research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure, stereochemical and Hirshfeld surface analysis of trans-di­aqua­bis­­(1-phenyl­propane-1,2-di­amine-κ2N,N′)nickel(II) dichloride dihydrate

crossmark logo

aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India, bPrincipal (Retired), Kunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur 613 007, Tamil Nadu, India, and cPG & Research Department of Chemistry, Government Arts College, Chidambaram 608 102, Tamil Nadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com, rraajjii2006@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 10 September 2023; accepted 27 September 2023; online 29 September 2023)

In the hydrated complex salt, [Ni(C9H14N2)2(H2O)2]Cl2·2H2O, the asymmetric unit comprises of half of the complex cation along with one chloride anion and one non-coordinating water mol­ecule. The central nickel(II) atom is located on an inversion center and is coordinated in a trans octa­hedral fashion by four N atoms from two bidentate 1,2-di­amino-1-phenyl­propane ligands in the equatorial plane, and by two oxygen atoms from two water mol­ecules occupying the axial sites. The five-membered chelate ring is in a slightly twisted envelope conformation. The crystal packing features O—H⋯Cl, N—H⋯O and N—H⋯Cl hydrogen bonds. Hirshfeld surface analysis revealed that the most important contributions to the crystal packing are from H⋯H (56.4%), O⋯H/H⋯O (16.4%) and H⋯Cl (13.3%) inter­actions. The crystal void volume was calculated to be 15.17%.

1. Chemical context

Unsymmetrically substituted vicinal di­amines are an important class of organic compounds widely used as chelating agents. They are important structural units that have been used for decades, including in asymmetric synthesis. Besides possessing anti­cancer activities (Gayathri et al., 2017[Gayathri, A., Rajeswari, K., Vidhyasagar, T. & Selvanayagam, S. (2017). Acta Cryst. E73, 1878-1881.]), their metal complexes, being analogues of cis-platin, play crucial roles in biological processes including metal-ion-involved metabolism. In addition, such metal complexes find extensive applications in the materials field (Hussain et al., 2019[Hussain, A., AlAjmi, M. F., Rehman, Md. T., Amir, S., Husain, F. M., Alsalme, A., Siddiqui, M. A., Alkhedairy, A. A. & Khan, R. A. (2019). Sci. Rep. 9, 5237, 1-17.]; Rajeshwari et al., 2021[Rajeshwari, K., Anantha Lakshmi, P. V., Archana, J. & Sumakanth, M. (2021). Appl. Organom Chem. 35, e6100.]). Such complexes with nickel(II) and bio-active unsymmetrically substituted vicinal di­amines are inter­esting since nickel is found to be a major trace element, playing a crucial role as a catalytic center in many important metabolic enzymes. Exploring the mol­ecular structure of such NiII complexes with bio-active di­amine ligands becomes inevitable in order to understand their properties and find possible applications in materials and medicinal chemistry.

In this context, we report here on the synthesis, crystal structure and Hirshfeld surface analysis of the complex salt trans-di­aqua­bis­(1-phenyl­propane-1,2-di­amine-κ2N,N′)nickel(II) dichloride dihydrate, [Ni(C9H14N2)2(H2O)2]Cl2·2H2O, (I)[link].

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] consists of half of the cationic complex, one chloride anion and one non-coordinating water mol­ecule. The central NiII atom is located on an inversion center, and the other half of the cationic complex is generated by symmetry operationx, −y + 1, −z + 1. The nickel(II) atom shows a distorted trans-octa­hedral coordination by four N atoms from two bidentate 1,2-di­amino-1-phenyl­propane ligands in the equatorial plane, and by two oxygen atoms from two water mol­ecules in the axial sites (Fig. 1[link]). The five-membered (Ni1/N1/C3/C1/N2) chelate ring is in a slightly twisted envelope conformation with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) of Q(2) = 0.346 (4) Å, φ(2) = 86.6 (4)°, closest pucker descriptor: twisted on C3—C1. The Ni1—O2 bond length is 2.158 (2) Å whereas the Ni1—N bonds are shorter with 2.092 (2) Å to N1 and 2.070 (3) Å to N2. The differences in Ni—N bond lengths may be due to the influence of unsymmetrical substitutions at C3 and C1. The cis-N1—Ni1—N2 bond angle is found to be 82.45 (9)° and that of cis-N1—Ni1—N2i is 97.55 (9)°. The N1—Ni1—O2 bond angle is 91.79 (9)° and that of N1i—Ni1—O2 is 88.21 (9)°. The bond lengths and angles in the complex cation of (I)[link] are comparable with those in similar structures (Sbai et al., 2002[Sbai, F., Chkirate, K., Regragui, R., Essassi, E. M. & Pierrot, M. (2002). Acta Cryst. E58, m337-m339.]; Li et al., 2005[Li, M. T., Wang, C.-G., Wu, Y. & Fu, X.-C. (2005). Acta Cryst. E61, m1613-m1615.]; Chen et al., 2006[Chen, Z.-L., Zhang, Y.-Z. & Liang, F.-P. (2006). Acta Cryst. E62, m2287-m2289.]; Kim & Lee, 2002[Kim, C.-H. & Lee, S.-G. (2002). Acta Cryst. C58, m421-m423.]).

[Figure 1]
Figure 1
View of the mol­ecular structure of (I)[link], showing displacement ellipsoids at the 30% probability level and spheres of arbitrary radius for the H atoms. [Symmetry code: (i) −x, −y + 1, −z + 1.]

3. Supra­molecular features

The crystal packing of (I)[link] involves hydrogen bonding of the coordinating water mol­ecule (O2) to the chloride anion, and of the amino groups to the non-coordinating water mol­ecule (O1) and the chloride anion (Table 1[link], Fig. 2[link]), establishing a layered arrangement parallel to (100).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯Cl2i 0.85 2.29 3.134 (2) 173
O2—H2B⋯Cl2 0.88 2.26 3.132 (2) 170
N1—H1A⋯O1 0.89 2.48 3.313 (5) 157
N1—H1B⋯Cl2 0.89 2.69 3.464 (3) 146
N2—H2C⋯Cl2i 0.84 (5) 2.68 (5) 3.460 (3) 155 (4)
N2—H2D⋯Cl2ii 0.81 (5) 2.86 (5) 3.378 (3) 124 (4)
Symmetry codes: (i) [-x, -y+2, -z+1]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A partial packing diagram of (I)[link] viewed along the b axis showing the O—H⋯Cl, N—H⋯O and N—H⋯Cl hydrogen-bonding inter­actions as dashed lines.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis of (I)[link] was carried out with CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Fig. 3[link] shows the Hirshfeld surface plotted over dnorm in the range −0.495 to 1.462 a.u. where the intense red spots represent the shortest inter­molecular contacts between nearest mol­ecules, the blue spots the longest contacts and the white ones medium contacts. In this respect, inter­actions shorter than the van der Waals radii between O—H⋯Cl, N—H⋯Cl or N—H⋯O are shown as bright-red spots. The two-dimensional fingerprint plots are plotted in Fig. 4[link]. The most important contributions to the crystal packing are from H⋯H (56.4%), O⋯H/H⋯O (16.4%) and H⋯Cl (13.3%) inter­actions.

[Figure 3]
Figure 3
Hirshfeld surface plotted over dnorm for (I)[link].
[Figure 4]
Figure 4
Two-dimensional-fingerprint plots of (I)[link].

5. HOMO-LUMO

Fig. 5[link] represents the HOMO and LUMO of the cationic complex of (I)[link], visualized using TONTO calculations in CrystalExplorer at the B3LYP/6-31 G(d,p) level. From the HOMO representation, it can be seen that the electrons reside mostly over the metal and water mol­ecules, whereas in the LUMO representation, the electrons are delocalized and largely reside over the metal and amino groups.

[Figure 5]
Figure 5
HOMO (a) and LUMO (b) of (I)[link].

6. Crystal void

In order to assess the mechanical stability of the crystal of (I)[link], void analysis (Turner et al., 2011[Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804-1813.]) was performed with CrystalExplorer. The void volume of the crystal of (I)[link] (Fig. 6[link]), was calculated to be 188.48 Å3, i.e., 15.17% of the crystal volume, which shows that the crystal is tightly packed.

[Figure 6]
Figure 6
Representation of the crystal voids in the crystal structure of (I)[link].

7. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.44, updated June 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using the mol­ecular moiety (II) depicted in Fig. 7[link] for the basic skeleton of (I)[link], with a transition-metal atom of period 4 at the center, omitting aromatic H, methyl and methine H atoms, water mol­ecules, O and Cl atoms, gave 46 hits. There are no close matches in the CSD since the title compound possesses an unsymmetrically substituted vicinal di­amine ligand.

[Figure 7]
Figure 7
The mol­ecular moiety (II) used for the CSD database search.

8. Synthesis and crystallization

The salt (I)[link] was synthesized by addition of 1,2-di­amino-1-phenyl­propane (0.02 mol), prepared by the procedure reported by Noller & Baliah (1948[Noller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853-3855.]) and Thennarasu & Perumal (2002[Thennarasu, S. & Perumal, P. T. (2002). Molecules, 7, 487-493.]), to a nickel dichloride hexa­hydrate (0.01 mol) solution in methanol (20 ml) with stirring under ice-cold conditions. The mixture was stirred in an ice bath for nearly 1 h and the pinkish-red solid formed was filtered and washed with chloro­form. The schematic synthesis is shown in Fig. 8[link]. Purification and growth of single crystals suitable for X-ray analysis was accomplished by recrystallization from methanol and slow evaporation (m.p. 497 K).

[Figure 8]
Figure 8
Synthesis scheme of (I)[link].

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms attached to C atoms were placed in calculated positions (with aromatic C—H = 0.93, methyl group C—H = 0.96 and methine C—H = 0.98 Å). The H atoms attached to N1 were placed at N1—H1A = 0.89 and N1—H1B = 0.89 Å. The H atoms attached to N2 were freely refined with N2—H2C = 0.84 (5) and N2—H2D = 0.81 (5) Å. O1 is the O atom of the non-coordinating water mol­ecule. The two H-atom positions around this O atom were not discernible from difference-Fourier maps and are not included in the model. The H atoms attached to O2 were placed at O2—H2A = 0.85 and O2—H2B = 0.88 Å. All H atoms (except the freely refined H2C and H2D atoms) were included as riding contributions with isotropic displacement parameters Uiso(H) = 1.2 and 1.5Ueq(C), 1.2Ueq(N) and 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C9H14N2)2(H2O)2]Cl2·2H2O
Mr 502.12
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 12.1130 (7), 7.3062 (4), 14.0441 (8)
β (°) 91.589 (2)
V3) 1242.42 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.02
Crystal size (mm) 0.31 × 0.27 × 0.21
 
Data collection
Diffractometer Bruker D8 Quest XRD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.634, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 15989, 3619, 2841
Rint 0.020
(sin θ/λ)max−1) 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.140, 1.08
No. of reflections 3619
No. of parameters 144
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.52, −0.91
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

trans-Diaquabis(1-phenylpropane-1,2-diamine-κ2N,N')nickel(II) dichloride dihydrate top
Crystal data top
[Ni(C9H14N2)2(H2O)2]Cl2·2H2ODx = 1.331 Mg m3
Mr = 502.12Melting point: 497 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.1130 (7) ÅCell parameters from 7663 reflections
b = 7.3062 (4) Åθ = 3.1–30.0°
c = 14.0441 (8) ŵ = 1.02 mm1
β = 91.589 (2)°T = 298 K
V = 1242.42 (12) Å3Block, pink
Z = 20.31 × 0.27 × 0.21 mm
F(000) = 524
Data collection top
Bruker D8 Quest XRD
diffractometer
2841 reflections with I > 2σ(I)
Detector resolution: 7.3910 pixels mm-1Rint = 0.020
ω and φ scansθmax = 30.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1716
Tmin = 0.634, Tmax = 0.746k = 1010
15989 measured reflectionsl = 1917
3619 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0335P)2 + 2.3825P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3619 reflectionsΔρmax = 1.52 e Å3
144 parametersΔρmin = 0.91 e Å3
0 restraintsExtinction correction: SHELXL-2019/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.0000000.5000000.5000000.03444 (17)
O10.2039 (4)0.2818 (7)0.2674 (3)0.1230 (15)
O20.08403 (19)0.7604 (3)0.49802 (16)0.0480 (5)
H2A0.0679270.8304720.5449160.072*
H2B0.0672240.8242630.4473130.072*
Cl20.00298 (9)0.99682 (12)0.32983 (6)0.0590 (3)
N10.1278 (2)0.6032 (3)0.41843 (16)0.0393 (5)
H1A0.1637900.5115520.3913210.047*
H1B0.1003050.6754720.3726160.047*
N20.1041 (2)0.5800 (4)0.61171 (18)0.0402 (5)
C10.2120 (3)0.6298 (7)0.5760 (2)0.0656 (11)
H10.2474130.5112030.5656270.079*
C20.2870 (3)0.7202 (6)0.6481 (3)0.0608 (10)
H2E0.3562140.7480910.6197090.091*
H2F0.2994900.6393310.7012190.091*
H2G0.2535800.8312810.6697620.091*
C30.2038 (3)0.7078 (7)0.4816 (3)0.0670 (11)
H30.1679200.8267180.4899490.080*
C40.3132 (3)0.7513 (6)0.4357 (2)0.0568 (9)
C50.3882 (4)0.6251 (7)0.4081 (3)0.0793 (13)
H50.3745500.5011350.4169940.095*
C60.4867 (4)0.6819 (9)0.3659 (4)0.0890 (16)
H60.5385560.5957300.3477400.107*
C70.5056 (3)0.8635 (9)0.3517 (3)0.0806 (15)
H70.5701030.9019480.3233470.097*
C80.4309 (4)0.9858 (7)0.3788 (4)0.0824 (14)
H80.4439161.1097890.3689660.099*
C90.3354 (3)0.9320 (7)0.4208 (3)0.0669 (10)
H90.2849261.0200160.4394030.080*
H2C0.079 (3)0.667 (6)0.644 (3)0.068 (13)*
H2D0.114 (4)0.503 (6)0.653 (3)0.076 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0403 (3)0.0322 (3)0.0311 (3)0.0052 (2)0.00578 (18)0.00010 (19)
O10.126 (3)0.115 (3)0.128 (4)0.001 (3)0.006 (3)0.009 (3)
O20.0588 (13)0.0360 (11)0.0495 (12)0.0009 (10)0.0076 (10)0.0012 (9)
Cl20.0953 (7)0.0415 (4)0.0409 (4)0.0030 (4)0.0133 (4)0.0025 (3)
N10.0426 (12)0.0424 (13)0.0331 (11)0.0084 (10)0.0038 (9)0.0001 (10)
N20.0450 (13)0.0439 (14)0.0318 (12)0.0060 (11)0.0047 (10)0.0005 (11)
C10.0497 (19)0.107 (3)0.0399 (17)0.026 (2)0.0018 (14)0.0001 (19)
C20.0518 (19)0.082 (3)0.0479 (19)0.0132 (19)0.0065 (15)0.0045 (18)
C30.058 (2)0.095 (3)0.0470 (19)0.031 (2)0.0043 (16)0.0007 (19)
C40.0435 (17)0.086 (3)0.0412 (16)0.0226 (18)0.0046 (13)0.0004 (17)
C50.102 (4)0.063 (3)0.074 (3)0.008 (3)0.015 (3)0.002 (2)
C60.072 (3)0.120 (5)0.076 (3)0.029 (3)0.012 (2)0.008 (3)
C70.049 (2)0.126 (5)0.068 (3)0.027 (3)0.0143 (18)0.000 (3)
C80.084 (3)0.079 (3)0.085 (3)0.027 (3)0.019 (3)0.007 (3)
C90.057 (2)0.080 (3)0.065 (2)0.001 (2)0.0106 (18)0.005 (2)
Geometric parameters (Å, º) top
Ni1—N2i2.070 (3)C2—H2E0.9600
Ni1—N22.070 (3)C2—H2F0.9600
Ni1—N1i2.092 (2)C2—H2G0.9600
Ni1—N12.092 (2)C3—C41.523 (5)
Ni1—O2i2.158 (2)C3—H30.9800
Ni1—O22.158 (2)C4—C51.359 (6)
O2—H2A0.8524C4—C91.364 (6)
O2—H2B0.8799C5—C61.409 (7)
N1—C31.475 (4)C5—H50.9300
N1—H1A0.8900C6—C71.362 (8)
N1—H1B0.8900C6—H60.9300
N2—C11.458 (4)C7—C81.335 (7)
N2—H2C0.84 (5)C7—H70.9300
N2—H2D0.81 (5)C8—C91.371 (6)
C1—C31.444 (5)C8—H80.9300
C1—C21.496 (5)C9—H90.9300
C1—H10.9800
N2i—Ni1—N2180.0C3—C1—H1103.4
N2i—Ni1—N1i82.45 (9)N2—C1—H1103.4
N2—Ni1—N1i97.55 (9)C2—C1—H1103.4
N2i—Ni1—N197.55 (9)C1—C2—H2E109.5
N2—Ni1—N182.45 (9)C1—C2—H2F109.5
N1i—Ni1—N1180.0H2E—C2—H2F109.5
N2i—Ni1—O2i92.17 (11)C1—C2—H2G109.5
N2—Ni1—O2i87.83 (11)H2E—C2—H2G109.5
N1i—Ni1—O2i91.79 (9)H2F—C2—H2G109.5
N1—Ni1—O2i88.21 (9)C1—C3—N1111.9 (3)
N2i—Ni1—O287.83 (11)C1—C3—C4115.7 (3)
N2—Ni1—O292.17 (11)N1—C3—C4112.9 (3)
N1i—Ni1—O288.21 (9)C1—C3—H3105.0
N1—Ni1—O291.79 (9)N1—C3—H3105.0
O2i—Ni1—O2180.00 (11)C4—C3—H3105.0
Ni1—O2—H2A114.9C5—C4—C9118.5 (4)
Ni1—O2—H2B111.0C5—C4—C3125.1 (4)
H2A—O2—H2B104.7C9—C4—C3116.4 (4)
C3—N1—Ni1108.45 (19)C4—C5—C6120.1 (5)
C3—N1—H1A110.0C4—C5—H5120.0
Ni1—N1—H1A110.0C6—C5—H5120.0
C3—N1—H1B110.0C7—C6—C5119.8 (5)
Ni1—N1—H1B110.0C7—C6—H6120.1
H1A—N1—H1B108.4C5—C6—H6120.1
C1—N2—Ni1110.06 (19)C8—C7—C6119.5 (4)
C1—N2—H2C110 (3)C8—C7—H7120.2
Ni1—N2—H2C114 (3)C6—C7—H7120.2
C1—N2—H2D107 (3)C7—C8—C9121.1 (5)
Ni1—N2—H2D115 (3)C7—C8—H8119.4
H2C—N2—H2D101 (4)C9—C8—H8119.4
C3—C1—N2112.0 (3)C4—C9—C8121.1 (4)
C3—C1—C2118.2 (4)C4—C9—H9119.5
N2—C1—C2114.3 (3)C8—C9—H9119.5
Ni1—N2—C1—C332.1 (5)C1—C3—C4—C9113.5 (5)
Ni1—N2—C1—C2169.9 (3)N1—C3—C4—C9115.7 (4)
N2—C1—C3—N144.5 (5)C9—C4—C5—C60.6 (7)
C2—C1—C3—N1179.4 (4)C3—C4—C5—C6179.8 (4)
N2—C1—C3—C4175.8 (4)C4—C5—C6—C70.9 (8)
C2—C1—C3—C448.2 (6)C5—C6—C7—C80.6 (8)
Ni1—N1—C3—C133.9 (4)C6—C7—C8—C90.1 (8)
Ni1—N1—C3—C4166.5 (3)C5—C4—C9—C80.1 (7)
C1—C3—C4—C567.3 (6)C3—C4—C9—C8179.2 (4)
N1—C3—C4—C563.4 (5)C7—C8—C9—C40.4 (7)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···Cl2ii0.852.293.134 (2)173
O2—H2B···Cl20.882.263.132 (2)170
N1—H1A···O10.892.483.313 (5)157
N1—H1B···Cl20.892.693.464 (3)146
N2—H2C···Cl2ii0.84 (5)2.68 (5)3.460 (3)155 (4)
N2—H2D···Cl2iii0.81 (5)2.86 (5)3.378 (3)124 (4)
Symmetry codes: (ii) x, y+2, z+1; (iii) x, y+3/2, z+1/2.
 

Acknowledgements

Authors thank DST PURSE Phase II, Department of Chemistry, Annamalai University for support of the single-crystal XRD data collection.

References

First citationBruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z.-L., Zhang, Y.-Z. & Liang, F.-P. (2006). Acta Cryst. E62, m2287–m2289.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGayathri, A., Rajeswari, K., Vidhyasagar, T. & Selvanayagam, S. (2017). Acta Cryst. E73, 1878–1881.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHussain, A., AlAjmi, M. F., Rehman, Md. T., Amir, S., Husain, F. M., Alsalme, A., Siddiqui, M. A., Alkhedairy, A. A. & Khan, R. A. (2019). Sci. Rep. 9, 5237, 1–17.  Google Scholar
First citationKim, C.-H. & Lee, S.-G. (2002). Acta Cryst. C58, m421–m423.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, M. T., Wang, C.-G., Wu, Y. & Fu, X.-C. (2005). Acta Cryst. E61, m1613–m1615.  CSD CrossRef IUCr Journals Google Scholar
First citationNoller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853–3855.  CrossRef PubMed CAS Web of Science Google Scholar
First citationRajeshwari, K., Anantha Lakshmi, P. V., Archana, J. & Sumakanth, M. (2021). Appl. Organom Chem. 35, e6100.  CrossRef Google Scholar
First citationSbai, F., Chkirate, K., Regragui, R., Essassi, E. M. & Pierrot, M. (2002). Acta Cryst. E58, m337–m339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThennarasu, S. & Perumal, P. T. (2002). Molecules, 7, 487–493.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804–1813.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds