research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­{3-(3,4-di­meth­­oxy­phen­yl)-5-[6-(pyrazol-1-yl)pyridin-2-yl]-1,2,4-triazol-3-ato}iron(II)–methanol–chloro­form (1/2/2)

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine, and bDepartment of Inorganic Polymers, "Petru Poni" Institute of Macromolecular, Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi, 700487, Romania
*Correspondence e-mail: mlseredyuk@gmail.com

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 18 September 2023; accepted 26 September 2023; online 29 September 2023)

The unit cell of the title compound, [Fe(C18H15N6O2)2]·2CH3OH·2CHCl3, consists of a charge-neutral complex mol­ecule, two methanol and two chloro­form mol­ecules. In the complex, the two tridentate 2-(5-(3,4-di­meth­oxy­phen­yl)-1,2,4-triazol-3-yl)-6-(pyrazol-1-yl)pyridine ligands coordinate to the central FeII ion through the N atoms of the pyrazole, pyridine and triazole groups, forming a pseudo-octa­hedral coordination sphere. Neighbouring tapered mol­ecules are linked through weak C—H(pz)⋯π(ph) inter­actions into one-dimensional chains, which are joined into two-dimensional layers through weak C—H⋯N/C/O inter­actions. Furthermore, the layers stack in a three-dimensional network linked by weak inter­layer C—H⋯π inter­actions of the meth­oxy and phenyl groups. The inter­molecular contacts were qu­anti­fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 32.0%, H⋯C/C⋯H 26.3%, H⋯N/N⋯H 13.8%, and H⋯O/O⋯H 7.5%. The average Fe—N bond distance is 2.185 Å, indicating the high-spin state of the FeII ion. Energy framework analysis at the HF/3–21 G theory level was performed to qu­antify the inter­action energies in the crystal structure.

1. Chemical context

A broad class of coordination compounds exhibiting spin-state switching between low- (total spin S = 0) and high-spin states (total spin S = 2) is represented by FeII complexes based on tridentate bis­azole­pyridine ligands (Halcrow, 2014[Halcrow, M. A. (2014). New J. Chem. 38, 1868-1882.]; Suryadevara et al., 2022[Suryadevara, N., Mizuno, A., Spieker, L., Salamon, S., Sleziona, S., Maas, A., Pollmann, E., Heinrich, B., Schleberger, M., Wende, H., Kuppusamy, S. K. & Ruben, M. (2022). Chem. A Eur. J. 28, e202103853.]; Halcrow et al., 2019[Halcrow, M. A., Capel Berdiell, I., Pask, C. M. & Kulmaczewski, R. (2019). Inorg. Chem. 58, 9811-9821.]). In the case of asymmetric ligand design, where one of the azole groups carries a hydrogen on a nitro­gen heteroatom and acts as a Brønsted acid, deprotonation can produce neutral complexes that can be either high spin (Schäfer et al., 2013[Schäfer, B., Rajnák, C., Šalitroš, I., Fuhr, O., Klar, D., Schmitz-Antoniak, C., Weschke, E., Wende, H. & Ruben, M. (2013). Chem. Commun. 49, 10986-10988.]) or low spin (Shiga et al., 2019[Shiga, T., Saiki, R., Akiyama, L., Kumai, R., Natke, D., Renz, F., Cameron, J. M., Newton, G. N. & Oshio, H. (2019). Angew. Chem. Int. Ed. 58, 5658-5662.]) or exhibit temperature-induced transition between the spin states of the central atom (Seredyuk et al., 2014[Seredyuk, M., Znovjyak, K. O., Kusz, J., Nowak, M., Muñoz, M. C. & Real, J. A. (2014). Dalton Trans. 43, 16387-16394.]; Grunwald et al., 2023[Grunwald, J., Torres, J., Buchholz, A., Näther, C., Kämmerer, L., Gruber, M., Rohlf, S., Thakur, S., Wende, H., Plass, W., Kuch, W. & Tuczek, F. (2023). Chem. Sci. 14, 7361-7380.]) depending on the ligand field strength. The periphery of the mol­ecule, i.e. ligand substituents, also plays an important role in the behaviour, determining the way that mol­ecules are packed in the crystal and their inter­actions with each other, and therefore further influencing the spin state adopted by the central atom. For example, the dynamic rearrangement of the meth­oxy group between bent and extended configurations can lead to a highly hysteretic spin transition via a supra­molecular blocking mechanism (Sered­yuk et al., 2022[Seredyuk, M., Znovjyak, K., Valverde-Muñoz, F. J., da Silva, I., Muñoz, M. C., Moroz, Y. S. & Real, J. A. (2022). J. Am. Chem. Soc. 144, 14297-14309.]).

[Scheme 1]

Having inter­est in spin-transition 3d-metal complexes formed by polydentate ligands (Bartual-Murgui et al., 2017[Bartual-Murgui, C., Piñeiro-López, L., Valverde-Muñoz, F. J., Muñoz, M. C., Seredyuk, M. & Real, J. A. (2017). Inorg. Chem. 56, 13535-13546.]; Bonhommeau et al., 2012[Bonhommeau, S., Lacroix, P. G., Talaga, D., Bousseksou, A., Seredyuk, M., Fritsky, I. O. & Rodriguez, V. (2012). J. Phys. Chem. C, 116, 11251-11255.]; Valverde-Muñoz et al., 2020[Valverde-Muñoz, F., Seredyuk, M., Muñoz, M. C., Molnár, G., Bibik, Y. S. & Real, J. A. (2020). Angew. Chem. Int. Ed. 59, 18632-18638.]), we report here a new [FeIIL2] complex based on the asymmetric deprotonable ligand with two substituents on the phenyl group, L = 2-(5-(3,4-di­meth­oxy­phen­yl)-1,2,4-triazol-3-yl)-6- (pyrazol-1-yl)pyridine.

2. Structural commentary

The complex has a tapered structure with divergent phenyl groups. The ligand mol­ecules are almost planar, including the meth­oxy substituents, which are also in the plane of the phenyl group. The independent methanol mol­ecule forms O—H⋯N hydrogen bonds with the triazole (trz) rings of the ligand mol­ecule (Fig. 1[link], Table 1[link]). The chloro­form mol­ecules form double weak C—H⋯O bonds with the meth­oxy groups of the ligand. The central FeII ion of the complex has a distorted octa­hedral N6 coordination environment formed by the nitro­gen donor atoms of two tridentate ligands (Fig. 1[link]). The average bond length, <Fe—N> = 2.185 Å, is typical for high-spin complexes with an N6 coordination environment (Gütlich & Goodwin, 2004[Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1-47.]). The average trigonal distortion parameters Σ = Σ112(|90 − φi|), where φi is the angle N—Fe—N′ (Drew et al., 1995[Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035-1038.]), and Θ = Σ124(|60 − θi|), where θi is the angle generated by superposition of two opposite faces of an octa­hedron (Chang et al., 1990[Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814-6827.]) are 148.6 and 474.2°, respectively. The values reveal a deviation of the coordination environment from an ideal octa­hedron (where Σ = Θ = 0), which is, however, in the expected range for bis­azole­pyridine and similar ligands (see below). The calculated continuous shape measure (CShM) value relative to the ideal Oh symmetry is 5.391 (Kershaw Cook et al., 2015[Kershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289-290, 2-12.]). The volume of the [FeN6] coordination polyhedron is 12.796 Å3.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯C14i 0.95 2.85 3.676 (5) 146
C2—H2⋯C15i 0.95 2.64 3.585 (5) 171
C7—H7⋯C1ii 0.95 2.81 3.705 (5) 158
C1—H1⋯N6iii 0.95 2.34 3.267 (5) 166
C12—H12⋯C9iv 0.95 2.85 3.541 (5) 130
C20—H20⋯O1 1.00 2.28 3.115 (6) 141
C20—H20⋯O2 1.00 2.39 3.179 (6) 135
O3—H3A⋯N5 0.84 1.94 2.775 (4) 177
C3—H3⋯O3v 0.95 2.33 3.238 (5) 161
C5—H5⋯O3v 0.95 2.47 3.401 (6) 167
Symmetry codes: (i) [-x+1, y+1, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (v) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of a half of the title compound with displacement ellipsoids drawn at the 50% probability level. The strong O—H⋯N and weak C—H⋯O/N/C hydrogen bonds are shown with the nearest neighbours. Symmetry codes: (i) 1 − x, 1 + y, [{3\over 2}] − z; (ii) −[{1\over 2}] + x, [{1\over 2}] + y, [{3\over 2}] − z; (iii) [{3\over 2}] − x, −[{1\over 2}] + y, z; (iv) [{1\over 2}] + x, [{1\over 2}] + y, [{3\over 2}] − z.

3. Supra­molecular features

Due to the tapered structure, neighbouring complex mol­ecules fit into each other and inter­act through a weak C—H(pz)⋯π(ph) inter­molecular contact between the pyrazole (pz) and phenyl (ph) groups respectively [the C2⋯Cg(ph) distance is 3.574 (5) Å]. The one-dimensional supra­molecular chains formed extend along the b-axis direction with the stacking periodicity equal to 10.281 (3) Å (= cell parameter b) (Fig. 2[link]). Through weak inter­molecular C—H(pz, py)⋯ N/C(pz, trz) inter­actions in the range 3.115–3.705 (5) Å (Table 1[link]), neighbouring chains are joined into corrugated two-dimensional layers in the ab plane (Fig. S1a,b in the supporting information). The layers stack without any inter­layer inter­actions below the van der Waals radii (Fig. S1b in the supporting information). The voids between the layers are occupied by solvent mol­ecules, which also participate in the bonding within separate layers. The methanol mol­ecule forms a strong O—H⋯N hydrogen bond with the deprotonated triazole group, and a chloro­form mol­ecule located between two meth­oxy groups of the phenyl substituent forms a five-membered cyclic motif with two C—H⋯O bonds (see Fig. 1[link]). A complete list of the considered inter­molecular inter­actions is given in Table 1[link].

[Figure 2]
Figure 2
One-dimensional supra­molecular chain formed by stacking mol­ecules of the title compound. Red dashed lines correspond to contacts between the pyrazole and phenyl groups of neighbouring mol­ecules below the sum of van der Waals radii.

4. Hirshfeld surface and 2D fingerprint plots

Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.6492 (red) to 1.3918 (blue) a.u. (Fig. 3[link]a). The pale-red spots symbolize short contacts and negative dnorm values on the surface corresponding to the inter­actions described above. The overall two-dimensional fingerprint plot is illustrated in Fig. 4[link]. The two-dimensional fingerprint plots, with their relative contributions to the Hirshfeld surface, are shown for the H⋯H, H⋯C/C⋯H, H⋯N/N⋯H and H⋯O/O⋯H contacts together with the . At 32.0%, the largest contribution to the overall crystal packing is from H⋯H inter­actions, which are located in the middle region of the fingerprint plot. H⋯C/C⋯H contacts contribute 26.3% to the Hirshfeld surface and result in a pair of characteristic wings. The H⋯N/N⋯H contacts, represented by a pair of sharp spikes in the fingerprint plot, make a 13.8% contribution to the Hirshfeld surface. Finally, H⋯O/O⋯H contacts, which account for a 7.5% contribution, are mostly distributed in the middle part of the plot. The electrostatic potential energy calculated using the HF/3-21G basis set localizes the negative charge on the trz-ph moieties of the complex mol­ecule, while the pz-py moieties are relatively positively charged (Fig. 3[link]b). The polar nature of the mol­ecule justifies the stacking in columns.

[Figure 3]
Figure 3
(a) A projection of dnorm mapped on the Hirshfeld surfaces, showing the inter­molecular inter­actions within the mol­ecule. Red/blue and white areas represent regions where contacts are shorter/larger than the sum and close to the sum of the van der Waals radii, respectively. (b) Electrostatic potential for the title compound derived from a HF/3–21 G wavefunction mapped on the Hirshfeld surface in the range −0.1658 (red) to 0.1235 a.u. (blue).
[Figure 4]
Figure 4
The overall two-dimensional fingerprint plot and those decomposed into specified inter­actions.

5. Energy framework analysis

The energy framework (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), calculated using the wave function at the HF/3-21G theory level, including the electrostatic potential forces (Eele), the dispersion forces (Edis) and the total energy diagrams (Etot), is shown in Fig. S2 in the supporting information. The cylindrical radii, adjusted to the same scale factor of 100, are proportional to the relative strength of the corresponding energies. The major contribution is due to the dispersion forces (Edis), reflecting dominating inter­actions in the crystal of the neutral asymmetric mol­ecules. The topology of the energy framework resembles the topology of the inter­actions within and between the layers described above. The calculated value Etot for the intra­chain inter­action is −57.2 kJ mol−1 and for inter­chain inter­actions are down to −114.6 kJ mol−1. The inter­layer inter­action energies are close to zero. The colour-coded inter­action mappings within a radius of 5.0 Å of a central reference mol­ecule for the title compound together with full details of the various contributions to the total energy (Eele, Epol, Edis, Erep) are shown in the table in Figure S2.

6. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals several similar neutral FeII complexes with a deprotonable azole group, for example, derivatives of a pyrazole­pyridine­tetra­zole, IGERIX and LUTGEO (Gentili et al., 2015[Gentili, D., Demitri, N., Schäfer, B., Liscio, F., Bergenti, I., Ruani, G., Ruben, M. & Cavallini, M. (2015). J. Mater. Chem. C. 3, 7836-7844.]; Senthil Kumar et al., 2015[Senthil Kumar, K., Šalitroš, I., Heinrich, B., Fuhr, O. & Ruben, M. (2015). J. Mater. Chem. C. 3, 11635-11644.]) and pyrazole-pyridine-benzimidazole XODCEB (Shiga et al., 2019[Shiga, T., Saiki, R., Akiyama, L., Kumai, R., Natke, D., Renz, F., Cameron, J. M., Newton, G. N. & Oshio, H. (2019). Angew. Chem. Int. Ed. 58, 5658-5662.]). In addition, there are related complexes based on phenathroline­tetra­zole, such as QIDJET (Zhang et al., 2007[Zhang, W., Zhao, F., Liu, T., Yuan, M., Wang, Z. M. & Gao, S. (2007). Inorg. Chem. 46, 2541-2555.]), phenanthroline-benzimidazole, DOMQUT (Seredyuk et al., 2014[Seredyuk, M., Znovjyak, K. O., Kusz, J., Nowak, M., Muñoz, M. C. & Real, J. A. (2014). Dalton Trans. 43, 16387-16394.]), di­pyridyl­pyrrol, NIRLOT (Grunwald et al., 2023[Grunwald, J., Torres, J., Buchholz, A., Näther, C., Kämmerer, L., Gruber, M., Rohlf, S., Thakur, S., Wende, H., Plass, W., Kuch, W. & Tuczek, F. (2023). Chem. Sci. 14, 7361-7380.]). The Fe—N distances of these complexes in the low-spin state are 1.933–1.959 Å, while in the high-spin state they are in the range 2.179–2.185 Å. The values of the trigonal distortion and CShM(Oh) change correspondingly, and in the low-spin state they are systematically lower than in the high-spin state. Table 2[link] collates the structural parameters of the complexes and of the title compound.

Table 2
Computed distortion indices (Å, °) for the title compound and for similar complexes reported in the literature

CSD Code Spin state <Fe—N> Σ Θ CShM(Oh)
Title compound High-spin 2.185 148.6 474.2 5.39
IGERIX High spin 2.179 149.7 553.2 6.06
IGERIX01 Low spin 1.986 105.6 350.6 2.85
LUTGEO Low spin 1.933 85.0 309.6 2.10
XODCEB Low spin 1.950 87.4 276.6 1.93
DOMQIH Low spin 1.962 83.8 280.7 2.02
QIDJET01 Low spin 1.970 90.3 341.3 2.47
QIDJET High spin 2.184 145.5 553.3 5.88
DOMQUT Low spin 1.991 88.5 320.0 2.48
DOMQUT02 High spin 2.183 139.6 486.9 5.31
NIRLOT Low spin 1.939 77.3 255.6 1.68

7. Synthesis and crystallization

The synthesis of the title compound is identical to that reported recently for a similar complex (Seredyuk et al., 2022[Seredyuk, M., Znovjyak, K., Valverde-Muñoz, F. J., da Silva, I., Muñoz, M. C., Moroz, Y. S. & Real, J. A. (2022). J. Am. Chem. Soc. 144, 14297-14309.]). It was produced by using a layering technique in a standard test tube. The layering sequence was as follows: the bottom layer contained a solution of [Fe(L2)](BF4)2 prepared by dissolving L = 2-[5-(3,4-di­meth­oxy­phen­yl)-1,2,4-triazol-3-yl]-6-(pyrazol-1-yl)pyridine (88 mg, 0.252 mmol) and Fe(BF4)2·6H2O (43 mg, 0.126 mmol) in boiling acetone, to which chloro­form (5 ml) was then added. The middle layer was a methanol–chloro­form mixture (1:10, 10 ml), which was covered by a layer of methanol (10 ml), to which 100 ml of NEt3 were added dropwise. The tube was sealed, and black–orange single crystals appeared after 3–4 weeks (yield ca 60%). Elemental analysis calculated for C40H40Cl6FeN12O6: C, 45.61; H, 3.83; N, 15.96. Found: C, 45.52; H, 3.77; N, 15.77.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were refined as riding [C—H = 0.95–0.98 Å with Uiso(H) = 1.2–1.5Ueq(C)]. The O-bound H atom was refined with Uiso(H) = 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula [Fe(C18H15N6O2)2]·2CH4O·2CHCl3
Mr 1053.39
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 180
a, b, c (Å) 12.7195 (9), 10.281 (3), 36.735 (3)
V3) 4804.0 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.71
Crystal size (mm) 0.25 × 0.2 × 0.03
 
Data collection
Diffractometer Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.995, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18857, 5510, 2962
Rint 0.092
(sin θ/λ)max−1) 0.688
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.145, 1.03
No. of reflections 5510
No. of parameters 298
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.44
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.41.123a (Rigaku OD, 2022); cell refinement: CrysAlis PRO 1.171.41.123a (Rigaku OD, 2022); data reduction: CrysAlis PRO 1.171.41.123a (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 1.3 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.3 (Dolomanov et al., 2009).

Bis{3-(3,4-dimethoxyphenyl)-5-[6-(pyrazol-1-yl)pyridin-2-yl]-\ 1,2,4-triazol-3-ato}iron(II)–methanol–chloroform (1/2/2) top
Crystal data top
[Fe(C18H15N6O2)2]·2CH4O·2CHCl3Dx = 1.456 Mg m3
Mr = 1053.39Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 2694 reflections
a = 12.7195 (9) Åθ = 2.0–22.1°
b = 10.281 (3) ŵ = 0.71 mm1
c = 36.735 (3) ÅT = 180 K
V = 4804.0 (13) Å3Prism, clear light yellow
Z = 40.25 × 0.2 × 0.03 mm
F(000) = 2160
Data collection top
Xcalibur, Eos
diffractometer
5510 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2962 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
Detector resolution: 16.1593 pixels mm-1θmax = 29.3°, θmin = 2.0°
ω scansh = 1714
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1113
Tmin = 0.995, Tmax = 1.000l = 3045
18857 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.079H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0352P)2 + 1.3579P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5510 reflectionsΔρmax = 0.39 e Å3
298 parametersΔρmin = 0.44 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.5000000.76448 (9)0.7500000.0222 (2)
Cl10.66889 (10)0.30702 (16)0.48491 (4)0.0718 (5)
Cl30.45098 (10)0.2575 (2)0.46990 (4)0.0951 (7)
Cl20.60243 (13)0.05279 (18)0.46193 (4)0.0862 (6)
N30.6647 (2)0.7695 (3)0.76381 (8)0.0212 (8)
O10.6486 (2)0.1131 (3)0.56399 (8)0.0363 (8)
N40.5728 (2)0.6285 (3)0.71371 (8)0.0221 (8)
N20.6252 (2)0.9304 (3)0.80493 (9)0.0236 (8)
N50.5447 (2)0.5444 (3)0.68666 (8)0.0223 (8)
O20.4939 (2)0.2752 (3)0.56650 (8)0.0427 (9)
N10.5214 (2)0.9131 (3)0.79464 (9)0.0246 (8)
O30.3669 (2)0.6194 (4)0.64823 (9)0.0525 (10)
H3A0.4210910.5944750.6592830.079*
N60.7165 (2)0.5103 (3)0.69940 (8)0.0221 (8)
C90.6755 (3)0.6051 (4)0.72010 (10)0.0216 (10)
C80.7306 (3)0.6878 (4)0.74638 (10)0.0208 (9)
C140.6502 (3)0.1976 (4)0.59249 (11)0.0272 (10)
C40.7027 (3)0.8539 (4)0.78750 (10)0.0222 (10)
C160.5594 (3)0.3751 (4)0.62214 (11)0.0261 (10)
H160.5018080.4338330.6230050.031*
C30.6331 (3)1.0150 (4)0.83276 (12)0.0348 (12)
H30.6964741.0420650.8441780.042*
C120.7199 (3)0.2910 (4)0.64749 (11)0.0296 (11)
H120.7732730.2919960.6655930.036*
C70.8379 (3)0.6927 (4)0.75259 (11)0.0295 (11)
H70.8842660.6349160.7403440.035*
C100.6324 (3)0.4768 (4)0.67851 (10)0.0222 (10)
C50.8097 (3)0.8673 (4)0.79519 (11)0.0300 (11)
H50.8355280.9301440.8119060.036*
C10.4682 (3)0.9884 (4)0.81718 (11)0.0281 (11)
H10.3937950.9967040.8169110.034*
C130.7257 (3)0.2015 (4)0.61954 (11)0.0304 (11)
H130.7825660.1416650.6188780.036*
C110.6377 (3)0.3795 (4)0.64968 (10)0.0246 (10)
C20.5343 (3)1.0548 (5)0.84167 (13)0.0399 (13)
H20.5143821.1141710.8602590.048*
C150.5664 (3)0.2858 (4)0.59409 (11)0.0266 (10)
C60.8757 (3)0.7825 (5)0.77677 (12)0.0361 (12)
H60.9493050.7869650.7810440.043*
C200.5675 (3)0.1923 (5)0.48712 (13)0.0490 (14)
H200.5562970.1669730.5131170.059*
C170.7283 (3)0.0157 (5)0.56289 (13)0.0488 (14)
H17A0.7201380.0365270.5407610.073*
H17B0.7218960.0405640.5843070.073*
H17C0.7975830.0573570.5628600.073*
C190.3952 (4)0.7063 (6)0.62079 (14)0.0644 (17)
H19A0.4335690.6597480.6016830.097*
H19B0.4400990.7746430.6309860.097*
H19C0.3317110.7456380.6104070.097*
C180.4062 (4)0.3632 (6)0.56791 (15)0.085 (2)
H18A0.3576930.3437890.5479150.127*
H18B0.4315880.4528340.5655720.127*
H18C0.3695880.3530550.5912060.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0131 (4)0.0258 (5)0.0278 (4)0.0000.0003 (3)0.000
Cl10.0667 (9)0.0745 (13)0.0741 (11)0.0242 (8)0.0098 (7)0.0051 (10)
Cl30.0540 (9)0.1473 (19)0.0841 (12)0.0051 (10)0.0120 (7)0.0380 (14)
Cl20.1297 (13)0.0655 (12)0.0634 (11)0.0138 (11)0.0108 (9)0.0116 (11)
N30.0149 (15)0.023 (2)0.0261 (18)0.0011 (15)0.0012 (13)0.0012 (18)
O10.0454 (17)0.029 (2)0.0346 (18)0.0121 (16)0.0062 (14)0.0080 (17)
N40.0150 (15)0.026 (2)0.0250 (19)0.0001 (15)0.0003 (13)0.0049 (18)
N20.0133 (15)0.023 (2)0.034 (2)0.0000 (14)0.0004 (14)0.0089 (19)
N50.0204 (16)0.024 (2)0.0228 (18)0.0025 (15)0.0025 (13)0.0074 (18)
O20.0406 (17)0.044 (2)0.0439 (18)0.0137 (16)0.0179 (14)0.0162 (18)
N10.0110 (15)0.027 (2)0.036 (2)0.0004 (14)0.0007 (13)0.0012 (19)
O30.0282 (15)0.074 (3)0.056 (2)0.0040 (18)0.0061 (15)0.027 (2)
N60.0194 (16)0.024 (2)0.0232 (19)0.0008 (15)0.0015 (13)0.0019 (17)
C90.0167 (19)0.026 (3)0.022 (2)0.0009 (18)0.0007 (15)0.002 (2)
C80.0186 (19)0.019 (2)0.024 (2)0.0022 (17)0.0017 (16)0.000 (2)
C140.035 (2)0.022 (3)0.025 (2)0.004 (2)0.0003 (18)0.001 (2)
C40.0177 (19)0.023 (3)0.026 (2)0.0007 (18)0.0036 (16)0.003 (2)
C160.022 (2)0.020 (3)0.036 (3)0.0009 (18)0.0020 (17)0.004 (2)
C30.024 (2)0.034 (3)0.046 (3)0.004 (2)0.0011 (19)0.019 (3)
C120.031 (2)0.028 (3)0.030 (2)0.003 (2)0.0083 (18)0.001 (2)
C70.019 (2)0.034 (3)0.035 (2)0.0060 (18)0.0008 (17)0.010 (3)
C100.0180 (19)0.023 (3)0.025 (2)0.0001 (18)0.0001 (16)0.002 (2)
C50.0190 (19)0.034 (3)0.037 (3)0.006 (2)0.0029 (18)0.008 (2)
C10.0181 (19)0.026 (3)0.040 (3)0.0038 (18)0.0061 (18)0.000 (2)
C130.032 (2)0.026 (3)0.033 (3)0.008 (2)0.0017 (18)0.000 (2)
C110.024 (2)0.024 (3)0.025 (2)0.0024 (19)0.0018 (17)0.000 (2)
C20.032 (2)0.035 (3)0.053 (3)0.006 (2)0.009 (2)0.020 (3)
C150.026 (2)0.023 (3)0.031 (2)0.0042 (19)0.0047 (17)0.002 (2)
C60.0129 (19)0.051 (4)0.045 (3)0.000 (2)0.0015 (18)0.011 (3)
C200.052 (3)0.054 (4)0.041 (3)0.008 (3)0.005 (2)0.002 (3)
C170.060 (3)0.036 (3)0.051 (3)0.014 (3)0.003 (2)0.017 (3)
C190.096 (4)0.051 (4)0.047 (3)0.007 (3)0.001 (3)0.013 (4)
C180.061 (3)0.100 (6)0.094 (5)0.049 (4)0.051 (3)0.051 (5)
Geometric parameters (Å, º) top
Fe1—N32.156 (3)C4—C51.398 (5)
Fe1—N3i2.156 (3)C16—H160.9500
Fe1—N4i2.142 (3)C16—C111.420 (5)
Fe1—N42.142 (3)C16—C151.383 (5)
Fe1—N12.258 (3)C3—H30.9500
Fe1—N1i2.258 (3)C3—C21.363 (5)
Cl1—C201.749 (5)C12—H120.9500
Cl3—C201.745 (5)C12—C131.380 (5)
Cl2—C201.764 (5)C12—C111.389 (5)
N3—C81.348 (4)C7—H70.9500
N3—C41.320 (5)C7—C61.369 (5)
O1—C141.361 (5)C10—C111.458 (5)
O1—C171.425 (5)C5—H50.9500
N4—N51.365 (4)C5—C61.386 (5)
N4—C91.349 (4)C1—H10.9500
N2—N11.385 (4)C1—C21.408 (6)
N2—C41.414 (4)C13—H130.9500
N2—C31.346 (5)C2—H20.9500
N5—C101.347 (4)C6—H60.9500
O2—C151.374 (4)C20—H201.0000
O2—C181.437 (5)C17—H17A0.9800
N1—C11.320 (5)C17—H17B0.9800
O3—H3A0.8400C17—H17C0.9800
O3—C191.394 (5)C19—H19A0.9800
N6—C91.342 (5)C19—H19B0.9800
N6—C101.362 (4)C19—H19C0.9800
C9—C81.465 (5)C18—H18A0.9800
C8—C71.385 (5)C18—H18B0.9800
C14—C131.382 (5)C18—H18C0.9800
C14—C151.401 (5)
N3i—Fe1—N3177.28 (19)C11—C12—H12119.3
N3—Fe1—N172.28 (11)C8—C7—H7120.7
N3i—Fe1—N1105.79 (11)C6—C7—C8118.5 (4)
N3i—Fe1—N1i72.29 (11)C6—C7—H7120.7
N3—Fe1—N1i105.79 (11)N5—C10—N6113.2 (4)
N4i—Fe1—N3106.79 (11)N5—C10—C11123.6 (3)
N4—Fe1—N3i106.79 (11)N6—C10—C11123.1 (3)
N4i—Fe1—N3i75.05 (12)C4—C5—H5122.3
N4—Fe1—N375.05 (12)C6—C5—C4115.4 (4)
N4—Fe1—N4i98.53 (18)C6—C5—H5122.3
N4i—Fe1—N1i147.30 (10)N1—C1—H1123.9
N4i—Fe1—N192.40 (12)N1—C1—C2112.3 (3)
N4—Fe1—N1147.30 (10)C2—C1—H1123.9
N4—Fe1—N1i92.40 (12)C14—C13—H13119.4
N1—Fe1—N1i94.81 (17)C12—C13—C14121.2 (4)
C8—N3—Fe1118.5 (3)C12—C13—H13119.4
C4—N3—Fe1121.7 (2)C16—C11—C10120.5 (4)
C4—N3—C8119.7 (3)C12—C11—C16117.8 (4)
C14—O1—C17117.3 (3)C12—C11—C10121.7 (3)
N5—N4—Fe1138.9 (2)C3—C2—C1104.6 (4)
C9—N4—Fe1115.3 (3)C3—C2—H2127.7
C9—N4—N5105.5 (3)C1—C2—H2127.7
N1—N2—C4118.0 (3)O2—C15—C14115.3 (4)
C3—N2—N1111.2 (3)O2—C15—C16124.0 (4)
C3—N2—C4130.7 (3)C16—C15—C14120.6 (4)
C10—N5—N4105.8 (3)C7—C6—C5121.9 (3)
C15—O2—C18116.3 (3)C7—C6—H6119.1
N2—N1—Fe1113.6 (2)C5—C6—H6119.1
C1—N1—Fe1142.2 (2)Cl1—C20—Cl2109.8 (2)
C1—N1—N2104.0 (3)Cl1—C20—H20109.0
C19—O3—H3A109.5Cl3—C20—Cl1110.5 (3)
C9—N6—C10101.4 (3)Cl3—C20—Cl2109.6 (3)
N4—C9—C8118.3 (3)Cl3—C20—H20109.0
N6—C9—N4114.1 (3)Cl2—C20—H20109.0
N6—C9—C8127.5 (3)O1—C17—H17A109.5
N3—C8—C9112.1 (3)O1—C17—H17B109.5
N3—C8—C7120.8 (4)O1—C17—H17C109.5
C7—C8—C9127.0 (4)H17A—C17—H17B109.5
O1—C14—C13125.6 (4)H17A—C17—H17C109.5
O1—C14—C15115.7 (3)H17B—C17—H17C109.5
C13—C14—C15118.7 (4)O3—C19—H19A109.5
N3—C4—N2114.2 (3)O3—C19—H19B109.5
N3—C4—C5123.6 (4)O3—C19—H19C109.5
C5—C4—N2122.2 (4)H19A—C19—H19B109.5
C11—C16—H16119.8H19A—C19—H19C109.5
C15—C16—H16119.8H19B—C19—H19C109.5
C15—C16—C11120.5 (4)O2—C18—H18A109.5
N2—C3—H3126.0O2—C18—H18B109.5
N2—C3—C2107.9 (4)O2—C18—H18C109.5
C2—C3—H3126.0H18A—C18—H18B109.5
C13—C12—H12119.3H18A—C18—H18C109.5
C13—C12—C11121.3 (4)H18B—C18—H18C109.5
Fe1—N3—C8—C90.6 (4)C9—N6—C10—N51.6 (4)
Fe1—N3—C8—C7175.9 (3)C9—N6—C10—C11177.0 (4)
Fe1—N3—C4—N25.5 (5)C9—C8—C7—C6175.8 (4)
Fe1—N3—C4—C5174.9 (3)C8—N3—C4—N2177.7 (3)
Fe1—N4—N5—C10172.7 (3)C8—N3—C4—C51.9 (6)
Fe1—N4—C9—N6173.7 (3)C8—C7—C6—C50.5 (7)
Fe1—N4—C9—C89.8 (4)C4—N3—C8—C9177.6 (3)
Fe1—N1—C1—C2175.1 (3)C4—N3—C8—C71.0 (6)
N3—C8—C7—C60.2 (6)C4—N2—N1—Fe11.3 (4)
N3—C4—C5—C61.6 (6)C4—N2—N1—C1175.1 (3)
O1—C14—C13—C12179.6 (4)C4—N2—C3—C2174.5 (4)
O1—C14—C15—O20.2 (5)C4—C5—C6—C70.3 (7)
O1—C14—C15—C16179.2 (4)C3—N2—N1—Fe1176.9 (3)
N4—N5—C10—N61.2 (4)C3—N2—N1—C10.5 (4)
N4—N5—C10—C11177.4 (3)C3—N2—C4—N3172.2 (4)
N4—C9—C8—N36.9 (5)C3—N2—C4—C57.4 (7)
N4—C9—C8—C7169.4 (4)C10—N6—C9—N41.4 (4)
N2—N1—C1—C20.4 (5)C10—N6—C9—C8174.7 (4)
N2—C4—C5—C6178.0 (4)C13—C14—C15—O2179.3 (4)
N2—C3—C2—C10.2 (5)C13—C14—C15—C160.1 (6)
N5—N4—C9—N60.8 (4)C13—C12—C11—C160.0 (6)
N5—N4—C9—C8175.8 (3)C13—C12—C11—C10178.2 (4)
N5—C10—C11—C1617.2 (6)C11—C16—C15—O2179.9 (4)
N5—C10—C11—C12164.6 (4)C11—C16—C15—C140.5 (6)
N1—N2—C4—N32.5 (5)C11—C12—C13—C140.6 (6)
N1—N2—C4—C5177.9 (4)C15—C14—C13—C120.6 (6)
N1—N2—C3—C20.4 (5)C15—C16—C11—C120.6 (6)
N1—C1—C2—C30.2 (5)C15—C16—C11—C10177.7 (4)
N6—C9—C8—N3177.1 (4)C17—O1—C14—C133.5 (6)
N6—C9—C8—C76.6 (7)C17—O1—C14—C15175.5 (4)
N6—C10—C11—C16161.3 (4)C18—O2—C15—C14179.0 (4)
N6—C10—C11—C1216.9 (6)C18—O2—C15—C160.4 (6)
C9—N4—N5—C100.3 (4)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···C14ii0.952.853.676 (5)146
C2—H2···C15ii0.952.643.585 (5)171
C7—H7···C1iii0.952.813.705 (5)158
C1—H1···N6iv0.952.343.267 (5)166
C12—H12···C9v0.952.853.541 (5)130
C20—H20···O11.002.283.115 (6)141
C20—H20···O21.002.393.179 (6)135
O3—H3A···N50.841.942.775 (4)177
C3—H3···O3vi0.952.333.238 (5)161
C5—H5···O3vi0.952.473.401 (6)167
Symmetry codes: (ii) x+1, y+1, z+3/2; (iii) x+1/2, y1/2, z+3/2; (iv) x1/2, y+1/2, z+3/2; (v) x+3/2, y1/2, z; (vi) x+1/2, y+1/2, z+3/2.
Computed distortion indices (Å, °) for the title compound and for similar complexes reported in the literature top
CSD CodeSpin state<Fe—N>ΣΘCShM(Oh)
Title compoundHigh-spin2.185148.6474.25.39
IGERIXHigh spin2.179149.7553.26.06
IGERIX01Low spin1.986105.6350.62.85
LUTGEOLow spin1.93385.0309.62.10
XODCEBLow spin1.95087.4276.61.93
DOMQIHLow spin1.96283.8280.72.02
QIDJET01Low spin1.97090.3341.32.47
QIDJETHigh spin2.184145.5553.35.88
DOMQUTLow spin1.99188.5320.02.48
DOMQUT02High spin2.183139.6486.95.31
NIRLOTLow spin1.93977.3255.61.68
 

Acknowledgements

Author contributions are as follows: Conceptualization, KZ and MS; methodology, KZ; formal analysis, IOF; synthesis, SOM; single-crystal measurements, SS; writing (original draft), MS; writing (review and editing of the manuscript), TYS, MS; visualization and calculations, KZ, VMA; funding acquisition, MS, IOF, VMA.

Funding information

Funding for this research was provided by a grant from the Ministry of Education and Science of Ukraine for perspective development of the scientific direction `Mathematical sciences and natural sciences' at Taras Shevchenko National University of Kyiv and by the Ministry of Education and Science of Ukraine (grant Nos. 22BF037-03, 22BF037-04).

References

First citationBartual-Murgui, C., Piñeiro-López, L., Valverde-Muñoz, F. J., Muñoz, M. C., Seredyuk, M. & Real, J. A. (2017). Inorg. Chem. 56, 13535–13546.  Web of Science CAS PubMed Google Scholar
First citationBonhommeau, S., Lacroix, P. G., Talaga, D., Bousseksou, A., Seredyuk, M., Fritsky, I. O. & Rodriguez, V. (2012). J. Phys. Chem. C, 116, 11251–11255.  Web of Science CrossRef CAS Google Scholar
First citationChang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814–6827.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDrew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038.  CSD CrossRef Web of Science Google Scholar
First citationGentili, D., Demitri, N., Schäfer, B., Liscio, F., Bergenti, I., Ruani, G., Ruben, M. & Cavallini, M. (2015). J. Mater. Chem. C. 3, 7836–7844.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrunwald, J., Torres, J., Buchholz, A., Näther, C., Kämmerer, L., Gruber, M., Rohlf, S., Thakur, S., Wende, H., Plass, W., Kuch, W. & Tuczek, F. (2023). Chem. Sci. 14, 7361–7380.  CSD CrossRef CAS PubMed Google Scholar
First citationGütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1–47.  Google Scholar
First citationHalcrow, M. A. (2014). New J. Chem. 38, 1868–1882.  Web of Science CrossRef CAS Google Scholar
First citationHalcrow, M. A., Capel Berdiell, I., Pask, C. M. & Kulmaczewski, R. (2019). Inorg. Chem. 58, 9811–9821.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289–290, 2–12.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSchäfer, B., Rajnák, C., Šalitroš, I., Fuhr, O., Klar, D., Schmitz-Antoniak, C., Weschke, E., Wende, H. & Ruben, M. (2013). Chem. Commun. 49, 10986–10988.  Google Scholar
First citationSenthil Kumar, K., Šalitroš, I., Heinrich, B., Fuhr, O. & Ruben, M. (2015). J. Mater. Chem. C. 3, 11635–11644.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeredyuk, M., Znovjyak, K., Valverde-Muñoz, F. J., da Silva, I., Muñoz, M. C., Moroz, Y. S. & Real, J. A. (2022). J. Am. Chem. Soc. 144, 14297–14309.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSeredyuk, M., Znovjyak, K. O., Kusz, J., Nowak, M., Muñoz, M. C. & Real, J. A. (2014). Dalton Trans. 43, 16387–16394.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShiga, T., Saiki, R., Akiyama, L., Kumai, R., Natke, D., Renz, F., Cameron, J. M., Newton, G. N. & Oshio, H. (2019). Angew. Chem. Int. Ed. 58, 5658–5662.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuryadevara, N., Mizuno, A., Spieker, L., Salamon, S., Sleziona, S., Maas, A., Pollmann, E., Heinrich, B., Schleberger, M., Wende, H., Kuppusamy, S. K. & Ruben, M. (2022). Chem. A Eur. J. 28, e202103853.  CSD CrossRef Google Scholar
First citationValverde-Muñoz, F., Seredyuk, M., Muñoz, M. C., Molnár, G., Bibik, Y. S. & Real, J. A. (2020). Angew. Chem. Int. Ed. 59, 18632–18638.  Google Scholar
First citationZhang, W., Zhao, F., Liu, T., Yuan, M., Wang, Z. M. & Gao, S. (2007). Inorg. Chem. 46, 2541–2555.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds