research communications
cyclo-tetrabromido-1κ2Br,3κ2Br-tetrakis(μ2-2-{[(pyridin-2-yl)methyl]amino}ethane-1-thiolato-κ3N,S:S)tetramercury(II)
and Hirshfeld surface analysis ofaDepartment of Chemistry, William & Mary, Williamsburg, VA 23187-8795, USA
*Correspondence e-mail: dcbebo@wm.edu
The macrometallacyclic title compound, [Hg4Br4(C8H11N2S)4] or [((HgL2)(HgBr2))2] (1) where HL = 2-{[(pyridin-2-yl)methyl]amino}ethane-1-thiol, was prepared and structurally characterized. The Hg2+ complex crystallizes in the P21/c The centrosymmetric Hg4S4 metallacycle is constructed from metal ions with alternating distorted tetrahedral Br2S2 and distorted seesaw N2S2 primary coordination environments with pendant pyridyl groups. The backfolded extended chair metallacycle conformation suggests interactions between each of the bis-chelated mercury atoms and Br atoms lying above and below the central Hg2S4 plane. Supramolecular interactions in 1 include a fourfold aryl embrace and potential hydrogen bonds with bromine as the acceptor. Hirshfeld surface analysis indicates that H⋯H (51.7%), Br⋯H/H⋯Br (23.0%) and C⋯H/H⋯C (9.5%) interactions are dominant.
Keywords: crystal structure; Hirshfeld surface analysis; metallacycle; chelating N,S-ligands; Hg2+ complex.
CCDC reference: 2296007
1. Chemical context
For many years, we and others have been interested in the structures of group 12 coordination compounds including an aminoethanethiolate moiety (Hu et al., 2020; Hallinger et al., 2017; Akhtar et al., 2015; Bharara et al., 2006a,b; Fleischer et al., 2006; Viehweg et al., 2010; Brand & Vahrenkamp, 1995; Avdeef et al., 1992; Tuntulani et al., 1992; Kaptein et al., 1987). Single-crystal X-ray diffraction is critical to the characterization of group 12 aminoethanethiolate complexes since the nuclearity of complexes with 1:1 metal-to-ligand ratio can vary with the identity of ancillary ligands and counter-ions (Brennan et al., 2022; Lai et al., 2013; Brand & Vahrenkamp, 1995) and complexes with novel ring structures have been produced (Ritz et al., 2019; Viehweg et al., 2010).
In contrast to the polymeric [ZnLX]n structure reported for zinc halide complexes of deprotonated HL = 2-{[(pyridin-2yl)methyl]amino}ethane-1-thiol (Brand & Vahrenkamp, 1995), the cyclic tetranuclear compound cyclo-tetrabromido-1κ2Br,3κ2Br-tetrakis(μ2-2-{[(pyridin-2-yl)methyl]amino}ethane-1-thiolato-κ3N,S:S)tetramercury(II) (1) constructed from alternating HgL2 and HgBr2 centers was found for the mercuric bromide complex of L. This communication reports the preparation, and Hirshfeld surface analysis of 1, which facilitate an in-depth discussion of its structural features.
2. Structural commentary
Complex 1 crystallizes as discrete centrosymmetric molecules with an eight-membered metallacycle of alternating mercury and sulfur atoms (Fig. 1). The contains Hg2L2Br2, which is one half of complex 1. The sets of four mercury(II) centers and four sulfur atoms in 1 each lie rigorously in their own plane, as required by the crystallographic inversion center located in the center of the molecule. The angle between these planes is 25.741 (18)°. The two Hg2 atoms are approximately tetrahedrally coordinated to two terminal bromines and two bridging sulfur atoms (Table 1). These are separated by bis-chelated Hg1 metal atoms. The potentially tridentate ligand has an N-μ2-S coordination mode with a pendant pyridyl ring. The pyridyl nitrogen atoms are located 3.563 (4)–4.303 (3) Å from the closest mercury atoms and oriented unfavorably for either intra- or intermolecular bonding interactions with a metal center. The chelate rings have an with the methylene carbon in the flap position. The Hg1 metal atoms show a marked distortion from tetrahedral towards seesaw coordination with a widened S—Hg—S angle of 156.40 (3)°. The two bridging Hg—S distances are slightly longer and more similar (Δ = 0.003 Å) than the two chelating Hg–S distances (Δ = 0.030 Å).
Alternatively, the Hg4S4 ring can be viewed as an extended chair containing a central planar Hg2S4 arrangement with one backfolded mercury atom on each side of the plane. The six Hg2S4 atoms lie between 0.0653 (3) and 0.1079 (5) Å from the mean plane. The HgS2 planes forming the head and foot of the chair are in an unusually acute 83.99 (4)° angle with the central plane placing Hg2 and Br2 over the Hg12S4 plane. Furthermore, the Hg2—Br2 bonds are 0.084 Å longer than the Hg2—Br1 bonds. These observations imply some weak interactions between the Br2 atoms and the two bis-chelated mercury atoms located 3.3951 (5) Å and 3.6026 (5) Å away. In a similar setting, such likely interactions between group 12 metal ions and halides have been reported for complexes of 2-(dimethylamino)ethanethiolate (Casals et al., 1991). Furthermore, a related pentacyclic Cd4S4Cl2 primary bonding core has been reported for [(Cd(SC(CH3)2CH2NH2)2(CdCl2)]2·2H2O (refcode MEASCD; Fawcett et al., 1978). The Hg⋯Hg separation between the bis-brominated mercury atoms [5.0530 (6) Å] is shorter than the distance between the bis-chelated mercury atoms [5.4023 (5) Å], both of which are too long for significant interactions between the metal atoms. In contrast, [CuL]4 has mono-N,S chelated metal atoms in a D2d butterfly arrangement with Cu⋯Cu separations of 2.6957 (11) and 3.370 (1) Å (refcode TEVMAI; Stange et al., 1996).
3. Supramolecular features
In addition to a variety of van der Waals contacts, the packing of 1 is stabilized by π–π interactions (Fig. 2 and Table 2) and hydrogen bonding (Fig. 3 and Table 3). The pendant pyridyl rings (centroids Cg1: N1/C1–C5; Cg2: N3/C9–C13) participate in a fourfold aryl embrace around a crystallographic inversion center with centroid–centroid distances of 4.453 (2) and 4.873 (2) Å (Table 2). The pyridyl planes subtend an angle of 62.87 (13)°. Most of the hydrogen bonds involve C—H donors and Br acceptors (Brammer et al., 2001). Neither nitrogen atom of the pendant pyridyl rings participates in intermolecular hydrogen bonding.
|
4. Hirshfeld surface analysis
Intermolecular interactions were investigated by quantitative analysis of the Hirshfeld surface and visualized with CrystalExplorer 21.5 (Spackman et al., 2021). The Hirshfeld surface of 1 plotted over shape-index did not have the hourglass figures associated with face-to-face aromatic interactions (Fig. 4). Instead, circular and wedge-shaped blue bumps associated with N3 as the edge of the pyridyl ring (top right) complement a pair of similarly shaped red pits on the face of the N1 pyridyl ring (lower right). The reverse side of the N1 pyridyl ring (upper left) has a multicolored iris-like feature and a large blue bump while complementary characteristics lie across the center of the molecule. A feature reminiscent of a paw print with red digital pad pits extending over the reverse face of the N3 pyridyl ring and a blue metacarpal pad bump over the attached methylene (lower left) complements a reverse-colored paw print overlying the inner edge of the N1 pyridyl ring.
The Hirshfeld surface of 1 mapped with the function dnorm, the sum of the distances from a surface point to the nearest interior (di) and exterior (de) atoms normalized by the van der Waals (vdW) radii of the corresponding atom (rvdW), is shown in Fig. 5. Contacts near and longer than the sum of van der Waals radii are shown in white and blue, respectively. Red areas are observed for atoms associated with close contacts at least 0.050 Å shorter than the sum of van der Waals radii (Bondi, 1964). The most intense red spots correspond to an intermolecular contact between H2N and adjacent atoms N3 and C9. Neighboring pale-red regions reflect a contact between N1 and C13, respectively. Medium intensity red spots are associated with Br1 and H3.
The overall 2D fingerprint plot for 1 is provided in Fig. 6a while the interactions delineated into H⋯H (51.7%), Br⋯H/H⋯Br (23.0%), and C⋯H/H⋯C (9.5%) contacts are shown in Fig. 6b–d. Other minor contributions to the Hirshfeld surface are from S⋯H/H⋯S (7.5%), N⋯H/H⋯N (4.7%), N⋯C/C⋯N (1.8%), Hg⋯H/H⋯Hg (1.4%), Br⋯C/C⋯Br (0.3%), N⋯N (0.1%), and C⋯C (0.1%) interactions.
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.44, update of April 2023; Groom et al. 2016) using ConQuest (Bruno et al., 2002) for metal complexes of L yielded 21 hits. Most of the complexes feature an N,N′-μ2-S binding mode for L including [PdL]4Cl(ClO4)3·CH3OH·H2O (refcode SUZDUM; Kawahashi et al., 2001), which had a Pd4S4 metallocycle with boat conformation. Salts of group 12 metal ions with weakly coordinating perchlorate and tetrafluoroborate counter-ions have generated a variety of solvated complex ions with composition [Zn3L4]2+ (refcode BITNIB: Mikuriya et al., 1998; JEHWEB: Hallinger et al., 2017; ZACWAB; Brand & Vahrenkamp, 1995) and [HgZn2L4]2+ (refcodes JEHWIF, JEHWOL, JEHWUR, JEHXAY, JEHXEC; Hallinger et al., 2017). Additional complexes of tridentate L with group 12 metal ions include [Hg5L6](ClO4)4·toluene (DABJIB; Viehweg et al., 2010), [ZnLCl]n (ZACWEF; Brand & Vahrenkamp, 1995), [ZnL(acetato-O)]2 (ZACWIJ; Brand & Vahrenkamp, 1995), and [ZnL(quinoline-2-carboxylato-N,O)] (ZACWUV; Brand & Vahrenkamp, 1995). The only complexes of L with pendant pyridyl rings are [MoL(S2)2O] (refcode OTUHER; Wei et al., 2011), [ZnL2] (refcode ZACWOP; Brand & Vahrenkamp, 1995) and [CuL]4 (refcode TEVMAI; Stange et al., 1996).
A search of the Cambridge Structural Database (CSD, Version 5.44, update of April 2023; (Groom et al., 2016) using ConQuest (Bruno et al., 2002) for Hg4S4 metallacycles yielded eight tetramercury hits. Complexes with chelating N and S donor aminoethanethiolate ligands share an extended chair conformation comparable to 1 with varying degrees of backfolding (refcode IKUVUH: Clegg, 2016; refcodes DENKUD and DENLEO: Bharara et al., 2006a; refcode ECIYOF: Bharara et al., 2006b; refcode JIZWEU: Casals et al., 1991). Complexes with separate pyridyl and alkylthiolate ligands exhibit nearly planar Hg4S4 rings cinched across the middle by a pair of μ-Cl ligands (refcode BTCHGP: Canty, et al., 1978; refcode TBTPHG: Canty, et al., 1979). In contrast, a chair ring conformation with only four coplanar atoms and μ-Cl was observed with dipropyldithiocarbamate ligands (XOKPAR: Loseva et al., 2019).
6. Synthesis and crystallization
A solution of HgBr2 (942 mg, 2.61 mmol) in 15 mL methanol was added to a stirred solution of LH (445 mg, 2.64 mmol) and NaOH (104 mg, 2.60 mmol) in 20 mL methanol. A white precipitate characterized as 1 was collected by vacuum filtration and dried overnight under vacuum (971 mg, 542 µmol, 83% yield). X-ray quality colorless plates were formed by dissolving the precipitate in a minimum amount of hot acetonitrile and setting aside for slow evaporation. M.p. 438 K (dec). 1H NMR (saturated, CD3CN): 8.514 (d, 1H, J = 5.0), 7.802 (ddd, 1H, J = 1.7, 7.6, 7.6), 7.373 (dd, 1H, J = 5.0, 7.9), 4.144 (d, 2H, J = 4.1), 2.928 (bm, 1H), 2.804 (m, 1H) 2.668 (m, 1H). Analysis calculated for C32H44Br4Hg4N8S4: C, 21.46; H, 2.48; N, 6.26. Found: C, 21.35; H2.45; N, 6.12.
7. Refinement
Crystal data, data collection and structure . The hydrogen atoms were placed in calculated positions with C—H distances of 0.95 (aromatic) and 0.99 Å (methylene) and refined as riding atoms with Uiso(H) = 1.2Ueq(C).Å
details are summarized in Table 4
|
Supporting information
CCDC reference: 2296007
https://doi.org/10.1107/S205698902300823X/yz2039sup1.cif
contains datablock I. DOI:Supporting information file. DOI: https://doi.org/10.1107/S205698902300823X/yz2039Isup3.cdx
Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902300823X/yz2039Isup4.hkl
Data collection: APEX3 (Bruker, 2015); cell
SAINT-Plus (Bruker, 2012); data reduction: SAINT-Plus (Bruker, 2012); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/5 (Sheldrick, 2015b); molecular graphics: ShelXle (Hübschle et al., 2011); software used to prepare material for publication: ORTEP-3 for Windows (Farrugia, 2012), Mercury 2022.3.0 (Macrae et al., 2020), CrystalExplorer21.5 (Spackman et al., 2021), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).[Hg4Br4(C8H11N2S)4] | F(000) = 1632 |
Mr = 1790.99 | Dx = 2.694 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.3055 (8) Å | Cell parameters from 9997 reflections |
b = 12.1464 (8) Å | θ = 2.2–26.2° |
c = 14.9763 (9) Å | µ = 17.71 mm−1 |
β = 99.509 (1)° | T = 100 K |
V = 2207.7 (2) Å3 | Block, colourless |
Z = 2 | 0.35 × 0.31 × 0.22 mm |
Bruker SMART APEXII CCD diffractometer | 4133 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.027 |
φ and ω scans | θmax = 26.2°, θmin = 1.7° |
Absorption correction: numerical (SADABS; Krause et al., 2015) | h = −15→15 |
Tmin = 0.024, Tmax = 0.114 | k = −15→15 |
32818 measured reflections | l = −18→18 |
4414 independent reflections |
Refinement on F2 | Primary atom site location: other |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.016 | H-atom parameters constrained |
wR(F2) = 0.034 | w = 1/[σ2(Fo2) + (0.0066P)2 + 5.3501P] where P = (Fo2 + 2Fc2)/3 |
S = 1.18 | (Δ/σ)max = 0.003 |
4414 reflections | Δρmax = 0.96 e Å−3 |
235 parameters | Δρmin = −0.73 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Hg1 | 0.36010 (2) | 0.63859 (2) | 0.39709 (2) | 0.01596 (4) | |
Hg2 | 0.34257 (2) | 0.36960 (2) | 0.51023 (2) | 0.01555 (4) | |
Br1 | 0.17236 (3) | 0.28583 (3) | 0.57228 (2) | 0.01937 (8) | |
Br2 | 0.41406 (3) | 0.54687 (3) | 0.61405 (2) | 0.01797 (8) | |
S1 | 0.27476 (7) | 0.45682 (7) | 0.36173 (6) | 0.01507 (17) | |
S2 | 0.50720 (7) | 0.76760 (7) | 0.45273 (6) | 0.01603 (18) | |
N1 | 0.2436 (3) | 0.8986 (3) | 0.4380 (2) | 0.0259 (7) | |
N2 | 0.1844 (2) | 0.6839 (2) | 0.4320 (2) | 0.0187 (6) | |
H2N | 0.196666 | 0.724631 | 0.490813 | 0.028* | |
N3 | 0.1801 (3) | 0.7126 (2) | 0.1325 (2) | 0.0197 (7) | |
N4 | 0.3891 (2) | 0.7134 (2) | 0.2473 (2) | 0.0158 (6) | |
H4N | 0.344787 | 0.782017 | 0.232890 | 0.024* | |
C1 | 0.2971 (4) | 0.9946 (3) | 0.4380 (3) | 0.0297 (9) | |
H1 | 0.341373 | 1.017980 | 0.492738 | 0.036* | |
C2 | 0.2913 (3) | 1.0613 (3) | 0.3629 (3) | 0.0270 (9) | |
H2 | 0.329526 | 1.129507 | 0.366415 | 0.032* | |
C3 | 0.2293 (4) | 1.0275 (3) | 0.2829 (3) | 0.0301 (10) | |
H3 | 0.224540 | 1.071203 | 0.229798 | 0.036* | |
C4 | 0.1736 (3) | 0.9277 (3) | 0.2815 (3) | 0.0256 (9) | |
H4 | 0.129535 | 0.902190 | 0.227357 | 0.031* | |
C5 | 0.1833 (3) | 0.8660 (3) | 0.3604 (3) | 0.0182 (8) | |
C6 | 0.1227 (3) | 0.7578 (3) | 0.3633 (3) | 0.0206 (8) | |
H6A | 0.048433 | 0.771744 | 0.378057 | 0.025* | |
H6B | 0.113785 | 0.722092 | 0.303082 | 0.025* | |
C7 | 0.1260 (3) | 0.5811 (3) | 0.4463 (3) | 0.0183 (8) | |
H7A | 0.047349 | 0.597985 | 0.446802 | 0.022* | |
H7B | 0.157278 | 0.550215 | 0.506197 | 0.022* | |
C8 | 0.1341 (3) | 0.4954 (3) | 0.3737 (2) | 0.0184 (8) | |
H8A | 0.096082 | 0.524139 | 0.314866 | 0.022* | |
H8B | 0.094329 | 0.428402 | 0.387721 | 0.022* | |
C9 | 0.0708 (3) | 0.7033 (3) | 0.1080 (3) | 0.0215 (8) | |
H9 | 0.029095 | 0.769155 | 0.096668 | 0.026* | |
C10 | 0.0147 (3) | 0.6047 (3) | 0.0980 (3) | 0.0231 (8) | |
H10 | −0.063114 | 0.602404 | 0.080596 | 0.028* | |
C11 | 0.0758 (3) | 0.5094 (3) | 0.1142 (2) | 0.0221 (8) | |
H11 | 0.040555 | 0.439620 | 0.107402 | 0.026* | |
C12 | 0.1888 (3) | 0.5162 (3) | 0.1405 (2) | 0.0192 (8) | |
H12 | 0.232040 | 0.451499 | 0.152687 | 0.023* | |
C13 | 0.2376 (3) | 0.6192 (3) | 0.1487 (2) | 0.0164 (7) | |
C14 | 0.3616 (3) | 0.6329 (3) | 0.1735 (2) | 0.0196 (8) | |
H14A | 0.395562 | 0.560988 | 0.192635 | 0.024* | |
H14B | 0.391918 | 0.658056 | 0.119720 | 0.024* | |
C15 | 0.5074 (3) | 0.7401 (3) | 0.2651 (2) | 0.0175 (7) | |
H15A | 0.529249 | 0.772789 | 0.210122 | 0.021* | |
H15B | 0.550610 | 0.671881 | 0.279782 | 0.021* | |
C16 | 0.5324 (3) | 0.8206 (3) | 0.3433 (2) | 0.0192 (8) | |
H16A | 0.486953 | 0.887453 | 0.328254 | 0.023* | |
H16B | 0.610658 | 0.842917 | 0.349405 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.01171 (7) | 0.01497 (7) | 0.02108 (8) | −0.00221 (5) | 0.00233 (5) | 0.00253 (5) |
Hg2 | 0.01402 (7) | 0.01313 (7) | 0.01822 (7) | −0.00079 (5) | −0.00112 (5) | 0.00195 (5) |
Br1 | 0.01458 (16) | 0.01840 (18) | 0.02510 (19) | −0.00292 (13) | 0.00323 (14) | 0.00137 (15) |
Br2 | 0.01992 (17) | 0.01448 (17) | 0.01915 (18) | −0.00256 (14) | 0.00219 (14) | −0.00390 (14) |
S1 | 0.0154 (4) | 0.0135 (4) | 0.0154 (4) | −0.0004 (3) | 0.0002 (3) | 0.0004 (3) |
S2 | 0.0140 (4) | 0.0129 (4) | 0.0204 (5) | −0.0002 (3) | 0.0008 (3) | −0.0012 (3) |
N1 | 0.0307 (19) | 0.0229 (17) | 0.0250 (18) | −0.0046 (15) | 0.0073 (15) | 0.0007 (14) |
N2 | 0.0165 (15) | 0.0159 (15) | 0.0244 (17) | 0.0005 (12) | 0.0055 (13) | −0.0004 (13) |
N3 | 0.0197 (16) | 0.0178 (16) | 0.0211 (16) | 0.0022 (13) | 0.0016 (13) | −0.0018 (13) |
N4 | 0.0136 (14) | 0.0146 (15) | 0.0191 (15) | 0.0004 (12) | 0.0019 (12) | 0.0008 (12) |
C1 | 0.035 (2) | 0.026 (2) | 0.028 (2) | −0.0085 (18) | 0.0036 (19) | −0.0003 (18) |
C2 | 0.030 (2) | 0.021 (2) | 0.033 (2) | −0.0052 (17) | 0.0117 (19) | −0.0024 (17) |
C3 | 0.042 (3) | 0.023 (2) | 0.029 (2) | 0.0056 (18) | 0.014 (2) | 0.0066 (18) |
C4 | 0.034 (2) | 0.020 (2) | 0.022 (2) | 0.0045 (17) | 0.0018 (18) | −0.0015 (16) |
C5 | 0.0160 (17) | 0.0160 (18) | 0.024 (2) | 0.0057 (14) | 0.0082 (15) | −0.0016 (15) |
C6 | 0.0155 (17) | 0.0208 (19) | 0.025 (2) | 0.0008 (15) | 0.0022 (15) | 0.0011 (16) |
C7 | 0.0130 (17) | 0.0193 (19) | 0.0237 (19) | 0.0008 (14) | 0.0061 (15) | 0.0046 (16) |
C8 | 0.0140 (17) | 0.0170 (18) | 0.0223 (19) | −0.0032 (14) | −0.0029 (15) | 0.0044 (15) |
C9 | 0.0198 (19) | 0.021 (2) | 0.024 (2) | 0.0047 (15) | 0.0039 (16) | 0.0014 (16) |
C10 | 0.0178 (19) | 0.031 (2) | 0.0194 (19) | −0.0020 (16) | −0.0010 (15) | −0.0008 (17) |
C11 | 0.025 (2) | 0.0187 (19) | 0.022 (2) | −0.0064 (16) | 0.0012 (16) | 0.0016 (16) |
C12 | 0.0233 (19) | 0.0178 (18) | 0.0162 (18) | 0.0021 (15) | 0.0024 (15) | 0.0027 (15) |
C13 | 0.0187 (18) | 0.0174 (18) | 0.0130 (17) | 0.0024 (14) | 0.0022 (14) | −0.0004 (14) |
C14 | 0.0195 (18) | 0.0191 (19) | 0.0198 (19) | 0.0025 (15) | 0.0021 (15) | −0.0037 (15) |
C15 | 0.0139 (17) | 0.0196 (18) | 0.0186 (18) | 0.0006 (14) | 0.0015 (14) | 0.0078 (15) |
C16 | 0.0149 (17) | 0.0159 (18) | 0.025 (2) | −0.0015 (14) | −0.0011 (15) | 0.0082 (15) |
Hg1—N2 | 2.372 (3) | C4—C5 | 1.387 (5) |
Hg1—N4 | 2.500 (3) | C4—H4 | 0.9500 |
Hg1—S1 | 2.4646 (9) | C5—C6 | 1.515 (5) |
Hg1—S2 | 2.4348 (9) | C6—H6A | 0.9900 |
Hg2—S1 | 2.4802 (9) | C6—H6B | 0.9900 |
Hg2—S2i | 2.4826 (9) | C7—C8 | 1.520 (5) |
Hg2—Br1 | 2.6323 (4) | C7—H7A | 0.9900 |
Hg2—Br2 | 2.7158 (4) | C7—H7B | 0.9900 |
S1—C8 | 1.831 (4) | C8—H8A | 0.9900 |
S2—C16 | 1.835 (4) | C8—H8B | 0.9900 |
N1—C5 | 1.332 (5) | C9—C10 | 1.378 (5) |
N1—C1 | 1.338 (5) | C9—H9 | 0.9500 |
N2—C7 | 1.473 (4) | C10—C11 | 1.380 (5) |
N2—C6 | 1.478 (5) | C10—H10 | 0.9500 |
N2—H2N | 1.0000 | C11—C12 | 1.384 (5) |
N3—C13 | 1.338 (5) | C11—H11 | 0.9500 |
N3—C9 | 1.340 (5) | C12—C13 | 1.384 (5) |
N4—C15 | 1.472 (4) | C12—H12 | 0.9500 |
N4—C14 | 1.473 (4) | C13—C14 | 1.518 (5) |
N4—H4N | 1.0000 | C14—H14A | 0.9900 |
C1—C2 | 1.379 (6) | C14—H14B | 0.9900 |
C1—H1 | 0.9500 | C15—C16 | 1.518 (5) |
C2—C3 | 1.372 (6) | C15—H15A | 0.9900 |
C2—H2 | 0.9500 | C15—H15B | 0.9900 |
C3—C4 | 1.391 (6) | C16—H16A | 0.9900 |
C3—H3 | 0.9500 | C16—H16B | 0.9900 |
N2—Hg1—N4 | 112.59 (10) | N2—C6—H6B | 109.6 |
N2—Hg1—S2 | 115.39 (8) | C5—C6—H6B | 109.6 |
N4—Hg1—S1 | 104.57 (7) | H6A—C6—H6B | 108.1 |
N4—Hg1—S2 | 82.25 (7) | N2—C7—C8 | 112.6 (3) |
S1—Hg1—S2 | 156.40 (3) | N2—C7—H7A | 109.1 |
Hg1—S1—Hg2 | 96.99 (3) | C8—C7—H7A | 109.1 |
Hg1—S2—Hg2i | 97.38 (3) | N2—C7—H7B | 109.1 |
S1—Hg2—S2i | 127.94 (3) | C8—C7—H7B | 109.1 |
S1—Hg2—Br1 | 108.19 (2) | H7A—C7—H7B | 107.8 |
S1—Hg2—Br2 | 101.76 (2) | C7—C8—S1 | 114.8 (2) |
S2i—Hg2—Br1 | 105.56 (2) | C7—C8—H8A | 108.6 |
S2i—Hg2—Br2 | 104.21 (2) | S1—C8—H8A | 108.6 |
Br1—Hg2—Br2 | 107.804 (12) | C7—C8—H8B | 108.6 |
C8—S1—Hg1 | 97.22 (12) | S1—C8—H8B | 108.6 |
C8—S1—Hg2 | 101.84 (12) | H8A—C8—H8B | 107.5 |
C16—S2—Hg1 | 98.39 (12) | N3—C9—C10 | 124.4 (4) |
C16—S2—Hg2i | 101.88 (12) | N3—C9—H9 | 117.8 |
C5—N1—C1 | 117.6 (3) | C10—C9—H9 | 117.8 |
C7—N2—C6 | 114.2 (3) | C9—C10—C11 | 117.5 (3) |
C7—N2—Hg1 | 108.7 (2) | C9—C10—H10 | 121.3 |
C6—N2—Hg1 | 111.7 (2) | C11—C10—H10 | 121.3 |
C7—N2—H2N | 107.3 | C10—C11—C12 | 119.5 (3) |
C6—N2—H2N | 107.3 | C10—C11—H11 | 120.2 |
Hg1—N2—H2N | 107.3 | C12—C11—H11 | 120.2 |
C13—N3—C9 | 117.1 (3) | C11—C12—C13 | 118.7 (3) |
C15—N4—C14 | 112.4 (3) | C11—C12—H12 | 120.6 |
C15—N4—Hg1 | 101.6 (2) | C13—C12—H12 | 120.6 |
C14—N4—Hg1 | 112.5 (2) | N3—C13—C12 | 122.8 (3) |
C15—N4—H4N | 110.0 | N3—C13—C14 | 115.6 (3) |
C14—N4—H4N | 110.0 | C12—C13—C14 | 121.6 (3) |
Hg1—N4—H4N | 110.0 | N4—C14—C13 | 110.7 (3) |
N1—C1—C2 | 123.5 (4) | N4—C14—H14A | 109.5 |
N1—C1—H1 | 118.2 | C13—C14—H14A | 109.5 |
C2—C1—H1 | 118.2 | N4—C14—H14B | 109.5 |
C3—C2—C1 | 118.9 (4) | C13—C14—H14B | 109.5 |
C3—C2—H2 | 120.6 | H14A—C14—H14B | 108.1 |
C1—C2—H2 | 120.6 | N4—C15—C16 | 110.5 (3) |
C2—C3—C4 | 118.4 (4) | N4—C15—H15A | 109.5 |
C2—C3—H3 | 120.8 | C16—C15—H15A | 109.5 |
C4—C3—H3 | 120.8 | N4—C15—H15B | 109.5 |
C5—C4—C3 | 119.0 (4) | C16—C15—H15B | 109.5 |
C5—C4—H4 | 120.5 | H15A—C15—H15B | 108.1 |
C3—C4—H4 | 120.5 | C15—C16—S2 | 114.9 (2) |
N1—C5—C4 | 122.6 (4) | C15—C16—H16A | 108.6 |
N1—C5—C6 | 116.1 (3) | S2—C16—H16A | 108.6 |
C4—C5—C6 | 121.3 (3) | C15—C16—H16B | 108.6 |
N2—C6—C5 | 110.4 (3) | S2—C16—H16B | 108.6 |
N2—C6—H6A | 109.6 | H16A—C16—H16B | 107.5 |
C5—C6—H6A | 109.6 | ||
C5—N1—C1—C2 | 1.1 (6) | C13—N3—C9—C10 | −0.4 (6) |
N1—C1—C2—C3 | −1.3 (7) | N3—C9—C10—C11 | −0.2 (6) |
C1—C2—C3—C4 | 0.9 (6) | C9—C10—C11—C12 | 0.8 (6) |
C2—C3—C4—C5 | −0.5 (6) | C10—C11—C12—C13 | −0.8 (5) |
C1—N1—C5—C4 | −0.6 (6) | C9—N3—C13—C12 | 0.3 (5) |
C1—N1—C5—C6 | −179.2 (3) | C9—N3—C13—C14 | 178.2 (3) |
C3—C4—C5—N1 | 0.3 (6) | C11—C12—C13—N3 | 0.2 (5) |
C3—C4—C5—C6 | 178.8 (3) | C11—C12—C13—C14 | −177.5 (3) |
C7—N2—C6—C5 | 173.9 (3) | C15—N4—C14—C13 | −172.3 (3) |
Hg1—N2—C6—C5 | −62.3 (3) | Hg1—N4—C14—C13 | 73.7 (3) |
N1—C5—C6—N2 | −30.2 (4) | N3—C13—C14—N4 | 51.0 (4) |
C4—C5—C6—N2 | 151.3 (3) | C12—C13—C14—N4 | −131.1 (3) |
C6—N2—C7—C8 | 79.5 (4) | C14—N4—C15—C16 | −178.4 (3) |
Hg1—N2—C7—C8 | −45.8 (3) | Hg1—N4—C15—C16 | −57.9 (3) |
N2—C7—C8—S1 | 57.4 (4) | N4—C15—C16—S2 | 64.1 (3) |
Hg1—S1—C8—C7 | −34.3 (3) | Hg1—S2—C16—C15 | −29.0 (3) |
Hg2—S1—C8—C7 | 64.5 (3) | Hg2i—S2—C16—C15 | 70.4 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···N3ii | 1.00 | 2.30 | 3.264 (4) | 163 |
N4—H4N···Br2iii | 1.00 | 2.95 | 3.572 (3) | 121 |
C6—H6A···Br1iv | 0.99 | 3.02 | 3.944 (4) | 157 |
C7—H7A···Br1iv | 0.99 | 3.02 | 3.978 (4) | 163 |
C15—H15A···Br2iii | 0.99 | 2.86 | 3.503 (4) | 123 |
C15—H15B···Br2i | 0.99 | 3.09 | 3.973 (4) | 149 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+3/2, z+1/2; (iii) x, −y+3/2, z−1/2; (iv) −x, −y+1, −z+1. |
Hg–N2 | 2.372 (3) | Hg2–S1 | 2.4802 (9) |
Hg1–N4 | 2.500 (3) | Hg2–S2i | 2.4826 (9) |
Hg1–S1 | 2.4646 (9) | Hg2–Br1 | 2.6323 (4) |
Hg1–S2 | 2.4348 (9) | Hg2–Br2 | 2.7158 (4) |
N2–Hg1–N4 | 112.59 (10) | S1–Hg2–S2i | 127.94 (3) |
N2–Hg1–S2 | 115.39 (8) | S1–Hg2–Br1 | 108.19 (2) |
N4–Hg1–S1 | 104.57 (7) | S1–Hg2–Br2 | 101.76 (2) |
N4–Hg1–S2 | 82.25 (7) | Br1–Hg2–S21 | 105.56 (2) |
S1–Hg1–S2 | 156.40 (3) | Br2–Hg2–S2i | 104.21 (2) |
Hg1–S1–Hg2 | 96.99 (3) | Br1–Hg2–Br2 | 107.804 (12) |
Hg1–S2–Hg2i | 97.38 (3) |
Symmetry code: (i) –x + 1, –y + 1, –z + 1 |
Cg1 and Cg2 are the centroids of the N1/C1–C5 and N3/C9–C13 rings, respectively. |
Centroids | Dihedral angle between rings | Centroid–centroid distance | Centroid–plane distance | Centroid offset |
Cg1···Cg2i | 62.87 (13) | 4.873 (2) | 4.735 (3) | 1.151 |
Cg1···Cg2ii | 62.87 (13) | 4.453 (2) | 4.312 (3) | 1.112 |
Symmetry codes: (i) x, y - 1/2, -z + 1/2; (ii) x, - y + 3/2, z + 1/2. |
Acknowledgements
The authors thank William & Mary's Swem Library for organizing a Faculty Writer's Retreat at which this manuscript was completed and for providing open-access financial assistance.
Funding information
Funding for this research was provided by: William & Mary.
References
Akhtar, M., Tahir, M. N., Saleem, M., Mazhar, M., Rauf, A., Isab, A. A., Ahmad, S. & Nadeem, S. (2015). Russ. J. Inorg. Chem. 60, 1568–1572. CSD CrossRef CAS Google Scholar
Avdeef, A., Hartenstein, F., Chemotti, A. R. J. & Brown, J. A. (1992). Inorg. Chem. 31, 3701–3705. CrossRef CAS Google Scholar
Bharara, M. S., Parkin, S. & Atwood, D. A. (2006a). Inorg. Chem. 45, 7261–7268. CSD CrossRef PubMed CAS Google Scholar
Bharara, M. S., Parkin, S. & Atwood, D. A. (2006b). Inorg. Chem. 45, 2112–2118. CSD CrossRef PubMed CAS Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277–290. Web of Science CrossRef CAS Google Scholar
Brand, U. & Vahrenkamp, H. (1995). Inorg. Chem. 34, 3285–3293. CSD CrossRef CAS Google Scholar
Brennan, H. M., Bunde, S. G., Kuang, Q., Palomino, T. V., Sacks, J. S., Berry, S. M., Butcher, R. J., Poutsma, J. C., Pike, R. D. & Bebout, D. C. (2022). Inorg. Chem. 61, 19857–19869. CSD CrossRef CAS PubMed Google Scholar
Bruker (2012). SAINT-Plus. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Bruker (2015). APEX3. Bruker AXS Inc. Madison, Wisconsin, USA Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Canty, A. J., Raston, C. L. & White, A. H. (1978). Aust. J. Chem. 31, 677–684. CSD CrossRef CAS Google Scholar
Canty, A. J., Raston, C. L. & White, A. H. (1979). Aust. J. Chem. 32, 1165–1166. CSD CrossRef CAS Web of Science Google Scholar
Casals, I., González-Duarte, P., Clegg, W., Foces-Foces, C., Cano, F. H., Martínez-Ripoll, M., Gómez, M. & Solans, X. (1991). J. Chem. Soc. Dalton Trans. pp. 2511–2518. CSD CrossRef Google Scholar
Clegg, W. (2016). CSD communication (refcode IKUVUH). CCDC, Cambridge, England. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fawcett, T. G., Ou, C., Potenza, J. A. & Schugar, H. J. (1978). J. Am. Chem. Soc. 100, 2058–2062. CSD CrossRef CAS Google Scholar
Fleischer, H., Hardt, S. & Schollmeyer, D. (2006). Inorg. Chem. 45, 8318–8325. Web of Science CSD CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hallinger, M. R., Gerhard, A. C., Ritz, M. D., Sacks, J. S., Poutsma, J. C., Pike, R. D., Wojtas, L. & Bebout, D. C. (2017). ACS Omega, 2, 6391–6404. CSD CrossRef CAS PubMed Google Scholar
Hu, L., Fang, J., Zhang, X., Li, M. & Li, S. (2020). Russ. J. Inorg. Chem. 65, 1718–1725. Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Kaptein, B., Wang-Griffin, L., Barf, G. & Kellogg, R. M. (1987). J. Chem. Soc. Chem. Commun. pp. 1457–1459. CSD CrossRef Google Scholar
Kawahashi, T., Mikuriya, M., Nukada, R. & Lim, J. (2001). Bull. Chem. Soc. Jpn, 74, 323–329. CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lai, W., Berry, S. M., Kaplan, W. P., Hain, M. S., Poutsma, J. C., Butcher, R. J., Pike, R. D. & Bebout, D. C. (2013). Inorg. Chem. 52, 2286–2288. CSD CrossRef CAS PubMed Google Scholar
Loseva, O. V., Rodina, T. A., Ivanov, A. V., Smolentsev, A. I. & Antzutkin, O. N. (2019). Russ. Chem. Bull. 68, 782–792. CSD CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mikuriya, M., Jian, X., Ikemi, S., Kawahashi, T. & Tsutsumi, H. (1998). Bull. Chem. Soc. Jpn, 71, 2161–2168. CSD CrossRef CAS Google Scholar
Ritz, M. D., Gerhard, A. C., Pike, R. D. & Bebout, D. C. (2019). Eur. J. Inorg. Chem. pp. 4070–4077. CSD CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stange, A. F., Klinkhammer, K. W. & Kaim, W. (1996). Inorg. Chem. 35, 4087–4089. CSD CrossRef PubMed CAS Google Scholar
Tuntulani, T., Reibenspies, J. H., Farmer, P. J. & Darensbourg, M. Y. (1992). Inorg. Chem. 31, 3497–3499. CSD CrossRef CAS Web of Science Google Scholar
Viehweg, J. A., Stamps, S. M., Dertinger, J. J., Green, R. L., Harris, K. E., Butcher, R. J., Andriole, E. J., Poutsma, J. C., Berry, S. M. & Bebout, D. C. (2010). Dalton Trans. 39, 3174–3176. CSD CrossRef CAS PubMed Google Scholar
Wei, Z., Long, L., Wei, J. & Liu, X. (2011). Inorg. Chim. Acta, 375, 320–323. CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.