research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Growth and characterization of a new inorganic metal–halide crystal structure, InPb2Cl5

crossmark logo

aDepartment of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
*Correspondence e-mail: wang.peng@chem.queensu.ca

Edited by S. Parkin, University of Kentucky, USA (Received 11 July 2023; accepted 8 September 2023; online 26 September 2023)

A new solid-state inorganic compound, indium dilead penta­chloride, InPb2Cl5, was synthesized by melting InCl and PbCl2 in a vacuum-sealed quartz ampoule. The ampoule was heated to 793 K and then slowly cooled to room temperature to induce crystallization of InPb2Cl5. InPb2Cl5 crystallizes in the monoclinic crystal system adopting a space group of type P21/c, which is isostructural with other metal halides such as RbPb2Cl5, KPb2Cl5 and TlPb2Cl5. The bulk InPb2Cl5 exhibits a metallic black/grey colour, allowing it to be separated from white/yellow PbCl2 crystals. Due to the incongruent nature of the compound, the pure bulk InPb2Cl5 was not obtained. The black/grey InPb2Cl5 crystals were characterized by powder and single-crystal X-ray diffraction. InPbCl3 was also explored, however the growth was unsuccessful.

1. Chemical context

Indium lead chloride, InPb2Cl5 is a metal halide that has been studied as a new material to be used in optoelectronic semiconducting applications. Other isostructural metal halides that have the structure APb2Cl5 (where A = K, Rb, Tl) have gained inter­est in fields such as optoelectronics (Vu et al., 2020[Vu, T. V., Lavrentyev, A. A., Gabrelian, B. V., Vo, D. D., Pham, K. D., Denysyuk, N. M., Isaenko, L. I., Tarasova, A. Y. & Khyzhun, O. Y. (2020). Opt. Mater. 102, 109793.]), and photovoltaics as a tunable laser (Isaenko et al., 2013[Isaenko, L. I., Ogorodnikov, I. N., Pustovarov, V. A., Tarasova, A. Yu. & Pashkov, V. M. (2013). Opt. Mater. 35, 620-625.]; Khyzhun et al., 2014[Khyzhun, O. Y., Bekenev, V. L., Denysyuk, N. M., Parasyuk, O. V. & Fedorchuk, A. O. (2014). J. Alloys Compd. 582, 802-809.]; Brown et al., 2013[Brown, E., Hanley, C. B., Hömmerich, U., Bluiett, A. G. & Trivedi, S. B. (2013). J. Lumin. 133, 244-248.]). There has been success in growing metal-halide semiconducting crystals such as RbPb2Cl5 and KPb2Cl5 (Isaenko et al., 2013[Isaenko, L. I., Ogorodnikov, I. N., Pustovarov, V. A., Tarasova, A. Yu. & Pashkov, V. M. (2013). Opt. Mater. 35, 620-625.]; Rowe et al., 2014[Rowe, E., Tupitsyn, E., Bhattacharya, P., Matei, L., Groza, M., Buliga, V., Atkinson, G. & Burger, A. (2014). J. Cryst. Growth, 393, 156-158.]; Isaenko et al., 2009[Isaenko, L. I., Merkulov, A. A., Tarasova, A. Yu., Pashkov, V. M. & Drebushchak, V. A. (2009). J. Therm. Anal. Calorim. 95, 323-325.]), however single-crystal InPb2Cl5 has not been reported and has only been computationally studied as the InPbCl3 phase (Khan et al., 2022[Khan, S., Mehmood, N., Ahmad, R., Kalsoom, A. & Hameed, K. (2022). Mater. Sci. Semicond. Process. 150, 106973.]). Similar to RbPb2Cl5, KPb2Cl5, and TlPb2Cl5, InPb2Cl5 crystallizes in a monoclinic structure and has a space group of type P21/c. Bulk InPb2Cl5 samples were prepared, which contained a mixture of black/grey metallic polycrystalline InPb2Cl5 at the bottom of the ampoule and white/yellow PbCl2 crystals above. When the black/grey crystals were broken up, the crystals appeared to have a much clearer and lighter green hue. The broken-up crystal was examined under an optical microscope and clear colourless crystal pieces were seen. The clear colourless single-crystal pieces were handpicked and characterized by single-crystal X-ray diffraction (XRD). The bulk material was ground using a mortar and pestle and the powder was characterized by powder-XRD. The powder-XRD pattern had low intensity peaks of In7Cl9 and PbCl2 impurities, but matched closely with the InPb2Cl5 phase. When InPb2Cl5 was left in ambient conditions over four months, the bulk absorbed moisture over time and left a light-grey film around the bulk with moisture build up on the side of the material.

2. Structural commentary

The single-crystal structure of InPb2Cl5 was found to adopt a monoclinic P21/c space group. The single-crystal structure refinement confirmed the composition as InPb2Cl5. The bond lengths in the asymmetric unit (Fig. 1[link]) of InPb2Cl5 are listed in Table 1[link]. The unit cell of InPb2Cl5 (Fig. 2[link]) has four symmetry-related formula units. The Pb atoms in the unit cell (Fig. 2[link]) coordinate multiple chlorine atoms that give a range of bond lengths from 2.868 (5)–3.3145 (15) Å. The Pb1 atoms coordinate with seven chlorine atoms in the structure, with bond lengths ranging from 2.868 (5)–3.1371 (14) Å. The Pb1 atoms form a nine-face polyhedron with a volume of 37.374 Å3 (Fig. 3[link]). The Pb2 atoms have a coordination number of 8 with bond lengths from 2.916 (7)–3.3145 (15) Å. The Pb2 atoms form a 12-face dodeca­hedron with a volume of 49.796 Å3 (Fig. 3[link]). The shortest bond length is between Cl1 and Pb1, which is 2.868 (5) Å. The largest bond lengths are between the Pb2 atom and a Cl3 atom at 3.3145 (15) Å. The typical bond length between Pb and Cl atoms is 2.44 Å in the binary structure. There is an increase in bond lengths from the binary PbCl2 to the InPb2Cl5 structure. The indium atom inter­stitially coordinates eight chlorine atoms in a distorted octa­hedral geometry. The range of indium–chlorine bonds range from 3.1447 (18)–3.588 (8) Å. The indium atom forms a 12-face dodeca­hedron with a volume of 62.568 Å3 (Fig. 3[link]). The typical In—Cl bond length is around 2.56 Å, indicating that the indium–chlorine bonds have a much weaker inter­action in the InPb2Cl5 structure. The largest bond angles seen in the unit cell (Fig. 2[link]) are between the Cl1iii—Pb1—Cl2 atoms at 156.02 (3)° (symmetry codes as per Fig. 2[link]). The shortest bond angle in the structure is between the Cl4ii—In1—Cl5i atoms at 63.2587 (3)°. The Pb atoms have stronger inter­actions with the chlorine atoms resulting in shorter bond lengths and a wide range of bond lengths from 69.7087 (3)–156.02 (3)°. The indium atoms have weaker inter­actions and are inter­stitially located throughout the structure. The weaker inter­actions of the indium atoms is evident because of the shorter bond lengths and smaller range of bond angles from 63.2587 (3)–144.1653 (3)°. A complete list of bond lengths and bond angles is given in the supporting information.

Table 1
Bond lengths (Å) in the InPb2Cl5 asymmetric unit (Fig. 1[link])

Bond Distance
Cl1—Pb1 2.8677 (12)
Cl2—Pb1 2.9214 (10)
Cl3—Pb1 2.8744 (12)
Cl3—Pb2 2.9156 (12)
Cl4—Pb2 2.9236 (11)
Cl5—Pb2 2.9760 (12)
[Figure 1]
Figure 1
A view of the asymmetric unit. Ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
A partial packing plot viewed down the b-axis. Ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) x, y, z; (ii) −x, y + [{1\over 2}], −z + [{1\over 2}]; (iii) −x, −y, −z; (iv) x, −y − [{1\over 2}], z − [{1\over 2}].
[Figure 3]
Figure 3
A polyhedron view of the crystal structure packing, viewed down the b-axis.

3. Database survey

The InPb2Cl5 structure is isostructural with other compounds such as RbPb2Cl5 (Isaenko et al., 2013[Isaenko, L. I., Ogorodnikov, I. N., Pustovarov, V. A., Tarasova, A. Yu. & Pashkov, V. M. (2013). Opt. Mater. 35, 620-625.]; Isaenko et al., 2009[Isaenko, L. I., Merkulov, A. A., Tarasova, A. Yu., Pashkov, V. M. & Drebushchak, V. A. (2009). J. Therm. Anal. Calorim. 95, 323-325.]), KPb2Cl5 (Rowe et al., 2014[Rowe, E., Tupitsyn, E., Bhattacharya, P., Matei, L., Groza, M., Buliga, V., Atkinson, G. & Burger, A. (2014). J. Cryst. Growth, 393, 156-158.]; Isaenko et al., 2009[Isaenko, L. I., Merkulov, A. A., Tarasova, A. Yu., Pashkov, V. M. & Drebushchak, V. A. (2009). J. Therm. Anal. Calorim. 95, 323-325.]) and TlPb2Cl5 (Khyzhun et al., 2014[Khyzhun, O. Y., Bekenev, V. L., Denysyuk, N. M., Parasyuk, O. V. & Fedorchuk, A. O. (2014). J. Alloys Compd. 582, 802-809.]). The cell dimensions of the monoclinic InPb2Cl5 cell are compared with the isostructural compounds in Table 2[link]. The cell dimensions for InPb2Cl5 match very closely with TlPb2Cl5. There is no significant difference between the InPb2Cl5 structure and the isostructural structures in Table 2[link], the small difference is due to the atomic size difference for indium. The indium atom has the smallest atom size, so it is expected to fit tighter into the unit cell compared to the other structures, so we see that InPb2Cl5 has the smallest unit cell volume. The thallium atom is most comparable to the indium atom size, which is why its cell dimensions are most similar.

Table 2
InPb2Cl5 unit-cell parameters compared with isostructural compounds.

Compound a (Å) b (Å) c (Å) β (°) Volume (Å3)
InPb2Cl5 8.9681 (11) 7.9033 (9) 12.4980 (16) 90.254 (6) 885.82 (19)
TlPb2Cl5 8.9561 7.9204 12.4908 90.073 886.0
RbPb2Cl5 8.9900 7.9963 12.541 90.20 901.5
KPb2Cl5 8.864 7.932 12.491 90.153 878.2

4. Synthesis and crystallization

Stoichiometric amounts of the binary compounds InICl (4g, ThermoFisher Scientific 99.995%, metals basis) and PbIICl2 [3.7278 (5)g, Acros Organics 99%] were mixed in a glove box under an argon environment (<0.1ppm O2 and H2O). The binary compounds were ground together with a mortar and pestle and then loaded into a quartz ampoule. The quartz ampoule was flame sealed under high vacuum (5.5 × 10−5 mbar). The loaded quartz ampoule was heated at 3K min−1 in a vertical furnace to 793K. The ampoule was cooled at 0.5 K min−1 to room temperature. A 1 mm3 piece of the metallic black and grey crystal was separated from the excess yellow PbIICl2 crystals and sent for characterization by powder-XRD and single-crystal XRD.

5. Refinement

The crystallographic data, data collection and structure refinement are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula In2Pb4Cl10
Mr 1412.9
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 8.9681 (11), 7.9033 (9), 12.4980 (16)
β (°) 90.254 (6)
V3) 885.82 (19)
Z 2
Radiation type Mo Kα
μ (mm−1) 41.91
Crystal size (mm) 0.22 × 0.18 × 0.13
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.378, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 20682, 2699, 2423
Rint 0.051
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.042, 1.08
No. of reflections 2699
No. of parameters 74
Δρmax, Δρmin (e Å−3) 1.22, −1.13
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), CrystalMaker (Palmer, 2014[Palmer, D. C. (2014). CrystalMaker. CrystalMaker Software Ltd, Begbroke, Oxfordshire, England.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Cell refinement: APEX2 (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: CrystalMaker (Palmer, 2014); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Indium dilead pentachloride top
Crystal data top
In2Pb4Cl10F(000) = 1192
Mr = 1412.9Dx = 5.297 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9997 reflections
a = 8.9681 (11) Åθ = 2.3–30.5°
b = 7.9033 (9) ŵ = 41.91 mm1
c = 12.4980 (16) ÅT = 298 K
β = 90.254 (6)°Transparent square, colourless
V = 885.82 (19) Å30.22 × 0.18 × 0.13 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2699 independent reflections
Radiation source: sealed X-ray tube, Incoatec Iµs2423 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 7.9 pixels mm-1θmax = 30.6°, θmin = 2.3°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1111
Tmin = 0.378, Tmax = 0.746l = 1717
20682 measured reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0083P)2 + 1.8133P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042(Δ/σ)max = 0.002
S = 1.08Δρmax = 1.22 e Å3
2699 reflectionsΔρmin = 1.13 e Å3
74 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00232 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.04109 (12)0.67574 (15)0.41739 (11)0.0316 (3)
Cl20.45758 (11)0.66555 (13)0.40434 (9)0.0226 (2)
Cl30.27835 (14)0.65746 (14)0.68735 (10)0.0304 (3)
Cl40.72918 (12)0.68702 (14)0.72264 (9)0.0252 (2)
Cl50.28105 (12)0.45943 (14)1.00167 (9)0.0232 (2)
In10.98678 (5)0.45346 (6)0.83468 (4)0.04410 (11)
Pb10.24664 (2)0.43551 (2)0.50647 (2)0.02229 (6)
Pb20.49498 (2)0.48805 (2)0.82509 (2)0.02538 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0194 (5)0.0309 (6)0.0445 (7)0.0009 (4)0.0017 (5)0.0137 (5)
Cl20.0192 (5)0.0201 (4)0.0285 (6)0.0008 (4)0.0002 (4)0.0059 (4)
Cl30.0364 (6)0.0283 (5)0.0263 (6)0.0084 (5)0.0081 (5)0.0063 (4)
Cl40.0259 (5)0.0254 (5)0.0243 (6)0.0027 (4)0.0021 (4)0.0025 (4)
Cl50.0251 (5)0.0240 (5)0.0205 (5)0.0004 (4)0.0005 (4)0.0009 (4)
In10.0418 (2)0.0432 (2)0.0472 (3)0.00874 (18)0.00359 (19)0.00495 (19)
Pb10.01876 (9)0.02412 (9)0.02399 (10)0.00042 (6)0.00025 (6)0.00142 (6)
Pb20.02614 (10)0.02526 (9)0.02473 (10)0.00304 (7)0.00037 (7)0.00179 (6)
Geometric parameters (Å, º) top
Cl1—Pb12.8677 (12)Cl3—Pb22.9156 (12)
Cl1—Pb1i2.8912 (11)Cl4—Pb22.9236 (11)
Cl2—Pb12.9214 (10)Cl4—Pb1iii3.0314 (12)
Cl2—Pb2ii2.9311 (10)Cl5—Pb22.9394 (11)
Cl2—Pb1iii2.9817 (11)Cl5—Pb2iv2.9760 (12)
Cl3—Pb12.8744 (12)
Pb1—Cl1—Pb1i104.12 (4)Cl2—Pb1—Cl2iii75.72 (3)
Pb1—Cl2—Pb2ii143.53 (4)Cl1—Pb1—Cl4iii83.88 (4)
Pb1—Cl2—Pb1iii104.28 (3)Cl3—Pb1—Cl4iii158.52 (3)
Pb2ii—Cl2—Pb1iii105.88 (3)Cl1i—Pb1—Cl4iii106.34 (4)
Pb1—Cl3—Pb2104.33 (4)Cl2—Pb1—Cl4iii74.75 (3)
Pb2—Cl4—Pb1iii107.24 (4)Cl2iii—Pb1—Cl4iii101.55 (3)
Pb2—Cl5—Pb2iv95.44 (3)Cl3—Pb2—Cl488.42 (4)
Cl1—Pb1—Cl387.85 (4)Cl3—Pb2—Cl2v72.16 (3)
Cl1—Pb1—Cl1i75.88 (4)Cl4—Pb2—Cl2v74.28 (3)
Cl3—Pb1—Cl1i90.69 (4)Cl3—Pb2—Cl592.48 (3)
Cl1—Pb1—Cl280.49 (3)Cl4—Pb2—Cl5147.44 (3)
Cl3—Pb1—Cl284.37 (4)Cl2v—Pb2—Cl575.06 (3)
Cl1i—Pb1—Cl2156.02 (3)Cl3—Pb2—Cl5iv144.23 (3)
Cl1—Pb1—Cl2iii153.09 (3)Cl4—Pb2—Cl5iv76.10 (3)
Cl3—Pb1—Cl2iii77.57 (3)Cl2v—Pb2—Cl5iv72.65 (3)
Cl1i—Pb1—Cl2iii126.11 (3)Cl5—Pb2—Cl5iv84.56 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+3/2, z1/2; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z+2; (v) x, y+3/2, z+1/2.
Bond lengths (Å) in the InPb2Cl5 asymmetric unit (Fig. 1) top
BondDistance
Cl1—Pb12.8677 (12)
Cl2—Pb12.9214 (10)
Cl3—Pb12.8744 (12)
Cl3—Pb22.9156 (12)
Cl4—Pb22.9236 (11)
Cl5—Pb22.9760 (12)
InPb2Cl5 unit-cell parameters compared with isostructural compounds. top
Compounda (Å)b (Å)c (Å)β (°)Volume (Å3)
InPb2Cl58.9681 (11)7.9033 (9)12.4980 (16)90.254 (6)885.82 (19)
TlPb2Cl58.95617.920412.490890.073886.0
RbPb2Cl58.99007.996312.54190.20901.5
KPb2Cl58.8647.93212.49190.153878.2
 

Acknowledgements

The authors would like to thank Queen's University and the Arthur B. Macdonald Institute for funding.

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada; Canada Foundation for Innovation; Canada First Research Excellence Fund.

References

First citationBrown, E., Hanley, C. B., Hömmerich, U., Bluiett, A. G. & Trivedi, S. B. (2013). J. Lumin. 133, 244–248.  CrossRef CAS Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIsaenko, L. I., Merkulov, A. A., Tarasova, A. Yu., Pashkov, V. M. & Drebushchak, V. A. (2009). J. Therm. Anal. Calorim. 95, 323–325.  CrossRef CAS Google Scholar
First citationIsaenko, L. I., Ogorodnikov, I. N., Pustovarov, V. A., Tarasova, A. Yu. & Pashkov, V. M. (2013). Opt. Mater. 35, 620–625.  CrossRef CAS Google Scholar
First citationKhan, S., Mehmood, N., Ahmad, R., Kalsoom, A. & Hameed, K. (2022). Mater. Sci. Semicond. Process. 150, 106973.  CrossRef Google Scholar
First citationKhyzhun, O. Y., Bekenev, V. L., Denysyuk, N. M., Parasyuk, O. V. & Fedorchuk, A. O. (2014). J. Alloys Compd. 582, 802–809.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationPalmer, D. C. (2014). CrystalMaker. CrystalMaker Software Ltd, Begbroke, Oxfordshire, England.  Google Scholar
First citationRowe, E., Tupitsyn, E., Bhattacharya, P., Matei, L., Groza, M., Buliga, V., Atkinson, G. & Burger, A. (2014). J. Cryst. Growth, 393, 156–158.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVu, T. V., Lavrentyev, A. A., Gabrelian, B. V., Vo, D. D., Pham, K. D., Denysyuk, N. M., Isaenko, L. I., Tarasova, A. Y. & Khyzhun, O. Y. (2020). Opt. Mater. 102, 109793.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds