research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of cyclo-tetra­bromido-1κ2Br,3κ2Br-tetra­kis­(μ2-2-{[(pyridin-2-yl)meth­yl]amino}­ethane-1-thiol­ato-κ3N,S:S)tetra­mercury(II)

crossmark logo

aDepartment of Chemistry, William & Mary, Williamsburg, VA 23187-8795, USA
*Correspondence e-mail: dcbebo@wm.edu

Edited by C. Schulzke, Universität Greifswald, Germany (Received 14 July 2023; accepted 19 September 2023; online 29 September 2023)

The macrometallacyclic title compound, [Hg4Br4(C8H11N2S)4] or [((HgL2)(HgBr2))2] (1) where HL = 2-{[(pyridin-2-yl)meth­yl]amino}­ethane-1-thiol, was prepared and structurally characterized. The Hg2+ complex crystallizes in the P21/c space group. The centrosymmetric Hg4S4 metallacycle is constructed from metal ions with alternating distorted tetra­hedral Br2S2 and distorted seesaw N2S2 primary coordination environments with pendant pyridyl groups. The backfolded extended chair metallacycle conformation suggests inter­actions between each of the bis-chelated mercury atoms and Br atoms lying above and below the central Hg2S4 plane. Supra­molecular inter­actions in 1 include a fourfold aryl embrace and potential hydrogen bonds with bromine as the acceptor. Hirshfeld surface analysis indicates that H⋯H (51.7%), Br⋯H/H⋯Br (23.0%) and C⋯H/H⋯C (9.5%) inter­actions are dominant.

1. Chemical context

For many years, we and others have been inter­ested in the structures of group 12 coordination compounds including an amino­ethane­thiol­ate moiety (Hu et al., 2020[Hu, L., Fang, J., Zhang, X., Li, M. & Li, S. (2020). Russ. J. Inorg. Chem. 65, 1718-1725.]; Hallinger et al., 2017[Hallinger, M. R., Gerhard, A. C., Ritz, M. D., Sacks, J. S., Poutsma, J. C., Pike, R. D., Wojtas, L. & Bebout, D. C. (2017). ACS Omega, 2, 6391-6404.]; Akhtar et al., 2015[Akhtar, M., Tahir, M. N., Saleem, M., Mazhar, M., Rauf, A., Isab, A. A., Ahmad, S. & Nadeem, S. (2015). Russ. J. Inorg. Chem. 60, 1568-1572.]; Bharara et al., 2006a[Bharara, M. S., Parkin, S. & Atwood, D. A. (2006a). Inorg. Chem. 45, 7261-7268.],b[Bharara, M. S., Parkin, S. & Atwood, D. A. (2006b). Inorg. Chem. 45, 2112-2118.]; Fleischer et al., 2006[Fleischer, H., Hardt, S. & Schollmeyer, D. (2006). Inorg. Chem. 45, 8318-8325.]; Viehweg et al., 2010[Viehweg, J. A., Stamps, S. M., Dertinger, J. J., Green, R. L., Harris, K. E., Butcher, R. J., Andriole, E. J., Poutsma, J. C., Berry, S. M. & Bebout, D. C. (2010). Dalton Trans. 39, 3174-3176.]; Brand & Vahrenkamp, 1995[Brand, U. & Vahrenkamp, H. (1995). Inorg. Chem. 34, 3285-3293.]; Avdeef et al., 1992[Avdeef, A., Hartenstein, F., Chemotti, A. R. J. & Brown, J. A. (1992). Inorg. Chem. 31, 3701-3705.]; Tuntulani et al., 1992[Tuntulani, T., Reibenspies, J. H., Farmer, P. J. & Darensbourg, M. Y. (1992). Inorg. Chem. 31, 3497-3499.]; Kaptein et al., 1987[Kaptein, B., Wang-Griffin, L., Barf, G. & Kellogg, R. M. (1987). J. Chem. Soc. Chem. Commun. pp. 1457-1459.]). Single-crystal X-ray diffraction is critical to the characterization of group 12 amino­ethane­thiol­ate complexes since the nuclearity of complexes with 1:1 metal-to-ligand ratio can vary with the identity of ancillary ligands and counter-ions (Brennan et al., 2022[Brennan, H. M., Bunde, S. G., Kuang, Q., Palomino, T. V., Sacks, J. S., Berry, S. M., Butcher, R. J., Poutsma, J. C., Pike, R. D. & Bebout, D. C. (2022). Inorg. Chem. 61, 19857-19869.]; Lai et al., 2013[Lai, W., Berry, S. M., Kaplan, W. P., Hain, M. S., Poutsma, J. C., Butcher, R. J., Pike, R. D. & Bebout, D. C. (2013). Inorg. Chem. 52, 2286-2288.]; Brand & Vahrenkamp, 1995[Brand, U. & Vahrenkamp, H. (1995). Inorg. Chem. 34, 3285-3293.]) and complexes with novel ring structures have been produced (Ritz et al., 2019[Ritz, M. D., Gerhard, A. C., Pike, R. D. & Bebout, D. C. (2019). Eur. J. Inorg. Chem. pp. 4070-4077.]; Viehweg et al., 2010[Viehweg, J. A., Stamps, S. M., Dertinger, J. J., Green, R. L., Harris, K. E., Butcher, R. J., Andriole, E. J., Poutsma, J. C., Berry, S. M. & Bebout, D. C. (2010). Dalton Trans. 39, 3174-3176.]).

[Scheme 1]

In contrast to the polymeric [ZnLX]n structure reported for zinc halide complexes of deprotonated HL = 2-{[(pyridin-2­yl)meth­yl]amino}­ethane-1-thiol (Brand & Vahrenkamp, 1995[Brand, U. & Vahrenkamp, H. (1995). Inorg. Chem. 34, 3285-3293.]), the cyclic tetra­nuclear compound cyclo-tetra­bromido-1κ2Br,3κ2Br-tetra­kis­(μ2-2-{[(pyridin-2-yl)meth­yl]amino}­ethane-1-thiol­ato-κ3N,S:S)tetra­mercury(II) (1) constructed from alternating HgL­2 and HgBr2 centers was found for the mercuric bromide complex of L. This communication reports the preparation, crystal structure, and Hirshfeld surface analysis of 1, which facilitate an in-depth discussion of its structural features.

2. Structural commentary

Complex 1 crystallizes as discrete centrosymmetric mol­ecules with an eight-membered metallacycle of alternating mercury and sulfur atoms (Fig. 1[link]). The asymmetric unit contains Hg2L2Br2, which is one half of complex 1. The sets of four mercury(II) centers and four sulfur atoms in 1 each lie rigorously in their own plane, as required by the crystallographic inversion center located in the center of the mol­ecule. The angle between these planes is 25.741 (18)°. The two Hg2 atoms are approximately tetra­hedrally coordinated to two terminal bromines and two bridging sulfur atoms (Table 1[link]). These are separated by bis-chelated Hg1 metal atoms. The potentially tridentate ligand has an N-μ2-S coordination mode with a pendant pyridyl ring. The pyridyl nitro­gen atoms are located 3.563 (4)–4.303 (3) Å from the closest mercury atoms and oriented unfavorably for either intra- or inter­molecular bonding inter­actions with a metal center. The chelate rings have an envelope conformation with the methyl­ene carbon in the flap position. The Hg1 metal atoms show a marked distortion from tetra­hedral towards seesaw coordination with a widened S—Hg—S angle of 156.40 (3)°. The two bridging Hg—S distances are slightly longer and more similar (Δ = 0.003 Å) than the two chelating Hg–S distances (Δ = 0.030 Å).

Table 1
Selected geometric parameters (Å,°) for 1

Hg–N2 2.372 (3) Hg2–S1 2.4802 (9)
Hg1–N4 2.500 (3) Hg2–S2i 2.4826 (9)
Hg1–S1 2.4646 (9) Hg2–Br1 2.6323 (4)
Hg1–S2 2.4348 (9) Hg2–Br2 2.7158 (4)
       
N2–Hg1–N4 112.59 (10) S1–Hg2–S2i 127.94 (3)
N2–Hg1–S2 115.39 (8) S1–Hg2–Br1 108.19 (2)
N4–Hg1–S1 104.57 (7) S1–Hg2–Br2 101.76 (2)
N4–Hg1–S2 82.25 (7) Br1–Hg2–S21 105.56 (2)
S1–Hg1–S2 156.40 (3) Br2–Hg2–S2i 104.21 (2)
Hg1–S1–Hg2 96.99 (3) Br1–Hg2–Br2 107.804 (12)
Hg1–S2–Hg2i 97.38 (3)    
Symmetry code: (i) –x + 1, –y + 1, –z + 1
[Figure 1]
Figure 1
The mol­ecular structure of 1 with the atom numbering scheme generated with ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]). Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: (i) −x + 1, −y + 1, −z + 1.

Alternatively, the Hg4S4 ring can be viewed as an extended chair containing a central planar Hg2S4 arrangement with one backfolded mercury atom on each side of the plane. The six Hg2S4 atoms lie between 0.0653 (3) and 0.1079 (5) Å from the mean plane. The HgS2 planes forming the head and foot of the chair are in an unusually acute 83.99 (4)° angle with the central plane placing Hg2 and Br2 over the Hg12S4 plane. Furthermore, the Hg2—Br2 bonds are 0.084 Å longer than the Hg2—Br1 bonds. These observations imply some weak inter­actions between the Br2 atoms and the two bis-chelated mercury atoms located 3.3951 (5) Å and 3.6026 (5) Å away. In a similar setting, such likely inter­actions between group 12 metal ions and halides have been reported for complexes of 2-(di­methyl­amino)­ethane­thiol­ate (Casals et al., 1991[Casals, I., González-Duarte, P., Clegg, W., Foces-Foces, C., Cano, F. H., Martínez-Ripoll, M., Gómez, M. & Solans, X. (1991). J. Chem. Soc. Dalton Trans. pp. 2511-2518.]). Further­more, a related penta­cyclic Cd4S4Cl2 primary bonding core has been reported for [(Cd(SC(CH3)2CH2NH2)2(CdCl2)]2·2H2O (refcode MEASCD; Fawcett et al., 1978[Fawcett, T. G., Ou, C., Potenza, J. A. & Schugar, H. J. (1978). J. Am. Chem. Soc. 100, 2058-2062.]). The Hg⋯Hg separation between the bis-brominated mercury atoms [5.0530 (6) Å] is shorter than the distance between the bis-chelated mercury atoms [5.4023 (5) Å], both of which are too long for significant inter­actions between the metal atoms. In contrast, [CuL]4 has mono-N,S chelated metal atoms in a D2d butterfly arrangement with Cu⋯Cu separations of 2.6957 (11) and 3.370 (1) Å (refcode TEVMAI; Stange et al., 1996[Stange, A. F., Klinkhammer, K. W. & Kaim, W. (1996). Inorg. Chem. 35, 4087-4089.]).

3. Supra­molecular features

In addition to a variety of van der Waals contacts, the packing of 1 is stabilized by ππ inter­actions (Fig. 2[link] and Table 2[link]) and hydrogen bonding (Fig. 3[link] and Table 3[link]). The pendant pyridyl rings (centroids Cg1: N1/C1–C5; Cg2: N3/C9–C13) participate in a fourfold aryl embrace around a crystallographic inversion center with centroid–centroid distances of 4.453 (2) and 4.873 (2) Å (Table 2[link]). The pyridyl planes subtend an angle of 62.87 (13)°. Most of the hydrogen bonds involve C—H donors and Br acceptors (Brammer et al., 2001[Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277-290.]). Neither nitro­gen atom of the pendant pyridyl rings participates in inter­molecular hydrogen bonding.

Table 2
Overview of pyrid­yl–pyridyl ring geometry metrics (Å,°) for 1

Cg1 and Cg2 are the centroids of the N1/C1–C5 and N3/C9–C13 rings, respectively.

Centroids Dihedral angle between rings Centroid–centroid distance Centroid–plane distance Centroid offset
Cg1⋯Cg2i 62.87 (13) 4.873 (2) 4.735 (3) 1.151
Cg1⋯Cg2ii 62.87 (13) 4.453 (2) 4.312 (3) 1.112
Symmetry codes: (i) x, y − [{1\over 2}], −z + [{1\over 2}]; (ii) x, − y + [{3\over 2}], z + [{1\over 2}].

Table 3
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯Br2ii 1.00 2.95 3.572 (3) 121
C6—H6A⋯Br1iii 0.99 3.02 3.944 (4) 157
C7—H7A⋯Br1iii 0.99 3.02 3.978 (4) 163
C15—H15A⋯Br2ii 0.99 2.86 3.503 (4) 123
C15—H15B⋯Br2i 0.99 3.09 3.973 (4) 149
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, -y+1, -z+1].
[Figure 2]
Figure 2
Fourfold aryl embrace between two pairs of inversion-related mol­ecules of 1 viewed down the a axis illustrated using Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). Hydrogen atoms were omitted for clarity. Ring centroids are shown as red spheres. Cyan dashed lines show centroid–centroid distances (for additional numerical data, see Table 2[link]).
[Figure 3]
Figure 3
A view of N—H⋯Br and C—H⋯Br hydrogen bonds in compound 1 shown as dashed lines illustrated using Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). Symmetry codes as in Table 3[link].

4. Hirshfeld surface analysis

Inter­molecular inter­actions were investigated by qu­anti­tative analysis of the Hirshfeld surface and visualized with CrystalExplorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The Hirshfeld surface of 1 plotted over shape-index did not have the hourglass figures associated with face-to-face aromatic inter­actions (Fig. 4[link]). Instead, circular and wedge-shaped blue bumps associated with N3 as the edge of the pyridyl ring (top right) complement a pair of similarly shaped red pits on the face of the N1 pyridyl ring (lower right). The reverse side of the N1 pyridyl ring (upper left) has a multicolored iris-like feature and a large blue bump while complementary characteristics lie across the center of the mol­ecule. A feature reminiscent of a paw print with red digital pad pits extending over the reverse face of the N3 pyridyl ring and a blue metacarpal pad bump over the attached methyl­ene (lower left) complements a reverse-colored paw print overlying the inner edge of the N1 pyridyl ring.

[Figure 4]
Figure 4
Hirshfeld surface of 1 plotted over shape-index generated with CrystalExplorer21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Blue and red areas represent bumps and hollow regions, respectively, on the shape-index surface.

The Hirshfeld surface of 1 mapped with the function dnorm, the sum of the distances from a surface point to the nearest inter­ior (di) and exterior (de) atoms normalized by the van der Waals (vdW) radii of the corresponding atom (rvdW), is shown in Fig. 5[link]. Contacts near and longer than the sum of van der Waals radii are shown in white and blue, respectively. Red areas are observed for atoms associated with close contacts at least 0.050 Å shorter than the sum of van der Waals radii (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). The most intense red spots correspond to an inter­molecular contact between H2N and adjacent atoms N3 and C9. Neighboring pale-red regions reflect a contact between N1 and C13, respectively. Medium intensity red spots are associated with Br1 and H3.

[Figure 5]
Figure 5
Hirshfeld surface of 1 plotted over normalized contact distance (dnorm) in the range from −0.2689 (red) to 1.5908 (blue) a.u. generated with CrystalExplorer21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]).

The overall 2D fingerprint plot for 1 is provided in Fig. 6[link]a while the inter­actions delineated into H⋯H (51.7%), Br⋯H/H⋯Br (23.0%), and C⋯H/H⋯C (9.5%) contacts are shown in Fig. 6[link]bd. Other minor contributions to the Hirshfeld surface are from S⋯H/H⋯S (7.5%), N⋯H/H⋯N (4.7%), N⋯C/C⋯N (1.8%), Hg⋯H/H⋯Hg (1.4%), Br⋯C/C⋯Br (0.3%), N⋯N (0.1%), and C⋯C (0.1%) inter­actions.

[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for 1, showing (a) all inter­actions, and components delineated into (b) H⋯H, (c) Br⋯H/H⋯Br and (d) C⋯H/H⋯C inter­actions generated with CrystalExplorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The di and de values are closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.44, update of April 2023; Groom et al. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for metal complexes of L yielded 21 hits. Most of the complexes feature an N,N′-μ2-S binding mode for L including [PdL]4Cl(ClO4)3·CH3OH·H2O (refcode SUZDUM; Kawahashi et al., 2001[Kawahashi, T., Mikuriya, M., Nukada, R. & Lim, J. (2001). Bull. Chem. Soc. Jpn, 74, 323-329.]), which had a Pd4S4 metallocycle with boat conformation. Salts of group 12 metal ions with weakly coordinating perchlorate and tetra­fluoro­borate counter-ions have generated a variety of solvated complex ions with composition [Zn3L4]2+ (refcode BITNIB: Mikuriya et al., 1998[Mikuriya, M., Jian, X., Ikemi, S., Kawahashi, T. & Tsutsumi, H. (1998). Bull. Chem. Soc. Jpn, 71, 2161-2168.]; JEHWEB: Hallinger et al., 2017[Hallinger, M. R., Gerhard, A. C., Ritz, M. D., Sacks, J. S., Poutsma, J. C., Pike, R. D., Wojtas, L. & Bebout, D. C. (2017). ACS Omega, 2, 6391-6404.]; ZACWAB; Brand & Vahrenkamp, 1995[Brand, U. & Vahrenkamp, H. (1995). Inorg. Chem. 34, 3285-3293.]) and [HgZn2L4]2+ (refcodes JEHWIF, JEHWOL, JEHWUR, JEHXAY, JEHXEC; Hallinger et al., 2017[Hallinger, M. R., Gerhard, A. C., Ritz, M. D., Sacks, J. S., Poutsma, J. C., Pike, R. D., Wojtas, L. & Bebout, D. C. (2017). ACS Omega, 2, 6391-6404.]). Additional complexes of tridentate L with group 12 metal ions include [Hg5L6](ClO4)4·toluene (DABJIB; Viehweg et al., 2010[Viehweg, J. A., Stamps, S. M., Dertinger, J. J., Green, R. L., Harris, K. E., Butcher, R. J., Andriole, E. J., Poutsma, J. C., Berry, S. M. & Bebout, D. C. (2010). Dalton Trans. 39, 3174-3176.]), [ZnLCl]n (ZACWEF; Brand & Vahrenkamp, 1995[Brand, U. & Vahrenkamp, H. (1995). Inorg. Chem. 34, 3285-3293.]), [ZnL(acetato-O)]2 (ZACWIJ; Brand & Vahrenkamp, 1995[Brand, U. & Vahrenkamp, H. (1995). Inorg. Chem. 34, 3285-3293.]), and [ZnL(quinoline-2-carboxyl­ato-N,O)] (ZACWUV; Brand & Vahrenkamp, 1995[Brand, U. & Vahrenkamp, H. (1995). Inorg. Chem. 34, 3285-3293.]). The only complexes of L with pendant pyridyl rings are [MoL(S2)2O] (refcode OTUHER; Wei et al., 2011[Wei, Z., Long, L., Wei, J. & Liu, X. (2011). Inorg. Chim. Acta, 375, 320-323.]), [ZnL2] (refcode ZACWOP; Brand & Vahrenkamp, 1995[Brand, U. & Vahrenkamp, H. (1995). Inorg. Chem. 34, 3285-3293.]) and [CuL]4 (refcode TEVMAI; Stange et al., 1996[Stange, A. F., Klinkhammer, K. W. & Kaim, W. (1996). Inorg. Chem. 35, 4087-4089.]).

A search of the Cambridge Structural Database (CSD, Version 5.44, update of April 2023; (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for Hg4S4 metallacycles yielded eight tetra­mercury hits. Complexes with chelating N and S donor amino­ethane­thiol­ate ligands share an extended chair conformation comparable to 1 with varying degrees of backfolding (refcode IKUVUH: Clegg, 2016[Clegg, W. (2016). CSD communication (refcode IKUVUH). CCDC, Cambridge, England.]; refcodes DENKUD and DENLEO: Bharara et al., 2006a[Bharara, M. S., Parkin, S. & Atwood, D. A. (2006a). Inorg. Chem. 45, 7261-7268.]; refcode ECIYOF: Bharara et al., 2006b[Bharara, M. S., Parkin, S. & Atwood, D. A. (2006b). Inorg. Chem. 45, 2112-2118.]; refcode JIZWEU: Casals et al., 1991[Casals, I., González-Duarte, P., Clegg, W., Foces-Foces, C., Cano, F. H., Martínez-Ripoll, M., Gómez, M. & Solans, X. (1991). J. Chem. Soc. Dalton Trans. pp. 2511-2518.]). Complexes with separate pyridyl and alkyl­thiol­ate ligands exhibit nearly planar Hg4S4 rings cinched across the middle by a pair of μ-Cl ligands (refcode BTCHGP: Canty, et al., 1978[Canty, A. J., Raston, C. L. & White, A. H. (1978). Aust. J. Chem. 31, 677-684.]; refcode TBTPHG: Canty, et al., 1979[Canty, A. J., Raston, C. L. & White, A. H. (1979). Aust. J. Chem. 32, 1165-1166.]). In contrast, a chair ring conformation with only four coplanar atoms and μ-Cl was observed with di­propyl­dithio­carbamate ligands (XOKPAR: Loseva et al., 2019[Loseva, O. V., Rodina, T. A., Ivanov, A. V., Smolentsev, A. I. & Antzutkin, O. N. (2019). Russ. Chem. Bull. 68, 782-792.]).

6. Synthesis and crystallization

A solution of HgBr2 (942 mg, 2.61 mmol) in 15 mL methanol was added to a stirred solution of LH (445 mg, 2.64 mmol) and NaOH (104 mg, 2.60 mmol) in 20 mL methanol. A white precipitate characterized as 1 was collected by vacuum filtration and dried overnight under vacuum (971 mg, 542 µmol, 83% yield). X-ray quality colorless plates were formed by dissolving the precipitate in a minimum amount of hot aceto­nitrile and setting aside for slow evaporation. M.p. 438 K (dec). 1H NMR (saturated, CD3CN): 8.514 (d, 1H, J = 5.0), 7.802 (ddd, 1H, J = 1.7, 7.6, 7.6), 7.373 (dd, 1H, J = 5.0, 7.9), 4.144 (d, 2H, J = 4.1), 2.928 (bm, 1H), 2.804 (m, 1H) 2.668 (m, 1H). Analysis calculated for C32H44Br4Hg4N8S4: C, 21.46; H, 2.48; N, 6.26. Found: C, 21.35; H2.45; N, 6.12.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The hydrogen atoms were placed in calculated positions with C—H distances of 0.95 (aromatic) and 0.99 Å (methyl­ene) and refined as riding atoms with Uiso(H) = 1.2Ueq(C).Å

Table 4
Experimental details

Crystal data
Chemical formula [Hg4Br4(C8H11N2S)4]
Mr 1790.99
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.3055 (8), 12.1464 (8), 14.9763 (9)
β (°) 99.509 (1)
V3) 2207.7 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 17.71
Crystal size (mm) 0.35 × 0.31 × 0.22
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.024, 0.114
No. of measured, independent and observed [I > 2σ(I)] reflections 32818, 4414, 4133
Rint 0.027
(sin θ/λ)max−1) 0.621
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.034, 1.18
No. of reflections 4414
No. of parameters 235
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.96, −0.73
Computer programs: APEX3 (Bruker, 2015[Bruker (2015). APEX3. Bruker AXS Inc. Madison, Wisconsin, USA]), SAINT-Plus (Bruker, 2012[Bruker (2012). SAINT-Plus. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/5 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), CrystalExplorer21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT-Plus (Bruker, 2012); data reduction: SAINT-Plus (Bruker, 2012); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/5 (Sheldrick, 2015b); molecular graphics: ShelXle (Hübschle et al., 2011); software used to prepare material for publication: ORTEP-3 for Windows (Farrugia, 2012), Mercury 2022.3.0 (Macrae et al., 2020), CrystalExplorer21.5 (Spackman et al., 2021), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

cyclo-Tetrabromido-1κ2Br,3κ2Br-tetrakis(µ2-2-{[(pyridin-2-yl)methyl]amino}ethane-1-thiolato-κ3N,S:S)tetramercury(II) top
Crystal data top
[Hg4Br4(C8H11N2S)4]F(000) = 1632
Mr = 1790.99Dx = 2.694 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.3055 (8) ÅCell parameters from 9997 reflections
b = 12.1464 (8) Åθ = 2.2–26.2°
c = 14.9763 (9) ŵ = 17.71 mm1
β = 99.509 (1)°T = 100 K
V = 2207.7 (2) Å3Block, colourless
Z = 20.35 × 0.31 × 0.22 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4133 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
φ and ω scansθmax = 26.2°, θmin = 1.7°
Absorption correction: numerical
(SADABS; Krause et al., 2015)
h = 1515
Tmin = 0.024, Tmax = 0.114k = 1515
32818 measured reflectionsl = 1818
4414 independent reflections
Refinement top
Refinement on F2Primary atom site location: other
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.034 w = 1/[σ2(Fo2) + (0.0066P)2 + 5.3501P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.003
4414 reflectionsΔρmax = 0.96 e Å3
235 parametersΔρmin = 0.73 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.36010 (2)0.63859 (2)0.39709 (2)0.01596 (4)
Hg20.34257 (2)0.36960 (2)0.51023 (2)0.01555 (4)
Br10.17236 (3)0.28583 (3)0.57228 (2)0.01937 (8)
Br20.41406 (3)0.54687 (3)0.61405 (2)0.01797 (8)
S10.27476 (7)0.45682 (7)0.36173 (6)0.01507 (17)
S20.50720 (7)0.76760 (7)0.45273 (6)0.01603 (18)
N10.2436 (3)0.8986 (3)0.4380 (2)0.0259 (7)
N20.1844 (2)0.6839 (2)0.4320 (2)0.0187 (6)
H2N0.1966660.7246310.4908130.028*
N30.1801 (3)0.7126 (2)0.1325 (2)0.0197 (7)
N40.3891 (2)0.7134 (2)0.2473 (2)0.0158 (6)
H4N0.3447870.7820170.2328900.024*
C10.2971 (4)0.9946 (3)0.4380 (3)0.0297 (9)
H10.3413731.0179800.4927380.036*
C20.2913 (3)1.0613 (3)0.3629 (3)0.0270 (9)
H20.3295261.1295070.3664150.032*
C30.2293 (4)1.0275 (3)0.2829 (3)0.0301 (10)
H30.2245401.0712030.2297980.036*
C40.1736 (3)0.9277 (3)0.2815 (3)0.0256 (9)
H40.1295350.9021900.2273570.031*
C50.1833 (3)0.8660 (3)0.3604 (3)0.0182 (8)
C60.1227 (3)0.7578 (3)0.3633 (3)0.0206 (8)
H6A0.0484330.7717440.3780570.025*
H6B0.1137850.7220920.3030820.025*
C70.1260 (3)0.5811 (3)0.4463 (3)0.0183 (8)
H7A0.0473490.5979850.4468020.022*
H7B0.1572780.5502150.5061970.022*
C80.1341 (3)0.4954 (3)0.3737 (2)0.0184 (8)
H8A0.0960820.5241390.3148660.022*
H8B0.0943290.4284020.3877210.022*
C90.0708 (3)0.7033 (3)0.1080 (3)0.0215 (8)
H90.0290950.7691550.0966680.026*
C100.0147 (3)0.6047 (3)0.0980 (3)0.0231 (8)
H100.0631140.6024040.0805960.028*
C110.0758 (3)0.5094 (3)0.1142 (2)0.0221 (8)
H110.0405550.4396200.1074020.026*
C120.1888 (3)0.5162 (3)0.1405 (2)0.0192 (8)
H120.2320400.4514990.1526870.023*
C130.2376 (3)0.6192 (3)0.1487 (2)0.0164 (7)
C140.3616 (3)0.6329 (3)0.1735 (2)0.0196 (8)
H14A0.3955620.5609880.1926350.024*
H14B0.3919180.6580560.1197200.024*
C150.5074 (3)0.7401 (3)0.2651 (2)0.0175 (7)
H15A0.5292490.7727890.2101220.021*
H15B0.5506100.6718810.2797820.021*
C160.5324 (3)0.8206 (3)0.3433 (2)0.0192 (8)
H16A0.4869530.8874530.3282540.023*
H16B0.6106580.8429170.3494050.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.01171 (7)0.01497 (7)0.02108 (8)0.00221 (5)0.00233 (5)0.00253 (5)
Hg20.01402 (7)0.01313 (7)0.01822 (7)0.00079 (5)0.00112 (5)0.00195 (5)
Br10.01458 (16)0.01840 (18)0.02510 (19)0.00292 (13)0.00323 (14)0.00137 (15)
Br20.01992 (17)0.01448 (17)0.01915 (18)0.00256 (14)0.00219 (14)0.00390 (14)
S10.0154 (4)0.0135 (4)0.0154 (4)0.0004 (3)0.0002 (3)0.0004 (3)
S20.0140 (4)0.0129 (4)0.0204 (5)0.0002 (3)0.0008 (3)0.0012 (3)
N10.0307 (19)0.0229 (17)0.0250 (18)0.0046 (15)0.0073 (15)0.0007 (14)
N20.0165 (15)0.0159 (15)0.0244 (17)0.0005 (12)0.0055 (13)0.0004 (13)
N30.0197 (16)0.0178 (16)0.0211 (16)0.0022 (13)0.0016 (13)0.0018 (13)
N40.0136 (14)0.0146 (15)0.0191 (15)0.0004 (12)0.0019 (12)0.0008 (12)
C10.035 (2)0.026 (2)0.028 (2)0.0085 (18)0.0036 (19)0.0003 (18)
C20.030 (2)0.021 (2)0.033 (2)0.0052 (17)0.0117 (19)0.0024 (17)
C30.042 (3)0.023 (2)0.029 (2)0.0056 (18)0.014 (2)0.0066 (18)
C40.034 (2)0.020 (2)0.022 (2)0.0045 (17)0.0018 (18)0.0015 (16)
C50.0160 (17)0.0160 (18)0.024 (2)0.0057 (14)0.0082 (15)0.0016 (15)
C60.0155 (17)0.0208 (19)0.025 (2)0.0008 (15)0.0022 (15)0.0011 (16)
C70.0130 (17)0.0193 (19)0.0237 (19)0.0008 (14)0.0061 (15)0.0046 (16)
C80.0140 (17)0.0170 (18)0.0223 (19)0.0032 (14)0.0029 (15)0.0044 (15)
C90.0198 (19)0.021 (2)0.024 (2)0.0047 (15)0.0039 (16)0.0014 (16)
C100.0178 (19)0.031 (2)0.0194 (19)0.0020 (16)0.0010 (15)0.0008 (17)
C110.025 (2)0.0187 (19)0.022 (2)0.0064 (16)0.0012 (16)0.0016 (16)
C120.0233 (19)0.0178 (18)0.0162 (18)0.0021 (15)0.0024 (15)0.0027 (15)
C130.0187 (18)0.0174 (18)0.0130 (17)0.0024 (14)0.0022 (14)0.0004 (14)
C140.0195 (18)0.0191 (19)0.0198 (19)0.0025 (15)0.0021 (15)0.0037 (15)
C150.0139 (17)0.0196 (18)0.0186 (18)0.0006 (14)0.0015 (14)0.0078 (15)
C160.0149 (17)0.0159 (18)0.025 (2)0.0015 (14)0.0011 (15)0.0082 (15)
Geometric parameters (Å, º) top
Hg1—N22.372 (3)C4—C51.387 (5)
Hg1—N42.500 (3)C4—H40.9500
Hg1—S12.4646 (9)C5—C61.515 (5)
Hg1—S22.4348 (9)C6—H6A0.9900
Hg2—S12.4802 (9)C6—H6B0.9900
Hg2—S2i2.4826 (9)C7—C81.520 (5)
Hg2—Br12.6323 (4)C7—H7A0.9900
Hg2—Br22.7158 (4)C7—H7B0.9900
S1—C81.831 (4)C8—H8A0.9900
S2—C161.835 (4)C8—H8B0.9900
N1—C51.332 (5)C9—C101.378 (5)
N1—C11.338 (5)C9—H90.9500
N2—C71.473 (4)C10—C111.380 (5)
N2—C61.478 (5)C10—H100.9500
N2—H2N1.0000C11—C121.384 (5)
N3—C131.338 (5)C11—H110.9500
N3—C91.340 (5)C12—C131.384 (5)
N4—C151.472 (4)C12—H120.9500
N4—C141.473 (4)C13—C141.518 (5)
N4—H4N1.0000C14—H14A0.9900
C1—C21.379 (6)C14—H14B0.9900
C1—H10.9500C15—C161.518 (5)
C2—C31.372 (6)C15—H15A0.9900
C2—H20.9500C15—H15B0.9900
C3—C41.391 (6)C16—H16A0.9900
C3—H30.9500C16—H16B0.9900
N2—Hg1—N4112.59 (10)N2—C6—H6B109.6
N2—Hg1—S2115.39 (8)C5—C6—H6B109.6
N4—Hg1—S1104.57 (7)H6A—C6—H6B108.1
N4—Hg1—S282.25 (7)N2—C7—C8112.6 (3)
S1—Hg1—S2156.40 (3)N2—C7—H7A109.1
Hg1—S1—Hg296.99 (3)C8—C7—H7A109.1
Hg1—S2—Hg2i97.38 (3)N2—C7—H7B109.1
S1—Hg2—S2i127.94 (3)C8—C7—H7B109.1
S1—Hg2—Br1108.19 (2)H7A—C7—H7B107.8
S1—Hg2—Br2101.76 (2)C7—C8—S1114.8 (2)
S2i—Hg2—Br1105.56 (2)C7—C8—H8A108.6
S2i—Hg2—Br2104.21 (2)S1—C8—H8A108.6
Br1—Hg2—Br2107.804 (12)C7—C8—H8B108.6
C8—S1—Hg197.22 (12)S1—C8—H8B108.6
C8—S1—Hg2101.84 (12)H8A—C8—H8B107.5
C16—S2—Hg198.39 (12)N3—C9—C10124.4 (4)
C16—S2—Hg2i101.88 (12)N3—C9—H9117.8
C5—N1—C1117.6 (3)C10—C9—H9117.8
C7—N2—C6114.2 (3)C9—C10—C11117.5 (3)
C7—N2—Hg1108.7 (2)C9—C10—H10121.3
C6—N2—Hg1111.7 (2)C11—C10—H10121.3
C7—N2—H2N107.3C10—C11—C12119.5 (3)
C6—N2—H2N107.3C10—C11—H11120.2
Hg1—N2—H2N107.3C12—C11—H11120.2
C13—N3—C9117.1 (3)C11—C12—C13118.7 (3)
C15—N4—C14112.4 (3)C11—C12—H12120.6
C15—N4—Hg1101.6 (2)C13—C12—H12120.6
C14—N4—Hg1112.5 (2)N3—C13—C12122.8 (3)
C15—N4—H4N110.0N3—C13—C14115.6 (3)
C14—N4—H4N110.0C12—C13—C14121.6 (3)
Hg1—N4—H4N110.0N4—C14—C13110.7 (3)
N1—C1—C2123.5 (4)N4—C14—H14A109.5
N1—C1—H1118.2C13—C14—H14A109.5
C2—C1—H1118.2N4—C14—H14B109.5
C3—C2—C1118.9 (4)C13—C14—H14B109.5
C3—C2—H2120.6H14A—C14—H14B108.1
C1—C2—H2120.6N4—C15—C16110.5 (3)
C2—C3—C4118.4 (4)N4—C15—H15A109.5
C2—C3—H3120.8C16—C15—H15A109.5
C4—C3—H3120.8N4—C15—H15B109.5
C5—C4—C3119.0 (4)C16—C15—H15B109.5
C5—C4—H4120.5H15A—C15—H15B108.1
C3—C4—H4120.5C15—C16—S2114.9 (2)
N1—C5—C4122.6 (4)C15—C16—H16A108.6
N1—C5—C6116.1 (3)S2—C16—H16A108.6
C4—C5—C6121.3 (3)C15—C16—H16B108.6
N2—C6—C5110.4 (3)S2—C16—H16B108.6
N2—C6—H6A109.6H16A—C16—H16B107.5
C5—C6—H6A109.6
C5—N1—C1—C21.1 (6)C13—N3—C9—C100.4 (6)
N1—C1—C2—C31.3 (7)N3—C9—C10—C110.2 (6)
C1—C2—C3—C40.9 (6)C9—C10—C11—C120.8 (6)
C2—C3—C4—C50.5 (6)C10—C11—C12—C130.8 (5)
C1—N1—C5—C40.6 (6)C9—N3—C13—C120.3 (5)
C1—N1—C5—C6179.2 (3)C9—N3—C13—C14178.2 (3)
C3—C4—C5—N10.3 (6)C11—C12—C13—N30.2 (5)
C3—C4—C5—C6178.8 (3)C11—C12—C13—C14177.5 (3)
C7—N2—C6—C5173.9 (3)C15—N4—C14—C13172.3 (3)
Hg1—N2—C6—C562.3 (3)Hg1—N4—C14—C1373.7 (3)
N1—C5—C6—N230.2 (4)N3—C13—C14—N451.0 (4)
C4—C5—C6—N2151.3 (3)C12—C13—C14—N4131.1 (3)
C6—N2—C7—C879.5 (4)C14—N4—C15—C16178.4 (3)
Hg1—N2—C7—C845.8 (3)Hg1—N4—C15—C1657.9 (3)
N2—C7—C8—S157.4 (4)N4—C15—C16—S264.1 (3)
Hg1—S1—C8—C734.3 (3)Hg1—S2—C16—C1529.0 (3)
Hg2—S1—C8—C764.5 (3)Hg2i—S2—C16—C1570.4 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N3ii1.002.303.264 (4)163
N4—H4N···Br2iii1.002.953.572 (3)121
C6—H6A···Br1iv0.993.023.944 (4)157
C7—H7A···Br1iv0.993.023.978 (4)163
C15—H15A···Br2iii0.992.863.503 (4)123
C15—H15B···Br2i0.993.093.973 (4)149
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x, y+1, z+1.
Selected geometric parameters (Å,°) for 1 top
Hg–N22.372 (3)Hg2–S12.4802 (9)
Hg1–N42.500 (3)Hg2–S2i2.4826 (9)
Hg1–S12.4646 (9)Hg2–Br12.6323 (4)
Hg1–S22.4348 (9)Hg2–Br22.7158 (4)
N2–Hg1–N4112.59 (10)S1–Hg2–S2i127.94 (3)
N2–Hg1–S2115.39 (8)S1–Hg2–Br1108.19 (2)
N4–Hg1–S1104.57 (7)S1–Hg2–Br2101.76 (2)
N4–Hg1–S282.25 (7)Br1–Hg2–S21105.56 (2)
S1–Hg1–S2156.40 (3)Br2–Hg2–S2i104.21 (2)
Hg1–S1–Hg296.99 (3)Br1–Hg2–Br2107.804 (12)
Hg1–S2–Hg2i97.38 (3)
Symmetry code: (i) –x + 1, –y + 1, –z + 1
Overview of pyridyl–pyridyl ring geometry metrics (Å,°) for 1 top
Cg1 and Cg2 are the centroids of the N1/C1–C5 and N3/C9–C13 rings, respectively.
CentroidsDihedral angle between ringsCentroid–centroid distanceCentroid–plane distanceCentroid offset
Cg1···Cg2i62.87 (13)4.873 (2)4.735 (3)1.151
Cg1···Cg2ii62.87 (13)4.453 (2)4.312 (3)1.112
Symmetry codes: (i) x, y - 1/2, -z + 1/2; (ii) x, - y + 3/2, z + 1/2.
 

Acknowledgements

The authors thank William & Mary's Swem Library for organizing a Faculty Writer's Retreat at which this manuscript was completed and for providing open-access financial assistance.

Funding information

Funding for this research was provided by: William & Mary.

References

First citationAkhtar, M., Tahir, M. N., Saleem, M., Mazhar, M., Rauf, A., Isab, A. A., Ahmad, S. & Nadeem, S. (2015). Russ. J. Inorg. Chem. 60, 1568–1572.  CSD CrossRef CAS Google Scholar
First citationAvdeef, A., Hartenstein, F., Chemotti, A. R. J. & Brown, J. A. (1992). Inorg. Chem. 31, 3701–3705.  CrossRef CAS Google Scholar
First citationBharara, M. S., Parkin, S. & Atwood, D. A. (2006a). Inorg. Chem. 45, 7261–7268.  CSD CrossRef PubMed CAS Google Scholar
First citationBharara, M. S., Parkin, S. & Atwood, D. A. (2006b). Inorg. Chem. 45, 2112–2118.  CSD CrossRef PubMed CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBrammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277–290.  Web of Science CrossRef CAS Google Scholar
First citationBrand, U. & Vahrenkamp, H. (1995). Inorg. Chem. 34, 3285–3293.  CSD CrossRef CAS Google Scholar
First citationBrennan, H. M., Bunde, S. G., Kuang, Q., Palomino, T. V., Sacks, J. S., Berry, S. M., Butcher, R. J., Poutsma, J. C., Pike, R. D. & Bebout, D. C. (2022). Inorg. Chem. 61, 19857–19869.  CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2012). SAINT-Plus. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2015). APEX3. Bruker AXS Inc. Madison, Wisconsin, USA  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCanty, A. J., Raston, C. L. & White, A. H. (1978). Aust. J. Chem. 31, 677–684.  CSD CrossRef CAS Google Scholar
First citationCanty, A. J., Raston, C. L. & White, A. H. (1979). Aust. J. Chem. 32, 1165–1166.  CSD CrossRef CAS Web of Science Google Scholar
First citationCasals, I., González-Duarte, P., Clegg, W., Foces-Foces, C., Cano, F. H., Martínez-Ripoll, M., Gómez, M. & Solans, X. (1991). J. Chem. Soc. Dalton Trans. pp. 2511–2518.  CSD CrossRef Google Scholar
First citationClegg, W. (2016). CSD communication (refcode IKUVUH). CCDC, Cambridge, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFawcett, T. G., Ou, C., Potenza, J. A. & Schugar, H. J. (1978). J. Am. Chem. Soc. 100, 2058–2062.  CSD CrossRef CAS Google Scholar
First citationFleischer, H., Hardt, S. & Schollmeyer, D. (2006). Inorg. Chem. 45, 8318–8325.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHallinger, M. R., Gerhard, A. C., Ritz, M. D., Sacks, J. S., Poutsma, J. C., Pike, R. D., Wojtas, L. & Bebout, D. C. (2017). ACS Omega, 2, 6391–6404.  CSD CrossRef CAS PubMed Google Scholar
First citationHu, L., Fang, J., Zhang, X., Li, M. & Li, S. (2020). Russ. J. Inorg. Chem. 65, 1718–1725.  Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaptein, B., Wang-Griffin, L., Barf, G. & Kellogg, R. M. (1987). J. Chem. Soc. Chem. Commun. pp. 1457–1459.  CSD CrossRef Google Scholar
First citationKawahashi, T., Mikuriya, M., Nukada, R. & Lim, J. (2001). Bull. Chem. Soc. Jpn, 74, 323–329.  CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLai, W., Berry, S. M., Kaplan, W. P., Hain, M. S., Poutsma, J. C., Butcher, R. J., Pike, R. D. & Bebout, D. C. (2013). Inorg. Chem. 52, 2286–2288.  CSD CrossRef CAS PubMed Google Scholar
First citationLoseva, O. V., Rodina, T. A., Ivanov, A. V., Smolentsev, A. I. & Antzutkin, O. N. (2019). Russ. Chem. Bull. 68, 782–792.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMikuriya, M., Jian, X., Ikemi, S., Kawahashi, T. & Tsutsumi, H. (1998). Bull. Chem. Soc. Jpn, 71, 2161–2168.  CSD CrossRef CAS Google Scholar
First citationRitz, M. D., Gerhard, A. C., Pike, R. D. & Bebout, D. C. (2019). Eur. J. Inorg. Chem. pp. 4070–4077.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStange, A. F., Klinkhammer, K. W. & Kaim, W. (1996). Inorg. Chem. 35, 4087–4089.  CSD CrossRef PubMed CAS Google Scholar
First citationTuntulani, T., Reibenspies, J. H., Farmer, P. J. & Darensbourg, M. Y. (1992). Inorg. Chem. 31, 3497–3499.  CSD CrossRef CAS Web of Science Google Scholar
First citationViehweg, J. A., Stamps, S. M., Dertinger, J. J., Green, R. L., Harris, K. E., Butcher, R. J., Andriole, E. J., Poutsma, J. C., Berry, S. M. & Bebout, D. C. (2010). Dalton Trans. 39, 3174–3176.  CSD CrossRef CAS PubMed Google Scholar
First citationWei, Z., Long, L., Wei, J. & Liu, X. (2011). Inorg. Chim. Acta, 375, 320–323.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds