridine N-oxide in ethanol. In the crystal, the cobalt(II) cations are octa­hedrally coordinated by two terminal N-bonded thio­cyanate anions and four O-bonded 3-cyano­pyridine N-oxide coligands, forming discrete complexes that are located on centers of inversion, hence forming trans-CoN2O4 octa­hedra. The structure refinement was performed in the monoclinic space group P21/n, for which a potential lattice translation and new symmetry elements with a fit of 100% is suggested. The structure can easily be refined in the space group I2/m, where the complexes have 2/m symmetry. However, nearly all of the reflections that violate the centering are observed with significant intensity and the refinement in P21/n leads to significantly lower R(F) values (0.027 versus 0.033). Moreover, in I2/m much larger components of the anisotropic displacement parameters are observed and therefore, the crystal structure is presented in the primitive unit cell. IR investigations confirm that the anionic ligands are only terminally bonded and that the cyano group is not involved in the metal coordination. PXRD investigations show that a pure crystalline phase has been obtained and measurements using simultaneously thermogravimetry and differential thermoanalysis reveal that the compound decomposes in an exothermic reaction upon heating, without the formation of a coligand-deficient inter­mediate phase.

1. Chemical context

The synthesis of new coordination compounds is still an important field in chemistry. In most cases, such compounds are prepared in solution but there are alternatives, where they are prepared in the solid state using, for example, mol­ecular milling (Stolar et al., 2017[Stolar, T., Batzdorf, L., Lukin, S., Žilić, D., Motillo, C., Friščić, T., Emmerling, F., Halasz, I. & Užarević, K. (2017). Inorg. Chem. 56, 6599-6608.]; Darwish et al., 2019[Darwish, S., Wang, S. Q., Croker, D. M., Walker, G. M. & Zaworotko, M. J. (2019). ACS Sustainable Chem. Eng. 7, 19505-19512.]), grinding (Adams et al., 2007[Adams, C. J., Colquhoun, H. M., Crawford, P. C., Lusi, M. & Orpen, A. G. (2007). Angew. Chem. Int. Ed. 46, 1124-1128.]) or molten-flux synthesis (Höller et al., 2010[Höller, C. J., Mai, M., Feldmann, C. & Müller-Buschbaum, K. (2010). Dalton Trans. 39, 461-468.]; Schönfeld et al., 2012[Schönfeld, F., Meyer, L. V., Winter, F., Niehaus, O., Rodewald, U. Ch., Pöttgen, R. & Müller-Buschbaum, K. (2012). Z. Anorg. Allg. Chem. 638, 12-13.]). In our own investigations, we frequently use thermal ligand removal of suitable precursor compounds for the solid-state synthesis of new coordination compounds that mostly consist of discrete complexes, in which the anionic ligands are only terminally bonded. Upon heating, these precursors frequently lose their neutral coligands in a stepwise fashion, forming inter­mediate compounds with condensed networks in which the metal cations are linked by the anionic ligands into one-, two- or three-dimensional networks. In the beginning, our inter­est focused on transition-metal–halide coordination compounds (Näther et al., 2001[Näther, C., Jess, I. & Greve, J. (2001). Polyhedron, 20, 1017-1022.]; Näther & Jess, 2004[Näther, C. & Jess, I. (2004). Eur. J. Inorg. Chem. pp. 2868-2876.]), but in recent years we have used this approach for the synthesis of transition-metal thio- and seleno­cyanates because these anionic ligands mediate reasonable magnetic exchange, which allows the preparation of compounds that show versatile magnetic behavior (Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Gowth Des. 56, 2380-2388.]; Mekuimemba, et al., 2018[Mekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184-2192.]). In this context, of special inter­est are compounds based on CoII in which the cations are linked by pairs of thio- or seleno­cyanate anions into chains, because they can show three-dimensional but especially one-dimensional magnetic ordering (Werner et al., 2014[Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333-17342.]; Rams et al., 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]). The major advantage of our approach is the fact that the new compounds are obtained in qu­anti­tative yield and that frequently metastable polymorphs or isomers can be prepared that often are not available from solution (Werner et al., 2015[Werner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015). Eur. J. Inorg. Chem. 2015, 3236-3245.]).

[Scheme 1]

In recent investigations, N-donor coligands have been used that mostly consist of pyridine derivatives (Rams et al., 2017[Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 24534-24544.]), but to investigate the influence of the coligands on the magnetic anisotropy of CoII centers, we also used S-donor coligands, such as ethyl­ene­thio­urea, that lead to a modified magnetic behavior (Jochim et al., 2020[Jochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 8971-8982.]). In a continuation of this work, we became inter­ested in O-donor coligands and we found that only very few Co(NCS)2 compounds with bridging thio­cyanate anions and such coligands have been reported in the literature (see Database survey). We also found that only in Co(NCS)2(THF)2 the CoII cations are linked by pairs of bridging anionic ligands into linear chains (Cambridge Structural Database refcode QIKQUY; Shurdha et al., 2013[Shurdha, E., Moore, C. E., Rheingold, A. L., Lapidus, S. H., Stephens, P. W., Arif, A. M. & Miller, J. S. (2013). Inorg. Chem. 52, 10583-10594.]). In this context, we became inter­ested in pyridine N-oxide derivatives, for which two Co(NCS)2 compounds with bridging thio­cyanate anions are reported in the literature (see Database survey). In our first investigations, we used 3-cyano­pyridine N-oxide (C6H4N2O) as a coligand, which is commercially available and for which no coordination compounds have been reported. However, independent of the amounts of Co(NCS)2 and 3-cyano­pyridine N-oxide in the synthesis, the same crystalline phase was always obtained. The CN- stretching vibration of the cyano group is observed at 2241 cm−1 in the IR spectrum, indicating that this group is not involved in the metal coordination (Fig. S1). The CN-stretching vibration of the thio­cyanate anion occurs at 2051 cm−1, which proves that the anionic ligand is only terminally coordinated (Fig. S1). To confirm all these assumptions, the new crystalline phase was characterized by single crystal X-ray diffraction (see below).

2. Structural commentary

The asymmetric unit of the title compound, Co(SCN)2(C6H4N2O)4, consists of one crystallographically independent CoII cation that is located on a center of inversion, as well as one independent thio­cyanate anion and two independent 3-cyano­pyridine N-oxide coligands in general positions (Fig. 1[link]). The CoII cations therefore adopt trans-CoN2O4 octa­hedral geometries (Fig. 1[link]). Bond lengths and angles correspond to literature values and show that the octa­hedra are slightly distorted (Table 1[link]).

Table 1
Selected geometric parameters (Å, °)

Co1—N1 2.0596 (13) Co1—O21 2.0985 (9)
Co1—O11 2.1019 (10)    
       
N1i—Co1—O11 93.52 (4) N1—Co1—O21i 94.51 (4)
N1—Co1—O11 86.48 (4) O21—Co1—O11 90.62 (4)
N1—Co1—O21 85.49 (4) O21—Co1—O11i 89.38 (4)
Symmetry code: (i) [-x, -y+1, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) −x, −y + 1, −z + 1.

If the structure is checked for higher symmetry using PLATON (Spek et al., 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) or checkCIF, a pseudo-translation and space group I2/m is suggested with 100% fit. The structure can easily be refined in this space group and the refinement leads to reasonable reliability factors. The refinement in space group I2/m, however, leads to significantly higher residuals than in space group P21/n [R(F) for 2829 reflections with Fo > 4σ(Fo) = 0.027 in P21/n versus 0.033 for 1446 reflections with Fo > 4σ(Fo) in I2/m and wR(F2) = 0.083 for all 2829 independent reflections (P21/n) versus 0.092 for all 1446 reflections (I2/m)]. In this context, it is noted that nearly all reflections violating the centering are observed. Moreover, from the refinement in I2/m it is obvious that significantly enlarged anisotropic displacement parameters are observed, which are much larger than expected for a measurement at 100 K, indicating too high symmetry (Fig. 2[link]). For all these reasons, the crystal structure is presented in the monoclinic primitive space group P21/n.

[Figure 2]
Figure 2
Mol­ecular structure of the title compound refined in space group I2/m with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i) −x, 1 − y, 1 − z, (ii) −x, y, 1 − z, (iii) x, 1 − y, z.

3. Supra­molecular features

In the extended structure of the title compound, the complexes are arranged in columns that proceed along the crystallographic a-axis (Fig. 3[link]). In this direction the translation leading to the pseudo-centering is also obvious. Several C—H⋯O, C—H⋯S and C—H⋯N contacts are observed between the complexes, but from the distances and angles it is obvious that they do not correspond to strong inter­actions (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O21i 0.95 2.61 3.3295 (17) 133
C11—H11⋯N22ii 0.95 2.57 3.3902 (19) 145
C14—H14⋯S1iii 0.95 2.91 3.7585 (15) 149
C15—H15⋯O21iii 0.95 2.45 3.2351 (16) 140
C21—H21⋯N12iv 0.95 2.52 3.3233 (19) 142
C24—H24⋯S1iii 0.95 2.96 3.8082 (15) 150
C25—H25⋯O11iii 0.95 2.28 3.1335 (16) 148
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
The packing of the title compound showing the arrangement of the discrete complexes along the crystallographic a-axis.

4. Thermoanalytical investigations

Based on the single-crystal data, an X-ray powder pattern was calculated and compared with the experimental pattern, which proves that the title compound was obtained as a pure phase (Fig. S2). Because in our synthetic investigations no further compounds were detected, it was checked whether a compound with a more condensed network is available by thermal ligand removal. Therefore, the title compound was investigated simultaneously by differential thermoanalysis and thermogravimetry under nitro­gen. Upon heating, only one mass loss of 58.8% is observed until 400°C that does not fit to a stepwise loss of the 3-cyano­pyridine N-oxide ligands (calculated mass loss for each 3-cyano­pyridine N-oxide ligand = 18.3%; Fig. S3). From the DTA curve, the onset of an endothermic event is visible, followed by a strong exothermic event at a peak temperature of 220°C. This is an unusual observation, because in previous investigations using pyridine derivatives the ligand removal always proceeds in an endothermic reaction. Oxidation of the compound might be excluded because all measurements were performed in a nitro­gen atmosphere and therefore one must assume that this ligand is thermally unstable and decomposes upon heating. In agreement with these observations, the residue obtained at 400°C is amorphous against X-rays (Fig. S4).

5. Database survey

A search in the Cambridge Structural Database (version 5.43, last update March 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using ConQuest reveals that no coordination compounds with 3-cyano­pyridine N-oxide as a ligand have been reported. With 4-cyano­pyridine, three compounds are known, including 4-cyano­pyridine N-oxide)bis­(iso­thio­cyanate­aqua­zinc(II) (refcode UKEZIV; Mautner et al., 2016[Mautner, F. E., Berger, C., Fischer, R. C. & Massoud, S. S. (2016). Polyhedron, 111, 86-93.]) and the two isotypic compounds bis­(μ-thio­cyanato)-di­aqua-tetra­kis­(4-cyano­pyridine N-oxide)bis(iso­thio­cyanato) cadmium(II) (UKIMAE; Mautner et al., 2016[Mautner, F. E., Berger, C., Fischer, R. C. & Massoud, S. S. (2016). Polyhedron, 111, 86-93.]) and manganese(II) (KESSIN; Mautner et al., 2018[Mautner, F. E., Berger, C., Fischer, R. C., Massoud, S. S. & Vicente, R. (2018). Polyhedron, 141, 17-24.]). The Zn compound consists of discrete complexes, in which the ZnII cations are fivefold coordinated by two terminally N-bonded thio­cyanate anions, two 3-cyano­pyridine N-oxide ligands and one water mol­ecule, whereas the Mn and Cd compounds consist of dinuclear units, in which each metal cation is octa­hedrally coordinated by one water mol­ecule, one terminal and two bridging thio­cyanate anions and two 4-cyano­pyridine N-oxide ligands, and are linked into dinuclear units by pairs of μ-1,3-bridging thio­cyanate anions.

Some compounds based on Co(NCS)2 and pyridine N-oxide derivatives in which the CoII cations are linked by μ-1,3-bridging thio­cyanate anions are also known. This include the two isotypic compounds (4-methyl­pyridine N-oxide)bis­thio­cyanate)­cobalt(II) (MEQKOJ; Zhang et al., 2006b[Zhang, S.-G., Li, W.-N. & Shi, J.-M. (2006b). Acta Cryst. E62, m3506-m3608.]) (4-meth­oxy­pyridine N-oxide)bis­thio­cyanate)­cobalt(II) (TERRAK; Zhang et al., 2006a[Zhang, S.-G., Li, W.-N. & Shi, J.-M. (2006a). Acta Cryst. E62, m3398-m3400.]), (4-methyl­pyridine N-oxide)(meth­anol)bis­thio­cyanate)­cobalt(II) (REKBUF; Shi et al., 2006[Shi, J. M. L., Liu, Z., Sun, Y. M., Yi, L. & Liu, L. D. (2006). Chem. Phys. 325, 237-242.]) and bis­(4-nitro­pyridine N-oxide)bis­(thio­cyanate)­cobalt(II) (TILHIG; Shi et al., 2007[Shi, J. M., Chen, J. N., Wu, C. J. & Ma, J. P. (2007). J. Coord. Chem. 60, 2009-2013.]). In the first two compounds, the CoII cations are linked by pairs of thio­cyanate anions into corrugated chains that are further connected into layers by μ-1,1(O,O) bridging coligands. In the third compound with methanol, two CoII cations are linked by pairs of anionic ligands into dinuclear units and are further linked by pairs of μ-1,1(O,O) bridging 4-nitro­pyridine N-oxide ligands. In the compound with the 4-nitro substituent, the cations are linked by pairs of bridging thio­cyanate anions into chains that are corrugated because of the ciscistrans configuration at the CoII centers.

6. Synthesis and crystallization

Co(NCS)2 (99%) was purchased from Sigma Aldrich, 3-cyano­pyridine N-oxide (97%) was purchased from Thermo Scientific and ethanol (99.9%) was purchased from Fisher Chemical.

Synthesis:

Single crystals were obtained by the reaction of 0.25 mmol (43.5 mg) Co(SCN)2 and 1 mmol (120 mg) 3-cyano­pyridine N-oxide in 1 ml of ethanol. The reaction mixture was stored overnight, which lead to the formation of yellow needle-like crystals.

For the preparation of larger amounts of a microcrystalline powder, the same amount of reactants were stirred in 2 ml of ethanol for 1 d.

Experimental details:

The PXRD measurements were performed with a Stoe Transmission Powder Diffraction System (STADI P) equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator using Cu Kα1 radiation (λ = 1.540598 Å).

The IR spectra were measured using an ATI Mattson Genesis Series FTIR Spectrometer, control software: WINFIRST, from ATI Mattson.

Thermogravimetry and differential thermoanalysis (TG–DTA) measurements were performed in a dynamic nitro­gen atmosphere in Al2O3 crucibles using a STA-PT 1000 thermobalance from Linseis. The instrument was calibrated using standard reference materials.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms were positioned with idealized geometry and were refined with Uiso(H) = 1.2Ueq(C) using a riding model. As mentioned in the Structural commentary, the compound shows strong pseudosymmetry because of a pseudo-lattice translation indicating a centering, but our investigations show that the structure is best described in the primitive space group P21/n instead of I2/m. This is obvious in the reliability factors obtained by refinements in both space groups, but especially from the large components of the anisotropic displacement parameters if the structure is refined in the body-centered space group. Moreover, nearly all of the reflections that would violate the centering were observed.

Table 3
Experimental details

Crystal data
Chemical formula [Co(NCS)2(C6H4N2O)4]
Mr 655.54
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 6.5899 (1), 17.9658 (2), 11.9444 (1)
β (°) 96.131 (1)
V3) 1406.04 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 6.63
Crystal size (mm) 0.28 × 0.03 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.571, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23719, 2990, 2829
Rint 0.028
(sin θ/λ)max−1) 0.635
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.083, 1.11
No. of reflections 2990
No. of parameters 197
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.34
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.42.40a (Rigaku OD, 2022); cell refinement: CrysAlis PRO 1.171.42.40a (Rigaku OD, 2022); data reduction: CrysAlis PRO 1.171.42.40a (Rigaku OD, 2022); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015b); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015a); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Tetrakis(3-cyanopyridine N-oxide-κO)bis(thiocyanato-κN)\ cobalt(II) top
Crystal data top
[Co(NCS)2(C6H4N2O)4]F(000) = 666
Mr = 655.54Dx = 1.548 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 6.5899 (1) ÅCell parameters from 16616 reflections
b = 17.9658 (2) Åθ = 4.5–76.3°
c = 11.9444 (1) ŵ = 6.63 mm1
β = 96.131 (1)°T = 100 K
V = 1406.04 (3) Å3Needle, yellow
Z = 20.28 × 0.03 × 0.03 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
2990 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2829 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 10.0000 pixels mm-1θmax = 78.3°, θmin = 4.5°
ω scansh = 87
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 2222
Tmin = 0.571, Tmax = 1.000l = 1315
23719 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.3714P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.083(Δ/σ)max = 0.001
S = 1.11Δρmax = 0.24 e Å3
2990 reflectionsΔρmin = 0.34 e Å3
197 parametersExtinction correction: SHELXL2016/6 (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0007 (2)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.0000000.5000000.5000000.01595 (11)
N10.1137 (2)0.50708 (6)0.66710 (11)0.0204 (3)
C10.1405 (2)0.50936 (7)0.76538 (13)0.0196 (3)
S10.17656 (6)0.51232 (2)0.90206 (3)0.02903 (12)
O110.22429 (14)0.57834 (6)0.46915 (8)0.0237 (2)
N110.23654 (17)0.60259 (6)0.36497 (9)0.0198 (2)
C110.0786 (2)0.64024 (8)0.31076 (11)0.0208 (3)
H110.0376830.6520220.3480010.025*
C120.0881 (2)0.66154 (8)0.19988 (11)0.0214 (3)
C130.2587 (2)0.64494 (8)0.14458 (12)0.0246 (3)
H130.2640950.6583660.0680260.030*
C140.4198 (2)0.60828 (9)0.20484 (13)0.0270 (3)
H140.5393950.5972420.1700980.032*
C150.4073 (2)0.58770 (8)0.31525 (12)0.0242 (3)
H150.5188940.5630140.3564780.029*
C160.0832 (2)0.70028 (8)0.14185 (12)0.0246 (3)
N120.2185 (2)0.73137 (8)0.09481 (11)0.0324 (3)
O210.20988 (14)0.41291 (6)0.49113 (8)0.0221 (2)
C210.0785 (2)0.34632 (7)0.33413 (12)0.0206 (3)
H210.0414000.3356590.3687910.025*
C220.0971 (2)0.32231 (8)0.22576 (12)0.0218 (3)
C230.2739 (2)0.33654 (8)0.17478 (12)0.0263 (3)
H230.2861550.3208170.0998600.032*
C240.4310 (2)0.37428 (9)0.23672 (13)0.0279 (3)
H240.5545150.3838440.2048980.034*
C250.4087 (2)0.39810 (8)0.34478 (12)0.0239 (3)
H250.5172520.4236730.3872640.029*
C260.0726 (2)0.28445 (8)0.16431 (12)0.0247 (3)
N220.2080 (2)0.25501 (8)0.11394 (12)0.0323 (3)
N210.23268 (17)0.38504 (6)0.39006 (9)0.0190 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01140 (17)0.02239 (17)0.01407 (18)0.00014 (9)0.00137 (12)0.00016 (10)
N10.0170 (6)0.0261 (6)0.0178 (6)0.0005 (4)0.0010 (5)0.0008 (4)
C10.0135 (6)0.0248 (6)0.0207 (7)0.0004 (4)0.0032 (5)0.0009 (5)
S10.0330 (2)0.0394 (2)0.01490 (19)0.00001 (15)0.00368 (14)0.00104 (13)
O110.0188 (4)0.0343 (5)0.0174 (5)0.0063 (4)0.0012 (3)0.0061 (4)
N110.0162 (5)0.0236 (5)0.0193 (5)0.0040 (4)0.0009 (4)0.0026 (4)
C110.0167 (6)0.0240 (6)0.0216 (6)0.0005 (5)0.0014 (5)0.0002 (5)
C120.0208 (6)0.0205 (6)0.0230 (7)0.0007 (5)0.0016 (5)0.0004 (5)
C130.0256 (7)0.0284 (7)0.0203 (6)0.0024 (5)0.0044 (5)0.0011 (5)
C140.0192 (6)0.0348 (8)0.0279 (7)0.0011 (5)0.0057 (5)0.0002 (6)
C150.0172 (6)0.0279 (7)0.0275 (7)0.0008 (5)0.0018 (5)0.0021 (5)
C160.0276 (7)0.0264 (7)0.0202 (6)0.0020 (5)0.0038 (5)0.0001 (5)
N120.0348 (7)0.0369 (7)0.0250 (6)0.0122 (6)0.0009 (5)0.0006 (5)
O210.0200 (5)0.0295 (5)0.0165 (4)0.0058 (4)0.0000 (3)0.0042 (4)
C210.0165 (6)0.0222 (6)0.0230 (6)0.0001 (5)0.0022 (5)0.0011 (5)
C220.0214 (6)0.0209 (6)0.0227 (6)0.0009 (5)0.0003 (5)0.0010 (5)
C230.0239 (7)0.0324 (7)0.0232 (7)0.0005 (6)0.0053 (5)0.0035 (6)
C240.0197 (6)0.0380 (8)0.0268 (7)0.0013 (6)0.0057 (5)0.0031 (6)
C250.0158 (6)0.0294 (7)0.0261 (7)0.0005 (5)0.0010 (5)0.0022 (5)
C260.0273 (7)0.0244 (7)0.0226 (7)0.0020 (5)0.0030 (5)0.0002 (5)
N220.0343 (7)0.0333 (7)0.0286 (6)0.0102 (6)0.0001 (5)0.0022 (5)
N210.0168 (5)0.0219 (5)0.0181 (5)0.0034 (4)0.0010 (4)0.0020 (4)
Geometric parameters (Å, º) top
Co1—N1i2.0596 (13)C14—H140.9500
Co1—N12.0596 (13)C14—C151.381 (2)
Co1—O112.1019 (10)C15—H150.9500
Co1—O11i2.1019 (10)C16—N121.147 (2)
Co1—O21i2.0985 (9)O21—N211.3302 (14)
Co1—O212.0985 (9)C21—H210.9500
N1—C11.169 (2)C21—C221.382 (2)
C1—S11.6254 (16)C21—N211.3480 (17)
O11—N111.3290 (14)C22—C231.395 (2)
N11—C111.3478 (17)C22—C261.4410 (19)
N11—C151.3540 (18)C23—H230.9500
C11—H110.9500C23—C241.384 (2)
C11—C121.3864 (18)C24—H240.9500
C12—C131.3956 (19)C24—C251.382 (2)
C12—C161.4398 (19)C25—H250.9500
C13—H130.9500C25—N211.3519 (18)
C13—C141.384 (2)C26—N221.150 (2)
N1i—Co1—N1180.0C14—C13—H13121.1
N1i—Co1—O11i86.48 (4)C13—C14—H14119.9
N1i—Co1—O1193.52 (4)C15—C14—C13120.24 (13)
N1—Co1—O1186.48 (4)C15—C14—H14119.9
N1—Co1—O11i93.52 (4)N11—C15—C14120.21 (13)
N1i—Co1—O21i85.49 (4)N11—C15—H15119.9
N1—Co1—O2185.49 (4)C14—C15—H15119.9
N1i—Co1—O2194.51 (4)N12—C16—C12179.29 (17)
N1—Co1—O21i94.51 (4)N21—O21—Co1117.74 (7)
O11i—Co1—O11180.00 (3)C22—C21—H21120.4
O21—Co1—O1190.62 (4)N21—C21—H21120.4
O21—Co1—O11i89.38 (4)N21—C21—C22119.20 (12)
O21i—Co1—O11i90.62 (4)C21—C22—C23120.87 (13)
O21i—Co1—O1189.38 (4)C21—C22—C26118.88 (13)
O21i—Co1—O21180.0C23—C22—C26120.21 (13)
C1—N1—Co1167.31 (12)C22—C23—H23121.0
N1—C1—S1179.70 (15)C24—C23—C22117.94 (13)
N11—O11—Co1119.86 (7)C24—C23—H23121.0
O11—N11—C11119.56 (11)C23—C24—H24119.9
O11—N11—C15118.84 (11)C25—C24—C23120.19 (13)
C11—N11—C15121.60 (12)C25—C24—H24119.9
N11—C11—H11120.5C24—C25—H25120.0
N11—C11—C12119.07 (12)N21—C25—C24120.07 (13)
C12—C11—H11120.5N21—C25—H25120.0
C11—C12—C13120.94 (13)N22—C26—C22178.95 (16)
C11—C12—C16118.69 (12)O21—N21—C21119.46 (11)
C13—C12—C16120.36 (12)O21—N21—C25118.86 (11)
C12—C13—H13121.1C21—N21—C25121.66 (12)
C14—C13—C12117.87 (13)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O21i0.952.613.3295 (17)133
C11—H11···N22ii0.952.573.3902 (19)145
C14—H14···S1iii0.952.913.7585 (15)149
C15—H15···O21iii0.952.453.2351 (16)140
C21—H21···N12iv0.952.523.3233 (19)142
C24—H24···S1iii0.952.963.8082 (15)150
C25—H25···O11iii0.952.283.1335 (16)148
Symmetry codes: (i) x, y+1, z+1; (ii) x1/2, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x1/2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the State of Schleswig-Holstein.

References

First citationAdams, C. J., Colquhoun, H. M., Crawford, P. C., Lusi, M. & Orpen, A. G. (2007). Angew. Chem. Int. Ed. 46, 1124–1128.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDarwish, S., Wang, S. Q., Croker, D. M., Walker, G. M. & Zaworotko, M. J. (2019). ACS Sustainable Chem. Eng. 7, 19505–19512.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHöller, C. J., Mai, M., Feldmann, C. & Müller-Buschbaum, K. (2010). Dalton Trans. 39, 461–468.  Google Scholar
First citationJochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 8971–8982.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMautner, F. E., Berger, C., Fischer, R. C. & Massoud, S. S. (2016). Polyhedron, 111, 86–93.  Web of Science CSD CrossRef CAS Google Scholar
First citationMautner, F. E., Berger, C., Fischer, R. C., Massoud, S. S. & Vicente, R. (2018). Polyhedron, 141, 17–24.  Web of Science CSD CrossRef CAS Google Scholar
First citationMekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184–2192.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNäther, C. & Jess, I. (2004). Eur. J. Inorg. Chem. pp. 2868–2876.  Google Scholar
First citationNäther, C., Jess, I. & Greve, J. (2001). Polyhedron, 20, 1017–1022.  Web of Science CrossRef CAS Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Gowth Des. 56, 2380–2388.  Google Scholar
First citationRams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 24534–24544.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837–2851.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSchönfeld, F., Meyer, L. V., Winter, F., Niehaus, O., Rodewald, U. Ch., Pöttgen, R. & Müller-Buschbaum, K. (2012). Z. Anorg. Allg. Chem. 638, 12–13.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, J. M., Chen, J. N., Wu, C. J. & Ma, J. P. (2007). J. Coord. Chem. 60, 2009–2013.  Web of Science CSD CrossRef CAS Google Scholar
First citationShi, J. M. L., Liu, Z., Sun, Y. M., Yi, L. & Liu, L. D. (2006). Chem. Phys. 325, 237–242.  Web of Science CSD CrossRef CAS Google Scholar
First citationShurdha, E., Moore, C. E., Rheingold, A. L., Lapidus, S. H., Stephens, P. W., Arif, A. M. & Miller, J. S. (2013). Inorg. Chem. 52, 10583–10594.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStolar, T., Batzdorf, L., Lukin, S., Žilić, D., Motillo, C., Friščić, T., Emmerling, F., Halasz, I. & Užarević, K. (2017). Inorg. Chem. 56, 6599–6608.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333–17342.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015). Eur. J. Inorg. Chem. 2015, 3236–3245.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S.-G., Li, W.-N. & Shi, J.-M. (2006a). Acta Cryst. E62, m3398–m3400.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-G., Li, W.-N. & Shi, J.-M. (2006b). Acta Cryst. E62, m3506–m3608.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds