research communications
of bis{3-(3,4-dimethoxyphenyl)-5-[6-(pyrazol-1-yl)pyridin-2-yl]-1,2,4-triazol-3-ato}iron(II)–methanol–chloroform (1/2/2)
aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine, and bDepartment of Inorganic Polymers, "Petru Poni" Institute of Macromolecular, Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi, 700487, Romania
*Correspondence e-mail: mlseredyuk@gmail.com
The 18H15N6O2)2]·2CH3OH·2CHCl3, consists of a charge-neutral complex molecule, two methanol and two chloroform molecules. In the complex, the two tridentate 2-(5-(3,4-dimethoxyphenyl)-1,2,4-triazol-3-yl)-6-(pyrazol-1-yl)pyridine ligands coordinate to the central FeII ion through the N atoms of the pyrazole, pyridine and triazole groups, forming a pseudo-octahedral coordination sphere. Neighbouring tapered molecules are linked through weak C—H(pz)⋯π(ph) interactions into one-dimensional chains, which are joined into two-dimensional layers through weak C—H⋯N/C/O interactions. Furthermore, the layers stack in a three-dimensional network linked by weak interlayer C—H⋯π interactions of the methoxy and phenyl groups. The intermolecular contacts were quantified using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 32.0%, H⋯C/C⋯H 26.3%, H⋯N/N⋯H 13.8%, and H⋯O/O⋯H 7.5%. The average Fe—N bond distance is 2.185 Å, indicating the high-spin state of the FeII ion. Energy framework analysis at the HF/3–21 G theory level was performed to quantify the interaction energies in the crystal structure.
of the title compound, [Fe(CKeywords: crystal structure; iron(II) complexes; neutral complexes.
CCDC reference: 2297496
1. Chemical context
A broad class of coordination compounds exhibiting spin-state switching between low- (total spin S = 0) and high-spin states (total spin S = 2) is represented by FeII complexes based on tridentate bisazolepyridine ligands (Halcrow, 2014; Suryadevara et al., 2022; Halcrow et al., 2019). In the case of asymmetric ligand design, where one of the azole groups carries a hydrogen on a nitrogen heteroatom and acts as a Brønsted acid, deprotonation can produce neutral complexes that can be either high spin (Schäfer et al., 2013) or low spin (Shiga et al., 2019) or exhibit temperature-induced transition between the spin states of the central atom (Seredyuk et al., 2014; Grunwald et al., 2023) depending on the strength. The periphery of the molecule, i.e. ligand substituents, also plays an important role in the behaviour, determining the way that molecules are packed in the crystal and their interactions with each other, and therefore further influencing the spin state adopted by the central atom. For example, the dynamic rearrangement of the methoxy group between bent and extended configurations can lead to a highly hysteretic spin transition via a supramolecular blocking mechanism (Seredyuk et al., 2022).
Having interest in spin-transition 3d-metal complexes formed by polydentate ligands (Bartual-Murgui et al., 2017; Bonhommeau et al., 2012; Valverde-Muñoz et al., 2020), we report here a new [FeIIL2] complex based on the asymmetric deprotonable ligand with two substituents on the phenyl group, L = 2-(5-(3,4-dimethoxyphenyl)-1,2,4-triazol-3-yl)-6- (pyrazol-1-yl)pyridine.
2. Structural commentary
The complex has a tapered structure with divergent phenyl groups. The ligand molecules are almost planar, including the methoxy substituents, which are also in the plane of the phenyl group. The independent methanol molecule forms O—H⋯N hydrogen bonds with the triazole (trz) rings of the ligand molecule (Fig. 1, Table 1). The chloroform molecules form double weak C—H⋯O bonds with the methoxy groups of the ligand. The central FeII ion of the complex has a distorted octahedral N6 coordination environment formed by the nitrogen donor atoms of two tridentate ligands (Fig. 1). The average bond length, <Fe—N> = 2.185 Å, is typical for high-spin complexes with an N6 coordination environment (Gütlich & Goodwin, 2004). The average trigonal distortion parameters Σ = Σ112(|90 − φi|), where φi is the angle N—Fe—N′ (Drew et al., 1995), and Θ = Σ124(|60 − θi|), where θi is the angle generated by superposition of two opposite faces of an octahedron (Chang et al., 1990) are 148.6 and 474.2°, respectively. The values reveal a deviation of the coordination environment from an ideal octahedron (where Σ = Θ = 0), which is, however, in the expected range for bisazolepyridine and similar ligands (see below). The calculated continuous shape measure (CShM) value relative to the ideal Oh symmetry is 5.391 (Kershaw Cook et al., 2015). The volume of the [FeN6] is 12.796 Å3.
3. Supramolecular features
Due to the tapered structure, neighbouring complex molecules fit into each other and interact through a weak C—H(pz)⋯π(ph) intermolecular contact between the pyrazole (pz) and phenyl (ph) groups respectively [the C2⋯Cg(ph) distance is 3.574 (5) Å]. The one-dimensional supramolecular chains formed extend along the b-axis direction with the stacking periodicity equal to 10.281 (3) Å (= cell parameter b) (Fig. 2). Through weak intermolecular C—H(pz, py)⋯ N/C(pz, trz) interactions in the range 3.115–3.705 (5) Å (Table 1), neighbouring chains are joined into corrugated two-dimensional layers in the ab plane (Fig. S1a,b in the supporting information). The layers stack without any interlayer interactions below the van der Waals radii (Fig. S1b in the supporting information). The voids between the layers are occupied by solvent molecules, which also participate in the bonding within separate layers. The methanol molecule forms a strong O—H⋯N hydrogen bond with the deprotonated triazole group, and a chloroform molecule located between two methoxy groups of the phenyl substituent forms a five-membered cyclic motif with two C—H⋯O bonds (see Fig. 1). A complete list of the considered intermolecular interactions is given in Table 1.
4. Hirshfeld surface and 2D fingerprint plots
Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using CrystalExplorer (Spackman et al., 2021), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.6492 (red) to 1.3918 (blue) a.u. (Fig. 3a). The pale-red spots symbolize short contacts and negative dnorm values on the surface corresponding to the interactions described above. The overall two-dimensional fingerprint plot is illustrated in Fig. 4. The two-dimensional fingerprint plots, with their relative contributions to the Hirshfeld surface, are shown for the H⋯H, H⋯C/C⋯H, H⋯N/N⋯H and H⋯O/O⋯H contacts together with the . At 32.0%, the largest contribution to the overall crystal packing is from H⋯H interactions, which are located in the middle region of the fingerprint plot. H⋯C/C⋯H contacts contribute 26.3% to the Hirshfeld surface and result in a pair of characteristic wings. The H⋯N/N⋯H contacts, represented by a pair of sharp spikes in the fingerprint plot, make a 13.8% contribution to the Hirshfeld surface. Finally, H⋯O/O⋯H contacts, which account for a 7.5% contribution, are mostly distributed in the middle part of the plot. The electrostatic calculated using the HF/3-21G basis set localizes the negative charge on the trz-ph moieties of the complex molecule, while the pz-py moieties are relatively positively charged (Fig. 3b). The polar nature of the molecule justifies the stacking in columns.
5. Energy framework analysis
The energy framework (Spackman et al., 2021), calculated using the wave function at the HF/3-21G theory level, including the electrostatic potential forces (Eele), the dispersion forces (Edis) and the total energy diagrams (Etot), is shown in Fig. S2 in the supporting information. The cylindrical radii, adjusted to the same scale factor of 100, are proportional to the relative strength of the corresponding energies. The major contribution is due to the dispersion forces (Edis), reflecting dominating interactions in the crystal of the neutral asymmetric molecules. The topology of the energy framework resembles the topology of the interactions within and between the layers described above. The calculated value Etot for the intrachain interaction is −57.2 kJ mol−1 and for interchain interactions are down to −114.6 kJ mol−1. The interlayer interaction energies are close to zero. The colour-coded interaction mappings within a radius of 5.0 Å of a central reference molecule for the title compound together with full details of the various contributions to the total energy (Eele, Epol, Edis, Erep) are shown in the table in Figure S2.
6. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom et al., 2016) reveals several similar neutral FeII complexes with a deprotonable azole group, for example, derivatives of a pyrazolepyridinetetrazole, IGERIX and LUTGEO (Gentili et al., 2015; Senthil Kumar et al., 2015) and pyrazole-pyridine-benzimidazole XODCEB (Shiga et al., 2019). In addition, there are related complexes based on phenathrolinetetrazole, such as QIDJET (Zhang et al., 2007), phenanthroline-benzimidazole, DOMQUT (Seredyuk et al., 2014), dipyridylpyrrol, NIRLOT (Grunwald et al., 2023). The Fe—N distances of these complexes in the low-spin state are 1.933–1.959 Å, while in the high-spin state they are in the range 2.179–2.185 Å. The values of the trigonal distortion and CShM(Oh) change correspondingly, and in the low-spin state they are systematically lower than in the high-spin state. Table 2 collates the structural parameters of the complexes and of the title compound.
|
7. Synthesis and crystallization
The synthesis of the title compound is identical to that reported recently for a similar complex (Seredyuk et al., 2022). It was produced by using a layering technique in a standard test tube. The layering sequence was as follows: the bottom layer contained a solution of [Fe(L2)](BF4)2 prepared by dissolving L = 2-[5-(3,4-dimethoxyphenyl)-1,2,4-triazol-3-yl]-6-(pyrazol-1-yl)pyridine (88 mg, 0.252 mmol) and Fe(BF4)2·6H2O (43 mg, 0.126 mmol) in boiling acetone, to which chloroform (5 ml) was then added. The middle layer was a methanol–chloroform mixture (1:10, 10 ml), which was covered by a layer of methanol (10 ml), to which 100 ml of NEt3 were added dropwise. The tube was sealed, and black–orange single crystals appeared after 3–4 weeks (yield ca 60%). Elemental analysis calculated for C40H40Cl6FeN12O6: C, 45.61; H, 3.83; N, 15.96. Found: C, 45.52; H, 3.77; N, 15.77.
8. Refinement
Crystal data, data collection and structure . H atoms were refined as riding [C—H = 0.95–0.98 Å with Uiso(H) = 1.2–1.5Ueq(C)]. The O-bound H atom was refined with Uiso(H) = 1.5Ueq(O).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2297496
https://doi.org/10.1107/S2056989023008423/tx2075sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023008423/tx2075Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989023008423/tx2075Isup3.cdx
Packing drawings and energy framework analysis data and drawings. DOI: https://doi.org/10.1107/S2056989023008423/tx2075sup5.doc
Data collection: CrysAlis PRO 1.171.41.123a (Rigaku OD, 2022); cell
CrysAlis PRO 1.171.41.123a (Rigaku OD, 2022); data reduction: CrysAlis PRO 1.171.41.123a (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 1.3 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.3 (Dolomanov et al., 2009).[Fe(C18H15N6O2)2]·2CH4O·2CHCl3 | Dx = 1.456 Mg m−3 |
Mr = 1053.39 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbcn | Cell parameters from 2694 reflections |
a = 12.7195 (9) Å | θ = 2.0–22.1° |
b = 10.281 (3) Å | µ = 0.71 mm−1 |
c = 36.735 (3) Å | T = 180 K |
V = 4804.0 (13) Å3 | Prism, clear light yellow |
Z = 4 | 0.25 × 0.2 × 0.03 mm |
F(000) = 2160 |
Xcalibur, Eos diffractometer | 5510 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 2962 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.092 |
Detector resolution: 16.1593 pixels mm-1 | θmax = 29.3°, θmin = 2.0° |
ω scans | h = −17→14 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | k = −11→13 |
Tmin = 0.995, Tmax = 1.000 | l = −30→45 |
18857 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.079 | H-atom parameters constrained |
wR(F2) = 0.145 | w = 1/[σ2(Fo2) + (0.0352P)2 + 1.3579P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
5510 reflections | Δρmax = 0.39 e Å−3 |
298 parameters | Δρmin = −0.44 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.500000 | 0.76448 (9) | 0.750000 | 0.0222 (2) | |
Cl1 | 0.66889 (10) | 0.30702 (16) | 0.48491 (4) | 0.0718 (5) | |
Cl3 | 0.45098 (10) | 0.2575 (2) | 0.46990 (4) | 0.0951 (7) | |
Cl2 | 0.60243 (13) | 0.05279 (18) | 0.46193 (4) | 0.0862 (6) | |
N3 | 0.6647 (2) | 0.7695 (3) | 0.76381 (8) | 0.0212 (8) | |
O1 | 0.6486 (2) | 0.1131 (3) | 0.56399 (8) | 0.0363 (8) | |
N4 | 0.5728 (2) | 0.6285 (3) | 0.71371 (8) | 0.0221 (8) | |
N2 | 0.6252 (2) | 0.9304 (3) | 0.80493 (9) | 0.0236 (8) | |
N5 | 0.5447 (2) | 0.5444 (3) | 0.68666 (8) | 0.0223 (8) | |
O2 | 0.4939 (2) | 0.2752 (3) | 0.56650 (8) | 0.0427 (9) | |
N1 | 0.5214 (2) | 0.9131 (3) | 0.79464 (9) | 0.0246 (8) | |
O3 | 0.3669 (2) | 0.6194 (4) | 0.64823 (9) | 0.0525 (10) | |
H3A | 0.421091 | 0.594475 | 0.659283 | 0.079* | |
N6 | 0.7165 (2) | 0.5103 (3) | 0.69940 (8) | 0.0221 (8) | |
C9 | 0.6755 (3) | 0.6051 (4) | 0.72010 (10) | 0.0216 (10) | |
C8 | 0.7306 (3) | 0.6878 (4) | 0.74638 (10) | 0.0208 (9) | |
C14 | 0.6502 (3) | 0.1976 (4) | 0.59249 (11) | 0.0272 (10) | |
C4 | 0.7027 (3) | 0.8539 (4) | 0.78750 (10) | 0.0222 (10) | |
C16 | 0.5594 (3) | 0.3751 (4) | 0.62214 (11) | 0.0261 (10) | |
H16 | 0.501808 | 0.433833 | 0.623005 | 0.031* | |
C3 | 0.6331 (3) | 1.0150 (4) | 0.83276 (12) | 0.0348 (12) | |
H3 | 0.696474 | 1.042065 | 0.844178 | 0.042* | |
C12 | 0.7199 (3) | 0.2910 (4) | 0.64749 (11) | 0.0296 (11) | |
H12 | 0.773273 | 0.291996 | 0.665593 | 0.036* | |
C7 | 0.8379 (3) | 0.6927 (4) | 0.75259 (11) | 0.0295 (11) | |
H7 | 0.884266 | 0.634916 | 0.740344 | 0.035* | |
C10 | 0.6324 (3) | 0.4768 (4) | 0.67851 (10) | 0.0222 (10) | |
C5 | 0.8097 (3) | 0.8673 (4) | 0.79519 (11) | 0.0300 (11) | |
H5 | 0.835528 | 0.930144 | 0.811906 | 0.036* | |
C1 | 0.4682 (3) | 0.9884 (4) | 0.81718 (11) | 0.0281 (11) | |
H1 | 0.393795 | 0.996704 | 0.816911 | 0.034* | |
C13 | 0.7257 (3) | 0.2015 (4) | 0.61954 (11) | 0.0304 (11) | |
H13 | 0.782566 | 0.141665 | 0.618878 | 0.036* | |
C11 | 0.6377 (3) | 0.3795 (4) | 0.64968 (10) | 0.0246 (10) | |
C2 | 0.5343 (3) | 1.0548 (5) | 0.84167 (13) | 0.0399 (13) | |
H2 | 0.514382 | 1.114171 | 0.860259 | 0.048* | |
C15 | 0.5664 (3) | 0.2858 (4) | 0.59409 (11) | 0.0266 (10) | |
C6 | 0.8757 (3) | 0.7825 (5) | 0.77677 (12) | 0.0361 (12) | |
H6 | 0.949305 | 0.786965 | 0.781044 | 0.043* | |
C20 | 0.5675 (3) | 0.1923 (5) | 0.48712 (13) | 0.0490 (14) | |
H20 | 0.556297 | 0.166973 | 0.513117 | 0.059* | |
C17 | 0.7283 (3) | 0.0157 (5) | 0.56289 (13) | 0.0488 (14) | |
H17A | 0.720138 | −0.036527 | 0.540761 | 0.073* | |
H17B | 0.721896 | −0.040564 | 0.584307 | 0.073* | |
H17C | 0.797583 | 0.057357 | 0.562860 | 0.073* | |
C19 | 0.3952 (4) | 0.7063 (6) | 0.62079 (14) | 0.0644 (17) | |
H19A | 0.433569 | 0.659748 | 0.601683 | 0.097* | |
H19B | 0.440099 | 0.774643 | 0.630986 | 0.097* | |
H19C | 0.331711 | 0.745638 | 0.610407 | 0.097* | |
C18 | 0.4062 (4) | 0.3632 (6) | 0.56791 (15) | 0.085 (2) | |
H18A | 0.357693 | 0.343789 | 0.547915 | 0.127* | |
H18B | 0.431588 | 0.452834 | 0.565572 | 0.127* | |
H18C | 0.369588 | 0.353055 | 0.591206 | 0.127* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0131 (4) | 0.0258 (5) | 0.0278 (4) | 0.000 | −0.0003 (3) | 0.000 |
Cl1 | 0.0667 (9) | 0.0745 (13) | 0.0741 (11) | −0.0242 (8) | −0.0098 (7) | −0.0051 (10) |
Cl3 | 0.0540 (9) | 0.1473 (19) | 0.0841 (12) | 0.0051 (10) | −0.0120 (7) | 0.0380 (14) |
Cl2 | 0.1297 (13) | 0.0655 (12) | 0.0634 (11) | −0.0138 (11) | 0.0108 (9) | −0.0116 (11) |
N3 | 0.0149 (15) | 0.023 (2) | 0.0261 (18) | 0.0011 (15) | −0.0012 (13) | −0.0012 (18) |
O1 | 0.0454 (17) | 0.029 (2) | 0.0346 (18) | 0.0121 (16) | −0.0062 (14) | −0.0080 (17) |
N4 | 0.0150 (15) | 0.026 (2) | 0.0250 (19) | −0.0001 (15) | 0.0003 (13) | −0.0049 (18) |
N2 | 0.0133 (15) | 0.023 (2) | 0.034 (2) | 0.0000 (14) | 0.0004 (14) | −0.0089 (19) |
N5 | 0.0204 (16) | 0.024 (2) | 0.0228 (18) | −0.0025 (15) | −0.0025 (13) | −0.0074 (18) |
O2 | 0.0406 (17) | 0.044 (2) | 0.0439 (18) | 0.0137 (16) | −0.0179 (14) | −0.0162 (18) |
N1 | 0.0110 (15) | 0.027 (2) | 0.036 (2) | −0.0004 (14) | −0.0007 (13) | −0.0012 (19) |
O3 | 0.0282 (15) | 0.074 (3) | 0.056 (2) | −0.0040 (18) | −0.0061 (15) | 0.027 (2) |
N6 | 0.0194 (16) | 0.024 (2) | 0.0232 (19) | −0.0008 (15) | −0.0015 (13) | 0.0019 (17) |
C9 | 0.0167 (19) | 0.026 (3) | 0.022 (2) | −0.0009 (18) | −0.0007 (15) | 0.002 (2) |
C8 | 0.0186 (19) | 0.019 (2) | 0.024 (2) | 0.0022 (17) | 0.0017 (16) | 0.000 (2) |
C14 | 0.035 (2) | 0.022 (3) | 0.025 (2) | 0.004 (2) | 0.0003 (18) | −0.001 (2) |
C4 | 0.0177 (19) | 0.023 (3) | 0.026 (2) | −0.0007 (18) | 0.0036 (16) | −0.003 (2) |
C16 | 0.022 (2) | 0.020 (3) | 0.036 (3) | 0.0009 (18) | −0.0020 (17) | −0.004 (2) |
C3 | 0.024 (2) | 0.034 (3) | 0.046 (3) | −0.004 (2) | −0.0011 (19) | −0.019 (3) |
C12 | 0.031 (2) | 0.028 (3) | 0.030 (2) | 0.003 (2) | −0.0083 (18) | −0.001 (2) |
C7 | 0.019 (2) | 0.034 (3) | 0.035 (2) | 0.0060 (18) | 0.0008 (17) | −0.010 (3) |
C10 | 0.0180 (19) | 0.023 (3) | 0.025 (2) | −0.0001 (18) | 0.0001 (16) | −0.002 (2) |
C5 | 0.0190 (19) | 0.034 (3) | 0.037 (3) | −0.006 (2) | −0.0029 (18) | −0.008 (2) |
C1 | 0.0181 (19) | 0.026 (3) | 0.040 (3) | 0.0038 (18) | 0.0061 (18) | 0.000 (2) |
C13 | 0.032 (2) | 0.026 (3) | 0.033 (3) | 0.008 (2) | −0.0017 (18) | 0.000 (2) |
C11 | 0.024 (2) | 0.024 (3) | 0.025 (2) | −0.0024 (19) | 0.0018 (17) | 0.000 (2) |
C2 | 0.032 (2) | 0.035 (3) | 0.053 (3) | 0.006 (2) | 0.009 (2) | −0.020 (3) |
C15 | 0.026 (2) | 0.023 (3) | 0.031 (2) | −0.0042 (19) | −0.0047 (17) | −0.002 (2) |
C6 | 0.0129 (19) | 0.051 (4) | 0.045 (3) | 0.000 (2) | −0.0015 (18) | −0.011 (3) |
C20 | 0.052 (3) | 0.054 (4) | 0.041 (3) | −0.008 (3) | −0.005 (2) | −0.002 (3) |
C17 | 0.060 (3) | 0.036 (3) | 0.051 (3) | 0.014 (3) | −0.003 (2) | −0.017 (3) |
C19 | 0.096 (4) | 0.051 (4) | 0.047 (3) | 0.007 (3) | 0.001 (3) | 0.013 (4) |
C18 | 0.061 (3) | 0.100 (6) | 0.094 (5) | 0.049 (4) | −0.051 (3) | −0.051 (5) |
Fe1—N3 | 2.156 (3) | C4—C5 | 1.398 (5) |
Fe1—N3i | 2.156 (3) | C16—H16 | 0.9500 |
Fe1—N4i | 2.142 (3) | C16—C11 | 1.420 (5) |
Fe1—N4 | 2.142 (3) | C16—C15 | 1.383 (5) |
Fe1—N1 | 2.258 (3) | C3—H3 | 0.9500 |
Fe1—N1i | 2.258 (3) | C3—C2 | 1.363 (5) |
Cl1—C20 | 1.749 (5) | C12—H12 | 0.9500 |
Cl3—C20 | 1.745 (5) | C12—C13 | 1.380 (5) |
Cl2—C20 | 1.764 (5) | C12—C11 | 1.389 (5) |
N3—C8 | 1.348 (4) | C7—H7 | 0.9500 |
N3—C4 | 1.320 (5) | C7—C6 | 1.369 (5) |
O1—C14 | 1.361 (5) | C10—C11 | 1.458 (5) |
O1—C17 | 1.425 (5) | C5—H5 | 0.9500 |
N4—N5 | 1.365 (4) | C5—C6 | 1.386 (5) |
N4—C9 | 1.349 (4) | C1—H1 | 0.9500 |
N2—N1 | 1.385 (4) | C1—C2 | 1.408 (6) |
N2—C4 | 1.414 (4) | C13—H13 | 0.9500 |
N2—C3 | 1.346 (5) | C2—H2 | 0.9500 |
N5—C10 | 1.347 (4) | C6—H6 | 0.9500 |
O2—C15 | 1.374 (4) | C20—H20 | 1.0000 |
O2—C18 | 1.437 (5) | C17—H17A | 0.9800 |
N1—C1 | 1.320 (5) | C17—H17B | 0.9800 |
O3—H3A | 0.8400 | C17—H17C | 0.9800 |
O3—C19 | 1.394 (5) | C19—H19A | 0.9800 |
N6—C9 | 1.342 (5) | C19—H19B | 0.9800 |
N6—C10 | 1.362 (4) | C19—H19C | 0.9800 |
C9—C8 | 1.465 (5) | C18—H18A | 0.9800 |
C8—C7 | 1.385 (5) | C18—H18B | 0.9800 |
C14—C13 | 1.382 (5) | C18—H18C | 0.9800 |
C14—C15 | 1.401 (5) | ||
N3i—Fe1—N3 | 177.28 (19) | C11—C12—H12 | 119.3 |
N3—Fe1—N1 | 72.28 (11) | C8—C7—H7 | 120.7 |
N3i—Fe1—N1 | 105.79 (11) | C6—C7—C8 | 118.5 (4) |
N3i—Fe1—N1i | 72.29 (11) | C6—C7—H7 | 120.7 |
N3—Fe1—N1i | 105.79 (11) | N5—C10—N6 | 113.2 (4) |
N4i—Fe1—N3 | 106.79 (11) | N5—C10—C11 | 123.6 (3) |
N4—Fe1—N3i | 106.79 (11) | N6—C10—C11 | 123.1 (3) |
N4i—Fe1—N3i | 75.05 (12) | C4—C5—H5 | 122.3 |
N4—Fe1—N3 | 75.05 (12) | C6—C5—C4 | 115.4 (4) |
N4—Fe1—N4i | 98.53 (18) | C6—C5—H5 | 122.3 |
N4i—Fe1—N1i | 147.30 (10) | N1—C1—H1 | 123.9 |
N4i—Fe1—N1 | 92.40 (12) | N1—C1—C2 | 112.3 (3) |
N4—Fe1—N1 | 147.30 (10) | C2—C1—H1 | 123.9 |
N4—Fe1—N1i | 92.40 (12) | C14—C13—H13 | 119.4 |
N1—Fe1—N1i | 94.81 (17) | C12—C13—C14 | 121.2 (4) |
C8—N3—Fe1 | 118.5 (3) | C12—C13—H13 | 119.4 |
C4—N3—Fe1 | 121.7 (2) | C16—C11—C10 | 120.5 (4) |
C4—N3—C8 | 119.7 (3) | C12—C11—C16 | 117.8 (4) |
C14—O1—C17 | 117.3 (3) | C12—C11—C10 | 121.7 (3) |
N5—N4—Fe1 | 138.9 (2) | C3—C2—C1 | 104.6 (4) |
C9—N4—Fe1 | 115.3 (3) | C3—C2—H2 | 127.7 |
C9—N4—N5 | 105.5 (3) | C1—C2—H2 | 127.7 |
N1—N2—C4 | 118.0 (3) | O2—C15—C14 | 115.3 (4) |
C3—N2—N1 | 111.2 (3) | O2—C15—C16 | 124.0 (4) |
C3—N2—C4 | 130.7 (3) | C16—C15—C14 | 120.6 (4) |
C10—N5—N4 | 105.8 (3) | C7—C6—C5 | 121.9 (3) |
C15—O2—C18 | 116.3 (3) | C7—C6—H6 | 119.1 |
N2—N1—Fe1 | 113.6 (2) | C5—C6—H6 | 119.1 |
C1—N1—Fe1 | 142.2 (2) | Cl1—C20—Cl2 | 109.8 (2) |
C1—N1—N2 | 104.0 (3) | Cl1—C20—H20 | 109.0 |
C19—O3—H3A | 109.5 | Cl3—C20—Cl1 | 110.5 (3) |
C9—N6—C10 | 101.4 (3) | Cl3—C20—Cl2 | 109.6 (3) |
N4—C9—C8 | 118.3 (3) | Cl3—C20—H20 | 109.0 |
N6—C9—N4 | 114.1 (3) | Cl2—C20—H20 | 109.0 |
N6—C9—C8 | 127.5 (3) | O1—C17—H17A | 109.5 |
N3—C8—C9 | 112.1 (3) | O1—C17—H17B | 109.5 |
N3—C8—C7 | 120.8 (4) | O1—C17—H17C | 109.5 |
C7—C8—C9 | 127.0 (4) | H17A—C17—H17B | 109.5 |
O1—C14—C13 | 125.6 (4) | H17A—C17—H17C | 109.5 |
O1—C14—C15 | 115.7 (3) | H17B—C17—H17C | 109.5 |
C13—C14—C15 | 118.7 (4) | O3—C19—H19A | 109.5 |
N3—C4—N2 | 114.2 (3) | O3—C19—H19B | 109.5 |
N3—C4—C5 | 123.6 (4) | O3—C19—H19C | 109.5 |
C5—C4—N2 | 122.2 (4) | H19A—C19—H19B | 109.5 |
C11—C16—H16 | 119.8 | H19A—C19—H19C | 109.5 |
C15—C16—H16 | 119.8 | H19B—C19—H19C | 109.5 |
C15—C16—C11 | 120.5 (4) | O2—C18—H18A | 109.5 |
N2—C3—H3 | 126.0 | O2—C18—H18B | 109.5 |
N2—C3—C2 | 107.9 (4) | O2—C18—H18C | 109.5 |
C2—C3—H3 | 126.0 | H18A—C18—H18B | 109.5 |
C13—C12—H12 | 119.3 | H18A—C18—H18C | 109.5 |
C13—C12—C11 | 121.3 (4) | H18B—C18—H18C | 109.5 |
Fe1—N3—C8—C9 | −0.6 (4) | C9—N6—C10—N5 | −1.6 (4) |
Fe1—N3—C8—C7 | 175.9 (3) | C9—N6—C10—C11 | 177.0 (4) |
Fe1—N3—C4—N2 | 5.5 (5) | C9—C8—C7—C6 | 175.8 (4) |
Fe1—N3—C4—C5 | −174.9 (3) | C8—N3—C4—N2 | −177.7 (3) |
Fe1—N4—N5—C10 | −172.7 (3) | C8—N3—C4—C5 | 1.9 (6) |
Fe1—N4—C9—N6 | 173.7 (3) | C8—C7—C6—C5 | 0.5 (7) |
Fe1—N4—C9—C8 | −9.8 (4) | C4—N3—C8—C9 | −177.6 (3) |
Fe1—N1—C1—C2 | 175.1 (3) | C4—N3—C8—C7 | −1.0 (6) |
N3—C8—C7—C6 | −0.2 (6) | C4—N2—N1—Fe1 | −1.3 (4) |
N3—C4—C5—C6 | −1.6 (6) | C4—N2—N1—C1 | 175.1 (3) |
O1—C14—C13—C12 | −179.6 (4) | C4—N2—C3—C2 | −174.5 (4) |
O1—C14—C15—O2 | −0.2 (5) | C4—C5—C6—C7 | 0.3 (7) |
O1—C14—C15—C16 | 179.2 (4) | C3—N2—N1—Fe1 | −176.9 (3) |
N4—N5—C10—N6 | 1.2 (4) | C3—N2—N1—C1 | −0.5 (4) |
N4—N5—C10—C11 | −177.4 (3) | C3—N2—C4—N3 | 172.2 (4) |
N4—C9—C8—N3 | 6.9 (5) | C3—N2—C4—C5 | −7.4 (7) |
N4—C9—C8—C7 | −169.4 (4) | C10—N6—C9—N4 | 1.4 (4) |
N2—N1—C1—C2 | 0.4 (5) | C10—N6—C9—C8 | −174.7 (4) |
N2—C4—C5—C6 | 178.0 (4) | C13—C14—C15—O2 | −179.3 (4) |
N2—C3—C2—C1 | −0.2 (5) | C13—C14—C15—C16 | 0.1 (6) |
N5—N4—C9—N6 | −0.8 (4) | C13—C12—C11—C16 | 0.0 (6) |
N5—N4—C9—C8 | 175.8 (3) | C13—C12—C11—C10 | −178.2 (4) |
N5—C10—C11—C16 | 17.2 (6) | C11—C16—C15—O2 | 179.9 (4) |
N5—C10—C11—C12 | −164.6 (4) | C11—C16—C15—C14 | 0.5 (6) |
N1—N2—C4—N3 | −2.5 (5) | C11—C12—C13—C14 | 0.6 (6) |
N1—N2—C4—C5 | 177.9 (4) | C15—C14—C13—C12 | −0.6 (6) |
N1—N2—C3—C2 | 0.4 (5) | C15—C16—C11—C12 | −0.6 (6) |
N1—C1—C2—C3 | −0.2 (5) | C15—C16—C11—C10 | 177.7 (4) |
N6—C9—C8—N3 | −177.1 (4) | C17—O1—C14—C13 | 3.5 (6) |
N6—C9—C8—C7 | 6.6 (7) | C17—O1—C14—C15 | −175.5 (4) |
N6—C10—C11—C16 | −161.3 (4) | C18—O2—C15—C14 | 179.0 (4) |
N6—C10—C11—C12 | 16.9 (6) | C18—O2—C15—C16 | −0.4 (6) |
C9—N4—N5—C10 | −0.3 (4) |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···C14ii | 0.95 | 2.85 | 3.676 (5) | 146 |
C2—H2···C15ii | 0.95 | 2.64 | 3.585 (5) | 171 |
C7—H7···C1iii | 0.95 | 2.81 | 3.705 (5) | 158 |
C1—H1···N6iv | 0.95 | 2.34 | 3.267 (5) | 166 |
C12—H12···C9v | 0.95 | 2.85 | 3.541 (5) | 130 |
C20—H20···O1 | 1.00 | 2.28 | 3.115 (6) | 141 |
C20—H20···O2 | 1.00 | 2.39 | 3.179 (6) | 135 |
O3—H3A···N5 | 0.84 | 1.94 | 2.775 (4) | 177 |
C3—H3···O3vi | 0.95 | 2.33 | 3.238 (5) | 161 |
C5—H5···O3vi | 0.95 | 2.47 | 3.401 (6) | 167 |
Symmetry codes: (ii) −x+1, y+1, −z+3/2; (iii) x+1/2, y−1/2, −z+3/2; (iv) x−1/2, y+1/2, −z+3/2; (v) −x+3/2, y−1/2, z; (vi) x+1/2, y+1/2, −z+3/2. |
CSD Code | Spin state | <Fe—N> | Σ | Θ | CShM(Oh) |
Title compound | High-spin | 2.185 | 148.6 | 474.2 | 5.39 |
IGERIX | High spin | 2.179 | 149.7 | 553.2 | 6.06 |
IGERIX01 | Low spin | 1.986 | 105.6 | 350.6 | 2.85 |
LUTGEO | Low spin | 1.933 | 85.0 | 309.6 | 2.10 |
XODCEB | Low spin | 1.950 | 87.4 | 276.6 | 1.93 |
DOMQIH | Low spin | 1.962 | 83.8 | 280.7 | 2.02 |
QIDJET01 | Low spin | 1.970 | 90.3 | 341.3 | 2.47 |
QIDJET | High spin | 2.184 | 145.5 | 553.3 | 5.88 |
DOMQUT | Low spin | 1.991 | 88.5 | 320.0 | 2.48 |
DOMQUT02 | High spin | 2.183 | 139.6 | 486.9 | 5.31 |
NIRLOT | Low spin | 1.939 | 77.3 | 255.6 | 1.68 |
Acknowledgements
Author contributions are as follows: Conceptualization, KZ and MS; methodology, KZ; formal analysis, IOF; synthesis, SOM; single-crystal measurements, SS; writing (original draft), MS; writing (review and editing of the manuscript), TYS, MS; visualization and calculations, KZ, VMA; funding acquisition, MS, IOF, VMA.
Funding information
Funding for this research was provided by a grant from the Ministry of Education and Science of Ukraine for perspective development of the scientific direction `Mathematical sciences and natural sciences' at Taras Shevchenko National University of Kyiv and by the Ministry of Education and Science of Ukraine (grant Nos. 22BF037-03, 22BF037-04).
References
Bartual-Murgui, C., Piñeiro-López, L., Valverde-Muñoz, F. J., Muñoz, M. C., Seredyuk, M. & Real, J. A. (2017). Inorg. Chem. 56, 13535–13546. Web of Science CAS PubMed Google Scholar
Bonhommeau, S., Lacroix, P. G., Talaga, D., Bousseksou, A., Seredyuk, M., Fritsky, I. O. & Rodriguez, V. (2012). J. Phys. Chem. C, 116, 11251–11255. Web of Science CrossRef CAS Google Scholar
Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814–6827. CSD CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038. CSD CrossRef Web of Science Google Scholar
Gentili, D., Demitri, N., Schäfer, B., Liscio, F., Bergenti, I., Ruani, G., Ruben, M. & Cavallini, M. (2015). J. Mater. Chem. C. 3, 7836–7844. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Grunwald, J., Torres, J., Buchholz, A., Näther, C., Kämmerer, L., Gruber, M., Rohlf, S., Thakur, S., Wende, H., Plass, W., Kuch, W. & Tuczek, F. (2023). Chem. Sci. 14, 7361–7380. CSD CrossRef CAS PubMed Google Scholar
Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1–47. Google Scholar
Halcrow, M. A. (2014). New J. Chem. 38, 1868–1882. Web of Science CrossRef CAS Google Scholar
Halcrow, M. A., Capel Berdiell, I., Pask, C. M. & Kulmaczewski, R. (2019). Inorg. Chem. 58, 9811–9821. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289–290, 2–12. Web of Science CSD CrossRef CAS Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Schäfer, B., Rajnák, C., Šalitroš, I., Fuhr, O., Klar, D., Schmitz-Antoniak, C., Weschke, E., Wende, H. & Ruben, M. (2013). Chem. Commun. 49, 10986–10988. Google Scholar
Senthil Kumar, K., Šalitroš, I., Heinrich, B., Fuhr, O. & Ruben, M. (2015). J. Mater. Chem. C. 3, 11635–11644. Web of Science CSD CrossRef CAS Google Scholar
Seredyuk, M., Znovjyak, K., Valverde-Muñoz, F. J., da Silva, I., Muñoz, M. C., Moroz, Y. S. & Real, J. A. (2022). J. Am. Chem. Soc. 144, 14297–14309. Web of Science CSD CrossRef CAS PubMed Google Scholar
Seredyuk, M., Znovjyak, K. O., Kusz, J., Nowak, M., Muñoz, M. C. & Real, J. A. (2014). Dalton Trans. 43, 16387–16394. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shiga, T., Saiki, R., Akiyama, L., Kumai, R., Natke, D., Renz, F., Cameron, J. M., Newton, G. N. & Oshio, H. (2019). Angew. Chem. Int. Ed. 58, 5658–5662. Web of Science CSD CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suryadevara, N., Mizuno, A., Spieker, L., Salamon, S., Sleziona, S., Maas, A., Pollmann, E., Heinrich, B., Schleberger, M., Wende, H., Kuppusamy, S. K. & Ruben, M. (2022). Chem. A Eur. J. 28, e202103853. CSD CrossRef Google Scholar
Valverde-Muñoz, F., Seredyuk, M., Muñoz, M. C., Molnár, G., Bibik, Y. S. & Real, J. A. (2020). Angew. Chem. Int. Ed. 59, 18632–18638. Google Scholar
Zhang, W., Zhao, F., Liu, T., Yuan, M., Wang, Z. M. & Gao, S. (2007). Inorg. Chem. 46, 2541–2555. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.