research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of silicon pernitride SiN2 at 140 GPa

crossmark logo

aInstitute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, 50939 Cologne, Germany, and bDepartment of Chemistry, University of Munich (LMU), Butenandtstrasse 5-13 (D), 81377 Munich, Germany
*Correspondence e-mail: maxim.bykov@uni-koeln.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 17 August 2023; accepted 14 September 2023; online 19 September 2023)

Silicon pernitride, SiN2, was synthesized from the elements at 140 GPa in a laser-heated diamond anvil cell. Its crystal structure was solved and refined by means of synchrotron-based single-crystal X-ray diffraction data. The title compound crystallizes in the pyrite structure type (space group Pa[\overline{3}], No. 205). The Si atom occupies a site with multiplicity 4 (Wyckoff letter b, site symmetry .[\overline{3}].), while the N atom is located on a site with multiplicity 8 (Wyckoff letter c, site symmetry .3.). The crystal structure of SiN2 is comprised of slightly distorted [SiN6] octa­hedra inter­connected with each other by sharing vertices. Crystal chemical analysis of bond lengths suggests that Si has a formal oxidation state of +IV, while nitro­gen forms pernitride anions (N—N)4–.

1. Chemical context

Nitro­gen-rich materials have gained a lot of attention due to their diverse properties such as high hardness, incompressibility (Young et al., 2006[Young, A. F., Sanloup, C., Gregoryanz, E., Scandolo, S., Hemley, R. J. & Mao, H. (2006). Phys. Rev. Lett. 96, 155501.]; Bykov et al. 2019a[Bykov, M., Chariton, S., Fei, H., Fedotenko, T., Aprilis, G., Ponomareva, A. V., Tasnádi, F., Abrikosov, I. A., Merle, B., Feldner, P., Vogel, S., Schnick, W., Prakapenka, V. B., Greenberg, E., Hanfland, M., Pakhomova, A., Liermann, H.-P., Katsura, T., Dubrovinskaia, N. & Dubrovinsky, L. (2019a). Nat. Commun. 10, 2994.]) and high energy density (Bykov et al., 2021[Bykov, M., Bykova, E., Ponomareva, A. V., Abrikosov, I. A., Chariton, S., Prakapenka, V. B., Mahmood, M. F., Dubrovinsky, L. & Goncharov, A. F. (2021). Angew. Chem. Int. Ed. 60, 9003-9008.]; Wang et al., 2022[Wang, Y., Bykov, M., Chepkasov, I., Samtsevich, A., Bykova, E., Zhang, X., Jiang, S., Greenberg, E., Chariton, S., Prakapenka, V. B., Oganov, A. R. & Goncharov, A. F. (2022). Nat. Chem. 14, 794-800.]). Among these, binary high-pressure nitrides of group 14 elements are of particular inter­est, as they exhibit remarkable elastic and electronic properties compared to their ambient-pressure counterparts. In particular, cubic silicon nitride γ-Si3N4, synthesized from the elements at about 15 GPa, is significantly more incompressible than the ambient-pressure α- and β-polymorphs (Zerr et al., 1999[Zerr, A., Miehe, G., Serghiou, G., Schwarz, M., Kroke, E., Riedel, R., Fuess, H., Kroll, P. & Boehler, R. (1999). Nature, 400, 340-342.]). Recently Niwa et al. (2017[Niwa, K., Ogasawara, H. & Hasegawa, M. (2017). Dalton Trans. 46, 9750-9754.]) have synthesized pernitrides of group 14 elements (SiN2, SnN2 and GeN2) by using laser-heated diamond anvil cells at pressures above 60 GPa. The crystal structures of GeN2 and SnN2 were solved and refined against powder X-ray diffraction data. However, the weak X-ray powder pattern of SiN2 only allowed the suggestion that SiN2 crystallizes in the pyrite structure type, while no structure refinement was performed.

In this work, we synthesized SiN2 from the elements at pressures of 140 GPa and examined it by means of synchrotron single-crystal X-ray diffraction in order to solve and refine its crystal structure.

2. Structural commentary

SiN2 crystallizes in fact in the pyrite structure type in the space group Pa[\overline{3}] (No. 205). The asymmetric unit comprises two atoms, a silicon atom (multiplicity 4, Wyckoff letter b, site symmetry .[\overline{3}].), and a nitro­gen atom (8 c, .3.). The nitro­gen atoms form N—N dimers, and consequently each of the N atoms is tetra­hedrally coordinated by three Si atoms and one N atom. The centers of the N—N dimers form an fcc sublattice, which together with the inter­penetrating fcc sublattice of Si atoms can be considered as a derivative of the rock salt structure type. Slightly distorted [SiN6] octa­hedra [Si—N distance 6× 1.7517 (11) Å] inter­connect with each other by sharing common vertices (Fig. 1[link]). There is a linear correlation between the nitro­gen–nitro­gen distance in dimers and the formal ionic charge and bond order of the (N2)x anion (Laniel et al., 2022[Laniel, D., Winkler, B., Fedotenko, T., Aslandukova, A., Aslandukov, A., Vogel, S., Meier, T., Bykov, M., Chariton, S., Glazyrin, K., Milman, V., Prakapenka, V., Schnick, W., Dubrovinsky, L. & Dubrovinskaia, N. (2022). Phys. Rev. Mater. 6, 023402.]). In the case of SiN2, the refined nitro­gen–nitro­gen distance of 1.402 (8) Å indicates that the N—N bond has single-bond character. This distance is in a good agreement with N—N distances observed in other pernitrides that contain single-bonded (N—N)4– units (Tasnádi et al., 2021[Tasnádi, F., Bock, F., Ponomareva, A. V., Bykov, M., Khandarkhaeva, S., Dubrovinsky, L. & Abrikosov, I. A. (2021). Phys. Rev. B, 104, 184103.]). However, it is longer compared to N—N bonds in diazenides (Laniel et al., 2022[Laniel, D., Winkler, B., Fedotenko, T., Aslandukova, A., Aslandukov, A., Vogel, S., Meier, T., Bykov, M., Chariton, S., Glazyrin, K., Milman, V., Prakapenka, V., Schnick, W., Dubrovinsky, L. & Dubrovinskaia, N. (2022). Phys. Rev. Mater. 6, 023402.]; Bykov et al., 2020[Bykov, M., Tasca, K. R., Batyrev, I. G., Smith, D., Glazyrin, K., Chariton, S., Mahmood, M. & Goncharov, A. F. (2020). Inorg. Chem. 59, 14819-14826.]) and in dinitrides of trivalent metals (Niwa et al., 2014[Niwa, K., Suzuki, K., Muto, S., Tatsumi, K., Soda, K., Kikegawa, T. & Hasegawa, M. (2014). Chem. A Eur. J. 20, 13885-13888.]; Bykov et al., 2019b[Bykov, M., Yusenko, K. V., Bykova, E., Pakhomova, A., Kraus, W., Dubrovinskaia, N. & Dubrovinsky, L. (2019b). Eur. J. Inorg. Chem. pp. 3667-3671.]). Based on the empirical formula suggested by Laniel et al. (2022[Laniel, D., Winkler, B., Fedotenko, T., Aslandukova, A., Aslandukov, A., Vogel, S., Meier, T., Bykov, M., Chariton, S., Glazyrin, K., Milman, V., Prakapenka, V., Schnick, W., Dubrovinsky, L. & Dubrovinskaia, N. (2022). Phys. Rev. Mater. 6, 023402.]) for dinitrides, FC = (BL − 1.104)/0.074, where FC is the absolute value of the formal charge on the di­nitro­gen unit and BL is the N—N bond length in Å, a clear assignment can be made. For SiN2, the value of FC was calculated as 4.04, which is in excellent agreement with the most common oxidation state of +IV for silicon.

[Figure 1]
Figure 1
Crystal structure of SiN2 at 140 GPa in polyhedral representation with Si atoms in orange and N atoms in blue. Shown are [SiN6] octa­hedra inter­connected by N atoms. Displacement ellipsoids are represented at the 75% probability level.

3. Synthesis and crystallization

A piece of silicon (10×10×5 µm3) was placed in the sample chamber of a BX90-type diamond anvil cell equipped with Boehler–Almax type diamonds using culets of 100 µm in diameter. The sample chamber was eventually created by laser-drilling a 50 µm hole in the Re gasket preindented to a thickness of 18 µm. Nitro­gen, loaded using the high-pressure gas-loading system of the Bavarian Geoinstitute (Kurnosov et al., 2008[Kurnosov, A., Kantor, I., Boffa-Ballaran, T., Lindhardt, S., Dubrovinsky, L., Kuznetsov, A. & Zehnder, B. H. (2008). Rev. Sci. Instrum. 79, 045110.]), served both as a pressure-transmitting medium and as a reagent. Pressure was determined by the shift of the diamond Raman band (Akahama & Kawamura, 2006[Akahama, Y. & Kawamura, H. (2006). J. Appl. Phys. 100, 043516.]). Upon compression to the target pressure of 140 GPa, the sample was heated using a focused Nd:YAG laser (λ = 1064 nm) to temperatures exceeding 2500 K. The heating duration was approximately 10 seconds. The reaction products consisted of multiple high-quality, single-crystalline domains.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The sample was studied by means of synchrotron single-crystal X-ray diffraction (SCXD) at the beamline ID11 (ESRF, Grenoble, France) with the following beamline setup: λ = 0.28457 Å, beamsize ∼0.7×0.7 μm2, Eiger CdTe 2M detector. For the SCXD measurements, samples were rotated around a vertical ω-axis in the range ±30°. The diffraction images were acquired at an angular step Δω = 0.5° and an exposure time of 5 s per frame. For analysis of the single-crystal diffraction data (indexing, data integration, frame scaling and absorption correction) we used the CrysAlis PRO software package (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Corporation, Wroclaw, Poland.]). To calibrate an instrumental mode using CrysAlis PRO, i.e., the sample-to-detector distance, detector origin, offsets of goniometer angles, and rotation of both X-ray beam and the detector around the instrument axis, we used a single crystal of orthoenstatite [(Mg1.93Fe0.06)(Si1.93,Al0.06)O6, space group Pbca, a = 8.8117 (2), b = 5.18320 (10), and c = 18.239 (13) Å].

Table 1
Experimental details

Crystal data
Chemical formula SiN2
Mr 56.11
Crystal system, space group Cubic, Pa[\overline{3}]
Temperature (K) 293
a (Å) 4.1205 (5)
V3) 69.96 (3)
Z 4
Radiation type Synchrotron, λ = 0.28457 Å
μ (mm−1) 0.21
Crystal size (mm) 0.001 × 0.001 × 0.001
 
Data collection
Diffractometer Customized ω-circle diffractometer
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Corporation, Wroclaw, Poland.])
Tmin, Tmax 0.750, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 269, 101, 60
Rint 0.049
(sin θ/λ)max−1) 1.112
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.191, 1.07
No. of reflections 101
No. of parameters 6
Δρmax, Δρmin (e Å−3) 1.08, −1.15
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Corporation, Wroclaw, Poland.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Data analysis followed several steps:

1. After collecting SCXD data sets (series of ∼120 frames), a 3D peak search procedure was performed as implemented CrysAlis PRO. This search identified reflections from all crystalline phases present in the collection spot, including reaction products, initial reagents, pressure-transmitting medium, diamonds and gasket material.

2. The peak search table was processed by means of the DaFi program (Aslandukov et al., 2022[Aslandukov, A., Aslandukov, M., Dubrovinskaia, N. & Dubrovinsky, L. (2022). J. Appl. Cryst. 55, 1383-1391.]), which sorts reflections into groups: if reflections fall into one group they origin­ate from one grain of the multigrain sample.

3. The reflection groups were assessed individually by indexing the reflections within the current group using built-in procedures in CrysAlis PRO. If indexing succeeded, the group was chosen for final data integration.

4. Datasets were integrated, and data was reduced following standard procedures, taking into account the shadowing of the diamond anvil cell.

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2023); cell refinement: CrysAlis PRO (Rigaku OD, 2023); data reduction: CrysAlis PRO (Rigaku OD, 2023); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Silicon pernitride top
Crystal data top
SiN2Synchrotron radiation, λ = 0.28457 Å
Mr = 56.11Cell parameters from 79 reflections
Cubic, Pa3θ = 3.4–16.4°
a = 4.1205 (5) ŵ = 0.21 mm1
V = 69.96 (3) Å3T = 293 K
Z = 4Irregular, colourless
F(000) = 1120.001 × 0.001 × 0.001 mm
Dx = 5.327 Mg m3
Data collection top
Customized ω-circle
diffractometer
101 independent reflections
Radiation source: synchrotron, ESRF, beamline ID1160 reflections with I > 2σ(I)
Synchrotron monochromatorRint = 0.049
Detector resolution: 5.0 pixels mm-1θmax = 18.5°, θmin = 3.4°
ω scansh = 44
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 78
Tmin = 0.750, Tmax = 1.000l = 87
269 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: dual
R[F2 > 2σ(F2)] = 0.071 w = 1/[σ2(Fo2) + (0.109P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.191(Δ/σ)max < 0.001
S = 1.07Δρmax = 1.08 e Å3
101 reflectionsΔρmin = 1.15 e Å3
6 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.50000.50000.50000.0084 (5)
N10.5982 (5)0.4018 (5)0.9018 (5)0.0076 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0084 (5)0.0084 (5)0.0084 (5)0.0005 (3)0.0005 (3)0.0005 (3)
N10.0076 (6)0.0076 (6)0.0076 (6)0.0012 (8)0.0012 (8)0.0012 (8)
Geometric parameters (Å, º) top
Si1—N11.7517 (11)Si1—N1v1.7517 (11)
Si1—N1i1.7517 (11)N1—Si1vi1.7517 (11)
Si1—N1ii1.7517 (11)N1—Si1vii1.7517 (11)
Si1—N1iii1.7517 (11)N1—N1viii1.402 (8)
Si1—N1iv1.7517 (11)
N1—Si1—N1iii86.94 (4)N1iv—Si1—N1ii86.94 (4)
N1iv—Si1—N1v93.06 (4)N1v—Si1—N1i86.94 (4)
N1ii—Si1—N1i93.06 (4)N1—Si1—N1v86.94 (4)
N1—Si1—N1iv180.0N1—Si1—N1i93.06 (4)
N1iii—Si1—N1i180.00 (14)Si1—N1—Si1vi112.54 (10)
N1iii—Si1—N1iv93.06 (4)Si1vii—N1—Si1vi112.54 (10)
N1iii—Si1—N1v93.06 (4)Si1vii—N1—Si1112.54 (10)
N1—Si1—N1ii93.06 (4)N1viii—N1—Si1vi106.20 (12)
N1ii—Si1—N1v180.0N1viii—N1—Si1vii106.20 (12)
N1iii—Si1—N1ii86.94 (4)N1viii—N1—Si1106.20 (12)
N1iv—Si1—N1i86.94 (4)
N1iii—Si1—N1—Si1vii94.59 (6)N1i—Si1—N1—Si1vii85.41 (6)
N1iii—Si1—N1—Si1vi33.8 (3)N1ii—Si1—N1—Si1vii7.82 (11)
N1v—Si1—N1—Si1vi59.4 (2)N1iii—Si1—N1—N1viii149.62 (10)
N1i—Si1—N1—Si1vi146.2 (3)N1v—Si1—N1—N1viii56.39 (6)
N1ii—Si1—N1—Si1vi120.6 (2)N1i—Si1—N1—N1viii30.38 (10)
N1v—Si1—N1—Si1vii172.18 (11)N1ii—Si1—N1—N1viii123.61 (6)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+3/2, y+1, z1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y+1, z+1; (v) x1/2, y, z+3/2; (vi) x+1, y1/2, z+3/2; (vii) x+3/2, y+1, z+1/2; (viii) x+1, y+1, z+2.
 

Acknowledgements

We acknowledge the European Synchrotron Radiation Facility (ESRF) for provision of synchrotron radiation facilities and we would like to thank Pierre-Olivier Autran for assistance and support in using beamline ID11. We thank Dr Alexander Kurnosov for loading the DAC with nitro­gen.

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. BY112/2-1 to Maxim Bykov). A PhD scholarship for GK from the Friedrich Naumann Foundation for Freedom with funds from the Federal Ministry of Education and Research (BMBF) is gratefully acknowledged.

References

First citationAkahama, Y. & Kawamura, H. (2006). J. Appl. Phys. 100, 043516.  Web of Science CrossRef Google Scholar
First citationAslandukov, A., Aslandukov, M., Dubrovinskaia, N. & Dubrovinsky, L. (2022). J. Appl. Cryst. 55, 1383–1391.  CrossRef CAS IUCr Journals Google Scholar
First citationBykov, M., Bykova, E., Ponomareva, A. V., Abrikosov, I. A., Chariton, S., Prakapenka, V. B., Mahmood, M. F., Dubrovinsky, L. & Goncharov, A. F. (2021). Angew. Chem. Int. Ed. 60, 9003–9008.  CrossRef ICSD CAS Google Scholar
First citationBykov, M., Chariton, S., Fei, H., Fedotenko, T., Aprilis, G., Ponomareva, A. V., Tasnádi, F., Abrikosov, I. A., Merle, B., Feldner, P., Vogel, S., Schnick, W., Prakapenka, V. B., Greenberg, E., Hanfland, M., Pakhomova, A., Liermann, H.-P., Katsura, T., Dubrovinskaia, N. & Dubrovinsky, L. (2019a). Nat. Commun. 10, 2994.  CrossRef ICSD PubMed Google Scholar
First citationBykov, M., Tasca, K. R., Batyrev, I. G., Smith, D., Glazyrin, K., Chariton, S., Mahmood, M. & Goncharov, A. F. (2020). Inorg. Chem. 59, 14819–14826.  CrossRef ICSD CAS PubMed Google Scholar
First citationBykov, M., Yusenko, K. V., Bykova, E., Pakhomova, A., Kraus, W., Dubrovinskaia, N. & Dubrovinsky, L. (2019b). Eur. J. Inorg. Chem. pp. 3667–3671.  CrossRef ICSD Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKurnosov, A., Kantor, I., Boffa-Ballaran, T., Lindhardt, S., Dubrovinsky, L., Kuznetsov, A. & Zehnder, B. H. (2008). Rev. Sci. Instrum. 79, 045110.  Web of Science CrossRef PubMed Google Scholar
First citationLaniel, D., Winkler, B., Fedotenko, T., Aslandukova, A., Aslandukov, A., Vogel, S., Meier, T., Bykov, M., Chariton, S., Glazyrin, K., Milman, V., Prakapenka, V., Schnick, W., Dubrovinsky, L. & Dubrovinskaia, N. (2022). Phys. Rev. Mater. 6, 023402.  CrossRef ICSD Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNiwa, K., Ogasawara, H. & Hasegawa, M. (2017). Dalton Trans. 46, 9750–9754.  CrossRef CAS PubMed Google Scholar
First citationNiwa, K., Suzuki, K., Muto, S., Tatsumi, K., Soda, K., Kikegawa, T. & Hasegawa, M. (2014). Chem. A Eur. J. 20, 13885–13888.  CrossRef CAS Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Corporation, Wroclaw, Poland.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTasnádi, F., Bock, F., Ponomareva, A. V., Bykov, M., Khandarkhaeva, S., Dubrovinsky, L. & Abrikosov, I. A. (2021). Phys. Rev. B, 104, 184103.  Google Scholar
First citationWang, Y., Bykov, M., Chepkasov, I., Samtsevich, A., Bykova, E., Zhang, X., Jiang, S., Greenberg, E., Chariton, S., Prakapenka, V. B., Oganov, A. R. & Goncharov, A. F. (2022). Nat. Chem. 14, 794–800.  CrossRef ICSD CAS PubMed Google Scholar
First citationYoung, A. F., Sanloup, C., Gregoryanz, E., Scandolo, S., Hemley, R. J. & Mao, H. (2006). Phys. Rev. Lett. 96, 155501.  CrossRef PubMed Google Scholar
First citationZerr, A., Miehe, G., Serghiou, G., Schwarz, M., Kroke, E., Riedel, R., Fuess, H., Kroll, P. & Boehler, R. (1999). Nature, 400, 340–342.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds