research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 1-(2-amino-4-methyl-1,3-thia­zol-5-yl)ethan-1-one

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, cDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avenida Angamos 601, Casilla 170, Antofagasta 1240000, Chile, dDepartment of Chemistry, M.M.A.M.C. (Tribhuvan University) Biratnagar, Nepal, and e"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az1063, Baku, Azerbaijan
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 4 August 2023; accepted 16 August 2023; online 8 September 2023)

In the title compound, C6H8N2OS, all atoms except for the methyl H atoms are coplanar, with a maximum deviation of 0.026 (4) Å. In the crystal, pairs of mol­ecules are linked by N—H⋯N hydrogen bonds, forming R22(8) ring motifs. Dimers are connected by N—H⋯O hydrogen bonds, forming layers parallel to the (102) plane. Consolidating the mol­ecular packing, these layers are connected by C—H⋯π inter­actions between the center of the 1,3-thia­zole ring and the H atom of the methyl group attached to it, as well as C=O⋯π inter­actions between the center of the 1,3-thia­zole ring and the O atom of the carboxyl group. According to a Hirshfeld surface study, H⋯H (37.6%), O⋯H/H⋯O (16.8%), S⋯H/H⋯S (15.4%), N⋯H/H⋯N (13.0%) and C⋯H/H⋯C (7.6%) inter­actions are the most significant contributors to the crystal packing.

1. Chemical context

Heterocyclic aromatic systems are the most important and manifold compounds in organic chemistry (Maharramov et al., 2011b[Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V. & Brito, I. (2011b). Acta Cryst. E67, o1307.]; Abdelhamid et al., 2014[Abdelhamid, A. A., Mohamed, S. K., Maharramov, A. M., Khalilov, A. N. & Allahverdiev, M. A. (2014). J. Saudi Chem. Soc. 18, 474-478.]). Organic synthesis is developing intensely with newer aromatic heterocyclic compounds that are obtained for diverse medicinal and commercial purposes (Khalilov et al., 2021[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.]). Nowadays, applications of five- and six-membered ring heterocycles have expanded in different branches of chemistry, including sustainable chemistry (Montes et al., 2018[Montes, V., Miñambres, J. F., Khalilov, A. N., Boutonnet, M., Marinas, J. M., Urbano, F. J., Maharramov, A. M. & Marinas, A. (2018). Catal. Today, 306, 89-95.]), drug design and development (Tas et al., 2023[Tas, A., Tüzün, B., Khalilov, A. N., Taslimi, P., Ağbektas, T. & Cakmak, N. K. (2023). J. Mol. Struct. 1273, 134282.]) and materials sciences (Yin et al., 2020[Yin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60-63.]). The thia­zole core is the most common five-membered heteroaromatic ring system in azole heterocycles (Yadigarov et al., 2009[Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856-1858.]; Khalilov, 2021[Khalilov, A. N. (2021). Rev. Roum. Chim. 66, 719-723.]). Thia­zoles have potent medicinal applications as it is an essential core scaffold present in many natural (thi­amine, penicillin) and synthetic medicinally important compounds (Chhabria et al., 2016[Chhabria, M. T., Patel, S., Modi, P. & Brahmkshatriya, P. S. (2016). Curr. Top. Med. Chem. 16, 2841-2862.]) such as sulfazole, ritonavir, abafungin, fanetizole, meloxicam, fenti­azac, nizatidine, thia­methoxam, etc. (Fig. 1[link]). On the other hand, there have been a variety of significant examples of thia­zole derivatives used as target products as well as synthetic inter­mediates (Akkurt et al., 2018[Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168-1172.]; Kekeçmuhammed et al., 2022[Kekeçmuhammed, H., Tapera, M., Tüzün, B., Akkoç, S., Zorlu, Y. & Sarıpınar, E. (2022). ChemistrySelect, 7, e202201502.]).

[Scheme 1]
[Figure 1]
Figure 1
Some marketed drugs containing the thia­zole moiety.

In a continuation of our investigations of heterocyclic systems with biological activity and in the framework of ongoing structural studies (Maharramov et al., 2011a[Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V., Allahverdiyev, M. A. & Ng, S. W. (2011a). Acta Cryst. E67, o721.]; Askerov et al., 2020[Askerov, R. K., Maharramov, A. M., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A., Osmanov, V. K. & Borisov, A. V. (2020). Acta Cryst. E76, 1007-1011.]; Karimli et al., 2023[Karimli, E. G., Khrustalev, V. N., Kurasova, M. N., Akkurt, M., Khalilov, A. N., Bhattarai, A. & Mamedov, İ. G. (2023). Acta Cryst. E79, 474-477.]), we report here the crystal structure and Hirshfeld surface analysis of the title compound, 1-(2-amino-4-methyl-1,3-thia­zol-5-yl)ethan-1-one.

2. Structural commentary

In the title compound, Fig. 2[link], all atoms except for the methyl H atoms are coplanar, with a maximum deviation of 0.026 (4) Å for C6. The geometric parameters of the title compound are normal and comparable to those of related compounds listed in the Database survey section.

[Figure 2]
Figure 2
The mol­ecular structure of the title compound, showing the atom labeling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, pairs of mol­ecules are linked by N—H⋯N hydrogen bonds, forming [R_{2}^{2}](8) ring motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Table 1[link], Fig. 3[link]). Dimers are connected by N—H⋯O hydrogen bonds, forming layers parallel to the (102) plane (Table 1[link], Fig. 4[link]). Consolidating the mol­ecular packing, these layers are connected by C—H⋯π inter­actions between the center of the 1,3-thia­zole ring and the H atom of the methyl group attached to it, as well as C=O⋯π inter­actions between the center of the 1,3-thia­zole ring and the O atom of the carboxyl group (Table 1[link], Figs. 5[link] and 6[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the (N1/S1/C1–C3) 1,3-thia­zole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1A⋯N1i 0.86 2.11 2.963 (4) 175
N2—H1B⋯O1ii 0.86 2.02 2.835 (4) 158
C4—H4BCg1iii 0.96 2.89 3.603 (4) 132
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
Partial view of the N—H⋯N and N—H⋯O bonds in the (102) plane of the title compound.
[Figure 4]
Figure 4
View of the packing of the title compound along the b-axis.
[Figure 5]
Figure 5
View of the C—H⋯π and C=O⋯π inter­actions of the title compound down the a axis.
[Figure 6]
Figure 6
View of the C—H⋯π and C=O⋯π inter­actions of the title compound down the b axis.

Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) was used to generate Hirshfeld surfaces and two-dimensional fingerprint plots in order to qu­antify the inter­molecular inter­actions in the crystal. The Hirshfeld surfaces were mapped over dnorm in the range −0.5624 (red) to 0.9850 (blue) a.u. (Fig. 7[link]). The inter­actions given in Table 2[link] play a key role in the mol­ecular packing of the title compound. The most important inter­atomic contact is H⋯H as it makes the highest contribution to the crystal packing (37.6%, Fig. 8[link]b). Other major contributors are O⋯H/H⋯O (16.8%, Fig. 8[link]c), S⋯H/H⋯S (15.4%, Fig. 8[link]d), N⋯H/H⋯N (13.0%, Fig. 8[link]e) and C⋯H/H⋯C (7.6%, Fig. 8[link]f) inter­actions. Other, smaller contributions are made by S⋯C/C⋯S (2.7%), C⋯O/O⋯C (2.6%), C⋯C (1.8%), N⋯C/C⋯N (1.5%), S⋯O/O⋯S (0.8%), S⋯N/N⋯S (0.1%) and O⋯N/N⋯O (0.1%) inter­actions.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

O1⋯H4A 2.69 1 + x, y, z
O1⋯H1B 2.02 2 − x, [{1\over 2}] + y, [{1\over 2}] − z
C1⋯H4B 3.09 x, [{3\over 2}] − y, −[{1\over 2}] + z
H1A⋯N1 2.11 1 − x, 1 − y, 1 − z
N2⋯H6B 2.89 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z
[Figure 7]
Figure 7
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm, with a fixed color scale of −0.5624 to 0.9850 a.u.
[Figure 8]
Figure 8
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) S⋯H/H⋯S, (e) N⋯H/H⋯N and (f) C⋯H/H⋯C inter­actions. [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the central five-membered ring 1,3-thia­zole yielded five compounds related to the title compound, viz. CSD refcodes IXAMAV (Kennedy et al., 2004a[Kennedy, A. R., Khalaf, A. I., Suckling, C. J. & Waigh, R. D. (2004a). Acta Cryst. E60, o1188-o1190.]), ABEGAQ (Kennedy et al., 2004b[Kennedy, A. R., Khalaf, A. I., Suckling, C. J. & Waigh, R. D. (2004b). Acta Cryst. E60, o1510-o1512.]), FEFKUY (Hazra et al., 2012[Hazra, D. K., Mukherjee, M., Helliwell, M. & Mukherjee, A. K. (2012). Acta Cryst. C68, o452-o455.]), DUTZEY (Chen & Xu, 2010[Chen, X. & Xu, L. (2010). Acta Cryst. E66, o2148.]) and LAMQOJ (Fait et al., 2021[Fait, M. J. G., Spannenberg, A., Kondratenko, E. V. & Linke, D. (2021). IUCrData, 6, x211332.]).

In the crystal of IXAMAV, the supra­molecular network is based upon N—H⋯N hydrogen-bonded centrosymmetric dimers linked by N—H⋯O contacts. ABEGAQ forms a supra­molecular network based on N—H⋯N hydrogen-bonded centrosymmetric dimers that are linked in turn by N—H⋯O contacts. In the crystal of FEFKUY, an inter­play of O—H⋯N and C—H⋯O hydrogen bonds connects the mol­ecules to form C(6)[R_{2}^{2}](8) polymeric chains, which are further linked via weak C—H⋯O hydrogen bonds into a two-dimensional supra­molecular framework. The crystal structure of DUTZEY involves inter­molecular N—H⋯N hydrogen bonds. In the crystal of LAMQOJ, weak C—H⋯N hydrogen bonds build up a wavy layer of mol­ecules in the (011) plane. The layers are stacked in the [100] direction by weak ππ stacking inter­actions between the 1,3-thia­zole rings.

5. Synthesis and crystallization

The title compound was synthesized using a reported procedure (Donald et al., 2012[Donald, M. B., Rodriguez, K. X., Shay, H., Phuan, P.-W., Verkman, A. S. & Kurth, M. J. (2012). Bioorg. Med. Chem. 20, 5247-5253.]), and colorless crystals were obtained upon recrystallization from an ethanol/water (3:1) solution at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were placed in calculated positions (C—H = 0.96 Å and N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(N) for the NH2 group and 1.5Ueq(C) for CH3 groups.

Table 3
Experimental details

Crystal data
Chemical formula C6H8N2OS
Mr 156.20
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 6.7445 (15), 13.498 (3), 8.010 (2)
β (°) 94.421 (7)
V3) 727.1 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.37
Crystal size (mm) 0.60 × 0.45 × 0.35
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]
Tmin, Tmax 0.649, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 14701, 1492, 940
Rint 0.144
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.142, 1.04
No. of reflections 1492
No. of parameters 93
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.28
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin. USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT V8.40B (Bruker, 2016); data reduction: SAINT V8.40B (Bruker, 2016); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

1-(2-Amino-4-methyl-1,3-thiazol-5-yl)ethan-1-one top
Crystal data top
C6H8N2OSF(000) = 328
Mr = 156.20Dx = 1.427 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.7445 (15) ÅCell parameters from 2051 reflections
b = 13.498 (3) Åθ = 3.0–26.4°
c = 8.010 (2) ŵ = 0.37 mm1
β = 94.421 (7)°T = 296 K
V = 727.1 (3) Å3Prism, colourless
Z = 40.60 × 0.45 × 0.35 mm
Data collection top
Bruker APEXII CCD
diffractometer
940 reflections with I > 2σ(I)
φ and ω scansRint = 0.144
Absorption correction: multi-scan
(SADABS; Krause et al., 2015
θmax = 26.4°, θmin = 3.0°
Tmin = 0.649, Tmax = 0.745h = 88
14701 measured reflectionsk = 1616
1492 independent reflectionsl = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.4474P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1492 reflectionsΔρmax = 0.29 e Å3
93 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5920 (5)0.7303 (2)0.4486 (4)0.0354 (8)
C20.7302 (5)0.5848 (2)0.4036 (4)0.0356 (8)
C30.7583 (5)0.7636 (2)0.3769 (4)0.0349 (8)
C40.4274 (5)0.7905 (3)0.5084 (5)0.0446 (9)
H4A0.3565390.8224400.4147590.067*
H4B0.4809530.8397100.5857590.067*
H4C0.3382310.7482090.5632990.067*
C50.8348 (5)0.8605 (3)0.3393 (4)0.0408 (9)
C60.7269 (6)0.9538 (3)0.3790 (5)0.0567 (11)
H6A0.7181700.9585840.4977420.085*
H6B0.5954770.9526240.3236740.085*
H6C0.7980791.0100360.3408060.085*
N10.5761 (4)0.62959 (19)0.4631 (4)0.0359 (7)
N20.7505 (4)0.4865 (2)0.4051 (4)0.0498 (9)
H1A0.6615730.4499330.4456840.060*
H1B0.8525930.4596980.3653760.060*
S10.90402 (13)0.66254 (6)0.32437 (12)0.0412 (3)
O10.9925 (4)0.8657 (2)0.2713 (4)0.0571 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0349 (18)0.0323 (17)0.039 (2)0.0005 (15)0.0045 (15)0.0011 (15)
C20.0348 (18)0.0287 (16)0.044 (2)0.0034 (14)0.0063 (15)0.0031 (15)
C30.0343 (18)0.0308 (17)0.040 (2)0.0023 (14)0.0035 (15)0.0009 (15)
C40.042 (2)0.0320 (18)0.061 (2)0.0032 (16)0.0105 (18)0.0005 (17)
C50.0410 (19)0.0351 (19)0.046 (2)0.0044 (15)0.0016 (17)0.0066 (15)
C60.066 (3)0.0313 (19)0.075 (3)0.0012 (19)0.015 (2)0.0054 (19)
N10.0318 (14)0.0294 (14)0.0476 (18)0.0007 (11)0.0093 (13)0.0001 (13)
N20.0450 (18)0.0295 (16)0.078 (2)0.0006 (13)0.0263 (17)0.0004 (15)
S10.0371 (5)0.0341 (5)0.0547 (6)0.0002 (4)0.0172 (4)0.0035 (4)
O10.0474 (16)0.0460 (16)0.080 (2)0.0083 (12)0.0182 (15)0.0148 (14)
Geometric parameters (Å, º) top
C1—N11.370 (4)C4—H4B0.9600
C1—C31.375 (4)C4—H4C0.9600
C1—C41.484 (5)C5—O11.234 (4)
C2—N11.322 (4)C5—C61.501 (5)
C2—N21.334 (4)C6—H6A0.9600
C2—S11.730 (3)C6—H6B0.9600
C3—C51.446 (5)C6—H6C0.9600
C3—S11.752 (3)N2—H1A0.8600
C4—H4A0.9600N2—H1B0.8600
N1—C1—C3115.6 (3)O1—C5—C3118.5 (3)
N1—C1—C4116.8 (3)O1—C5—C6119.6 (3)
C3—C1—C4127.6 (3)C3—C5—C6121.9 (3)
N1—C2—N2122.3 (3)C5—C6—H6A109.5
N1—C2—S1115.4 (2)C5—C6—H6B109.5
N2—C2—S1122.3 (2)H6A—C6—H6B109.5
C1—C3—C5134.3 (3)C5—C6—H6C109.5
C1—C3—S1109.7 (2)H6A—C6—H6C109.5
C5—C3—S1116.0 (2)H6B—C6—H6C109.5
C1—C4—H4A109.5C2—N1—C1110.7 (3)
C1—C4—H4B109.5C2—N2—H1A120.0
H4A—C4—H4B109.5C2—N2—H1B120.0
C1—C4—H4C109.5H1A—N2—H1B120.0
H4A—C4—H4C109.5C2—S1—C388.60 (15)
H4B—C4—H4C109.5
N1—C1—C3—C5179.3 (4)N2—C2—N1—C1179.3 (3)
C4—C1—C3—C52.0 (7)S1—C2—N1—C10.5 (4)
N1—C1—C3—S10.0 (4)C3—C1—N1—C20.3 (5)
C4—C1—C3—S1178.7 (3)C4—C1—N1—C2179.2 (3)
C1—C3—C5—O1179.5 (4)N1—C2—S1—C30.4 (3)
S1—C3—C5—O11.3 (5)N2—C2—S1—C3179.4 (3)
C1—C3—C5—C60.1 (7)C1—C3—S1—C20.2 (3)
S1—C3—C5—C6179.4 (3)C5—C3—S1—C2179.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the (N1/S1/C1–C3) 1,3-thiazole ring.
D—H···AD—HH···AD···AD—H···A
N2—H1A···N1i0.862.112.963 (4)175
N2—H1B···O1ii0.862.022.835 (4)158
C4—H4B···Cg1iii0.962.893.603 (4)132
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y1/2, z+1/2; (iii) x, y+1/2, z1/2.
Summary of short interatomic contacts (Å) in the title compound top
O1···H4A2.691 + x, y, z
O1···H1B2.022 - x, 1/2 + y, 1/2 - z
C1···H4B3.09x, 3/2 - y, -1/2 + z
H1A···N12.111 - x, 1 - y, 1 - z
N2···H6B2.891 - x, -1/2 + y, 1/2 - z
 

Acknowledgements

This study was supported by Baku State University, Erciyes University, Tribhuvan University and the Universidad de Antofagasta. Authors' contributions are as follows. Conceptualization, EZH, KAA and AMM; methodology, EZH, IB and MA; investigation, EZH and IB; writing (original draft), MA and AB; writing (review and editing of the manuscript), MA and EZH; visualization, MA, RMR and IB; funding acquisition, EZH, AB and IB; resources, AB, IB and MA; supervision, MA and AMM.

References

First citationAbdelhamid, A. A., Mohamed, S. K., Maharramov, A. M., Khalilov, A. N. & Allahverdiev, M. A. (2014). J. Saudi Chem. Soc. 18, 474–478.  Web of Science CSD CrossRef Google Scholar
First citationAkkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168–1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAskerov, R. K., Maharramov, A. M., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A., Osmanov, V. K. & Borisov, A. V. (2020). Acta Cryst. E76, 1007–1011.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin. USA.  Google Scholar
First citationChen, X. & Xu, L. (2010). Acta Cryst. E66, o2148.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChhabria, M. T., Patel, S., Modi, P. & Brahmkshatriya, P. S. (2016). Curr. Top. Med. Chem. 16, 2841–2862.  Web of Science CAS PubMed Google Scholar
First citationDonald, M. B., Rodriguez, K. X., Shay, H., Phuan, P.-W., Verkman, A. S. & Kurth, M. J. (2012). Bioorg. Med. Chem. 20, 5247–5253.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFait, M. J. G., Spannenberg, A., Kondratenko, E. V. & Linke, D. (2021). IUCrData, 6, x211332.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHazra, D. K., Mukherjee, M., Helliwell, M. & Mukherjee, A. K. (2012). Acta Cryst. C68, o452–o455.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarimli, E. G., Khrustalev, V. N., Kurasova, M. N., Akkurt, M., Khalilov, A. N., Bhattarai, A. & Mamedov, İ. G. (2023). Acta Cryst. E79, 474–477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKekeçmuhammed, H., Tapera, M., Tüzün, B., Akkoç, S., Zorlu, Y. & Sarıpınar, E. (2022). ChemistrySelect, 7, e202201502.  Google Scholar
First citationKennedy, A. R., Khalaf, A. I., Suckling, C. J. & Waigh, R. D. (2004a). Acta Cryst. E60, o1188–o1190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKennedy, A. R., Khalaf, A. I., Suckling, C. J. & Waigh, R. D. (2004b). Acta Cryst. E60, o1510–o1512.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalilov, A. N. (2021). Rev. Roum. Chim. 66, 719–723.  Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.  Web of Science CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMaharramov, A. M., Khalilov, A. N., Gurbanov, A. V., Allahverdiyev, M. A. & Ng, S. W. (2011a). Acta Cryst. E67, o721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaharramov, A. M., Khalilov, A. N., Gurbanov, A. V. & Brito, I. (2011b). Acta Cryst. E67, o1307.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMontes, V., Miñambres, J. F., Khalilov, A. N., Boutonnet, M., Marinas, J. M., Urbano, F. J., Maharramov, A. M. & Marinas, A. (2018). Catal. Today, 306, 89–95.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTas, A., Tüzün, B., Khalilov, A. N., Taslimi, P., Ağbektas, T. & Cakmak, N. K. (2023). J. Mol. Struct. 1273, 134282.  Web of Science CrossRef Google Scholar
First citationYadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856–1858.  Web of Science CrossRef CAS Google Scholar
First citationYin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60–63.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds