research communications
Synthesis, Z,2′E)-2,2′-(3-methoxy-3-phenylpropane-1,2-diylidene)bis(hydrazine-1-carbothioamide) dimethylformamide monosolvate
and Hirshfeld surface analysis of (2aKosygin State University of Russia, 117997 Moscow, Russian Federation, bN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation, cMIREA, Russian Technology University, Lomonosov Institute of Fine Chemical Technology, Moscow, 119571, Russian Federation, dDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Türkiye, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: akkurt@erciyes.edu.tr, ajaya.bhattarai@mmamc.tu.edu.np
The overall molecular configuration of the title compound, C12H16N6OS2·C3H7NO, is stabilized in the solid state by intramolecular C—H⋯N, C—H⋯O, N—H⋯N and N—H⋯O interactions, forming S(5) ring motifs. In the crystal, molecules are linked to each other and solvent dimethylformamide molecules by N—H⋯S, N—H⋯O, C—H⋯O and C—H⋯S hydrogen bonds, forming a three dimensional network. The phenyl ring of the title compound is disordered over two sites with an occupancy ratio of 0.57 (4):0.43 (4). A Hirshfeld surface analysis was performed to quantify the contributions of the different intermolecular interactions, indicating that the most important contributions to the crystal packing are from H⋯H (38.7%), S⋯H / H⋯S (24.0%), C⋯H / H⋯C (18.5%) and N⋯H / H⋯N (9.8%) interactions.
Keywords: crystal structure; disorder; hydrogen bonds; Hirshfeld surface analysis; α-chloroketone; chlorooxirane; bisthiosemicarbazone.
CCDC reference: 2294475
1. Chemical context
et al., 2019; Gurbanov et al., 2020a,b; Mahmoudi et al., 2017a,b,c; Khalilov 2021; Martins et al., 2017). The most common synthetic pathway for the synthesis of is the reaction of appropriate with different or in various organic solvents (Khalilov et al., 2021). For example, hydrazinecarbothioamide has been well explored as a substrate in the synthesis of (Safarova et al., 2019; Velásquez et al., 2019). The functional properties of can be improved by attaching electron-withdrawing or -donating substituents to the hydrazone moiety (Gurbanov et al., 2022b, 2017, 2021; Kopylovich et al., 2011). In fact, due to the participation of the substituents in various sorts of intermolecular interactions (Mahmudov et al., 2010, 2012, 2022; Mahmoudi et al., 2019, 2021) the of metal complexes of has been improved in comparison to those with unsubstituted ligands (Gurbanov et al., 2022a). In order to continue our work in this perspective, we have synthesized a new hydrazone dimethylformamide monosolvate, (2Z,2′E)-2,2′-(3-methoxy-3-phenylpropane-1,2-diylidene)bis(hydrazine-1-carbothioamide)·DMF via reaction of hydrazinecarbothioamide with the highly reactive substrate 2-chloro-2-(diethoxymethyl)-3-phenyloxirane, which may be also replaced by 1-chloro-3,3-diethoxy-1-phenylpropan-2-one (Guseinov et al., 2006, 2017, 2020).
are very attractive compounds in synthesis, catalysis, crystal engineering and medicinal chemistry due to their reactivity, hydrogen-bonding donor ability and broad spectrum of biological activities (Afkhami2. Structural commentary
As shown in Fig. 1, the title compound adopts a Z configuration about the C5=C6 double bond with regard to the 3-methoxy-3-phenylpropane group and E configuration regarding the hydrazine-1-carbothioamide moieties. The bond has a length of 1.452 (3) Å. The molecular conformation of the title compound is stabilized by intramolecular C11—H11⋯N7, C17—H17⋯O18, N1—H1A⋯N4 and N3—H3⋯O18 classical and non-classical hydrogen-bonding interactions, resulting in S(5) ring motifs (Table 1; Bernstein et al., 1995). The C12–C17 phenyl ring is disordered over two sites with occupancy factors in a 0.57 (4) to 0.43 (4) ratio. The major (C12–C17) and minor (C12A–C17A) components of the disordered phenyl ring subtend a dihedral angle of 2.0 (9)° to each other, i.e. they are nearly co-planar. Bond lengths and angles of the title compound are generally in agreement with those reported for related compounds, as discussed in the Database survey section below.
3. Supramolecular features and Hirshfeld surface analysis
Molecules in the crystal of the title compound are linked to each other and to the solvent dimethylformamide by classical and non-classical N—H⋯S, N—H⋯O, C—H⋯O and C—H⋯S hydrogen bonds (Table 1; Figs. 2, 3 and 4), resulting in a three-dimensional network. Fig. 5 shows all interactions as supplied in Table 1. In addition some offset weak C/N—H⋯π interactions are observed.
Crystal Explorer 17.5 (Spackman et al., 2021) was used to perform a Hirshfeld surface analysis and to generate the corresponding two-dimensional fingerprint plots, with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed color scale of −0.5044 (red) to +1.5170 (blue) a.u. (Fig. 6). The red spots symbolize short contacts and negative dnorm values on the surface corresponding to the N—H⋯S, N—H⋯O and C—H⋯O hydrogen bonds mentioned above (Table 1). The N1—H1B⋯S9, N8—H8⋯O24, N10—H10A⋯S9, N10—H10B⋯S2 and C6—H6⋯O24 interactions, which play a key role in the molecular packing of the title compound, are responsible for the red spots observed around S2, S9 and O24.
The overall two-dimensional fingerprint plot for the title compound is provided in Fig. 7a, and those delineated into N—H⋯S, N—H⋯O and C—H⋯O contacts are shown in Fig. 7b–e, while numerical details of the different contacts are supplied in Table 2. The most important contributions to the Hirshfeld surfaces from the various interatomic contacts are H⋯H (38.7%), S⋯H / H⋯S (24.0%), C⋯H/H⋯C (18.5%) and N⋯H/H⋯N ((9.8%). Other, less notable contacts comprise O⋯H/H⋯O (5.0%), S⋯N/N⋯S (1.7%), S⋯C/C⋯S (0.7%), O⋯N/N⋯O (0.5%), N⋯C/C⋯N (0.4%), N⋯N (0.2%), C⋯C (0.2%) and S⋯O/O⋯S (0.1%); they have little, if any, directional influence on the molecular packing.
|
4. Database survey
A database search was carried out using ConQUEST (Bruno et al., 2002), part of the software for version 2023.2.0 of the Cambridge Structural Database (Groom et al., 2016). A search for the keyword `hydrazinecarbothioamide' resulted in nearly 600 hits. A search for the structural bis-hydrazinecarbothioamide motif without considering hydrogen atoms narrowed that down to 45. For a more detailed analysis, four of those compounds were chosen as relatively more closely related to the title compound, yet with a variation of the substituent(s) numbers and position on the bis-hydrazinecarbothioamide backbone. These are: (E,E)-N,N-dimethyl-2-{3-[(methylcarbamothioyl)hydrazono]butan-2-ylidene}hydrazinecarbothioamide (CD refcode ERABIJ; Paterson et al., 2010), diacetyl-2-(4-N-ethyl-3-thiosemicarbazone)-3-(4-N-allyl-3-thiosemicarbazone) dimethylsulfoxide solvate (JEXXOA; Holland et al., 2007), 2-keto-3-ethoxybutyraldehydebis(thiosemicarbazone) (KEBASC10; Gabe et al., 1969) and N,1-dimethyl-2-{3-[2-(methylcarbamothioyl)hydrazinylidene]butan-2-ylidene}hydrazine-1-carbothioamide (RECKAP; Alonso et al., 2022).
In the crystal of ERABIJ (monoclinic P21/c, Z = 4), the molecule adopts an (E, E)-configuration about the imine double bonds. The arm bearing a dimethyl substituent has a slightly shorter C—S [1.6802 (19) Å] bond length and a longer C—N [1.341 (2) Å] bond length than the arm with a single methyl substituent [1.693 (2) and 1.323 (3) Å, respectively]. These bond lengths indicate that there is some extensive delocalization throughout the molecule while one tautomeric form still dominates.
In the crystal of JEXXOA (monoclinic P21/c, Z = 2), the unsymmetrical bis(thiosemicarbazone) lies on a crystallographic center of inversion. The carbon–carbon bond length between C5 and C6 is 1.478 (3) Å, which is exactly the same as the average bond length expected for a single bond between two sp2-hybridized carbon atoms. Other bond lengths are indicative of the presence of a here as well.
In the crystal of KEBASC10 (monoclinic P21/c, Z = 8), there are two molecules per The bis-hydrazinecarbothioamide motif is outstretched (i.e. not bent) and extends from one sulfur atom to the other as head and tail atoms. The molecule is approximately planar except for the side chain. The bond distances and angles are very similar in the two molecules of the There is an intramolecular N—H⋯O hydrogen bond, which stabilizes the molecular structure, similar to what is observed in the title compound. The packing of the molecule seems dominated by the formation of N—H⋯S hydrogen bonds. There is also one very short C—H⋯S intermolecular distance between the two molecules in the which may be strong enough to cause some distortion, in one molecule more than in the other. The tendency of molecules that are crystallographically independent but have opposite absolute configurations to associate may explain why they have co-crystallized in this case and why there are, hence, two independent molecules in the asymmetric unit.
In the crystal of RECKAP (triclinic P, Z = 2), the compound is in the thione form yet resonant, which is supported by the C—S bond distances, which are intermediate between those of single and double bonds (1.82 and 1.56 Å, respectively) and the presence of the hydrazinic hydrogen H2. The azomethine bonds both have a length of 1.29 Å, which is in accordance with double bonds. The N—N bonds are both shorter than 1.44 Å, which agrees well with those of similar thiosemicarbazones. The two arms of the molecule adopt the E configuration with respect to the central C3—C4 single bond and both azomethine nitrogen atoms N3 and N4 are in an E configuration relative to the thione sulfur atoms. The ligand is not planar and the two arms form an angle of 73.51°. The molecules are held together in the crystal through an extended network of intermolecular hydrogen bonds involving the amine nitrogen atoms N1 and N6 and the sulfur atoms.
All the molecules discussed here, including the title compound, adopt an E configuration of the hydrazine moieties attached to the central C—C bond. The differences in substitution do not affect this. However, the latter gives rise to a variation in the intermolecular interactions and can also result in distinct molecular shapes from the more common (almost) planar arrangement of the bis-hydrazinecarbothioamide motif to a substantial twisting to nearly perpendicular.
5. Synthesis and crystallization
Hydrazinecarbothioamide (0.380 g, 6.25 mmol) and 2-chloro-2-(diethoxymethyl)-3-phenyloxirane (1.600 g, 6.25 mmol) in 20 mL of methanol was refluxed for 2 h. After complete dissolution of hydrazinecarbothioamide, the mixture was stirred at room temperature for 24 h. The progress of the reaction was monitored by TLC in the system 9:1 chloroform:methanol Rf = 0.53. After completion of the reaction, the solvent was evaporated. The title compound was isolated by in a 20:1 chloroform:methanol Rf = 0.17 system. The compound was obtained as a white solid in a yield of 0.689 g (34%); m.p. 421–423 K (with decomposition). Analysis calculated for C12H16N6OS2 (M = 324.42) C 44.43, H 4.97, N 25.91; found: C 44.35, H 4.90, N 25.94. 1H NMR (300 MHz, DMSO-d6) δ 3.52 (3H, CH3), 6.35 (1H, CH), 7.37–7.45 (5H, Ar), 8,15–8.68 (2H, NH), 10.74 (2H, NH2), 10.80 (s, 2H, NH2). 13C NMR (200 MHz, DMSO-d6) δ 57.13, 78.52, 126.22, 128.45, 136.79, 138.92, 144.20, 177.67, 178.18. Crystals suitable for X-ray were obtained by slow evaporation of the DMF:methanol solution.
6. Refinement
Crystal data, data collection and structure . The C12(C12A)–C17(C17A) atoms in the C12–C17 phenyl ring are disordered over two sites with occupancies of 0.57 (4) and 0.43 (4), respectively. The N-bound hydrogen atoms were located in difference maps [N1—H1A = 0.92 (2), N1—H1B = 0.92 (2), N3—H3 = 0.90 (2), N8—H8 = 0.88 (2), N10—H10A = 0.91 (2) and N10—H10B = 0.90 (2) Å] and refined by constraining the N—H distances with SADI. All carbon-bound hydrogen atoms were positioned geometrically (C—H = 0.95–1.00 Å) and were included in the in the riding-model approximation with Uiso(H) = 1.2 or 1.5Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2294475
https://doi.org/10.1107/S2056989023007946/yz2041sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023007946/yz2041Isup2.hkl
Data collection: CrysAlis PRO 1.171.42.91a (Rigaku OD, 2023); cell
CrysAlis PRO 1.171.42.91a (Rigaku OD, 2023); data reduction: CrysAlis PRO 1.171.42.91a (Rigaku OD, 2023); program(s) used to solve structure: SHELXT2019/1 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/1 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C12H16N6OS2·C3H7NO | F(000) = 840 |
Mr = 397.52 | Dx = 1.295 Mg m−3 |
Monoclinic, Cc | Cu Kα radiation, λ = 1.54184 Å |
a = 8.4573 (1) Å | Cell parameters from 9940 reflections |
b = 23.5853 (3) Å | θ = 3.7–77.6° |
c = 11.0072 (1) Å | µ = 2.57 mm−1 |
β = 111.749 (2)° | T = 100 K |
V = 2039.29 (5) Å3 | Plate, colourless |
Z = 4 | 0.32 × 0.12 × 0.02 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 2776 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 2751 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.030 |
ω scans | θmax = 77.8°, θmin = 3.8° |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2023) | h = −10→10 |
Tmin = 0.658, Tmax = 1.000 | k = −29→29 |
11141 measured reflections | l = −9→13 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.0653P)2 + 0.7217P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.088 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.30 e Å−3 |
2776 reflections | Δρmin = −0.27 e Å−3 |
317 parameters | Absolute structure: Classical Flack method preferred over Parsons because s.u. lower |
377 restraints | Absolute structure parameter: 0.000 (16) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S2 | 0.28482 (9) | 0.88049 (2) | 0.35678 (8) | 0.02715 (16) | |
S9 | 0.62361 (9) | 0.43859 (2) | 0.67836 (8) | 0.02788 (17) | |
O18 | 0.3029 (2) | 0.69867 (7) | 0.22627 (17) | 0.0208 (4) | |
N1 | 0.3182 (3) | 0.82853 (9) | 0.5810 (2) | 0.0250 (4) | |
H1A | 0.321 (5) | 0.7946 (11) | 0.623 (4) | 0.035 (10)* | |
H1B | 0.277 (5) | 0.8600 (14) | 0.609 (4) | 0.050 (12)* | |
N3 | 0.3551 (3) | 0.77463 (9) | 0.4201 (2) | 0.0193 (4) | |
H3 | 0.338 (4) | 0.7707 (16) | 0.335 (2) | 0.030 (9)* | |
N4 | 0.3832 (3) | 0.72789 (9) | 0.4985 (2) | 0.0194 (4) | |
N7 | 0.5105 (3) | 0.58678 (9) | 0.5112 (2) | 0.0206 (4) | |
N8 | 0.5322 (3) | 0.54302 (9) | 0.5966 (2) | 0.0237 (4) | |
H8 | 0.494 (4) | 0.5441 (15) | 0.660 (3) | 0.025 (8)* | |
N10 | 0.6502 (3) | 0.49254 (10) | 0.4741 (3) | 0.0304 (5) | |
H10A | 0.637 (4) | 0.5197 (13) | 0.412 (3) | 0.028 (8)* | |
H10B | 0.689 (5) | 0.4610 (13) | 0.447 (4) | 0.042 (10)* | |
C2 | 0.3196 (3) | 0.82596 (10) | 0.4617 (3) | 0.0196 (5) | |
C5 | 0.4275 (3) | 0.68202 (10) | 0.4549 (2) | 0.0178 (5) | |
C6 | 0.4552 (3) | 0.63348 (11) | 0.5415 (3) | 0.0211 (5) | |
H6 | 0.432845 | 0.636140 | 0.619743 | 0.025* | |
C9 | 0.6017 (3) | 0.49391 (11) | 0.5749 (3) | 0.0245 (5) | |
C11 | 0.4518 (3) | 0.67600 (10) | 0.3245 (2) | 0.0180 (4) | |
H11 | 0.462814 | 0.634948 | 0.306311 | 0.022* | |
C12 | 0.6115 (14) | 0.7087 (7) | 0.3235 (18) | 0.017 (2) | 0.57 (4) |
C13 | 0.7717 (16) | 0.6857 (6) | 0.3961 (17) | 0.019 (2) | 0.57 (4) |
H13 | 0.781040 | 0.650478 | 0.440053 | 0.023* | 0.57 (4) |
C14 | 0.9181 (14) | 0.7156 (8) | 0.4026 (14) | 0.025 (2) | 0.57 (4) |
H14 | 1.027777 | 0.700727 | 0.451350 | 0.030* | 0.57 (4) |
C15 | 0.9025 (17) | 0.7670 (7) | 0.3378 (13) | 0.024 (2) | 0.57 (4) |
H15 | 1.001690 | 0.787616 | 0.343977 | 0.029* | 0.57 (4) |
C16 | 0.7452 (17) | 0.7882 (6) | 0.2650 (14) | 0.0204 (19) | 0.57 (4) |
H16 | 0.736384 | 0.822536 | 0.217843 | 0.025* | 0.57 (4) |
C17 | 0.5977 (16) | 0.7599 (7) | 0.2590 (16) | 0.0155 (19) | 0.57 (4) |
H17 | 0.488928 | 0.775672 | 0.211265 | 0.019* | 0.57 (4) |
C12A | 0.618 (2) | 0.7024 (9) | 0.339 (2) | 0.017 (3) | 0.43 (4) |
C13A | 0.771 (2) | 0.6743 (9) | 0.411 (2) | 0.022 (3) | 0.43 (4) |
H13A | 0.769780 | 0.639161 | 0.452901 | 0.026* | 0.43 (4) |
C14A | 0.9259 (19) | 0.6998 (9) | 0.4195 (19) | 0.023 (2) | 0.43 (4) |
H14A | 1.030313 | 0.681309 | 0.467394 | 0.027* | 0.43 (4) |
C15A | 0.9282 (19) | 0.7516 (9) | 0.3588 (17) | 0.020 (2) | 0.43 (4) |
H15A | 1.033708 | 0.767984 | 0.365263 | 0.025* | 0.43 (4) |
C16A | 0.780 (2) | 0.7788 (8) | 0.290 (2) | 0.023 (3) | 0.43 (4) |
H16A | 0.781356 | 0.814671 | 0.251521 | 0.028* | 0.43 (4) |
C17A | 0.625 (2) | 0.7534 (9) | 0.277 (2) | 0.021 (3) | 0.43 (4) |
H17A | 0.521200 | 0.771477 | 0.225499 | 0.025* | 0.43 (4) |
C19 | 0.2808 (3) | 0.67848 (12) | 0.0984 (3) | 0.0257 (5) | |
H19A | 0.191339 | 0.700524 | 0.032715 | 0.039* | |
H19B | 0.248038 | 0.638391 | 0.091007 | 0.039* | |
H19C | 0.387790 | 0.682681 | 0.084046 | 0.039* | |
O24 | 0.2984 (3) | 0.43619 (10) | 0.2226 (3) | 0.0449 (6) | |
N20 | 0.1627 (4) | 0.49731 (13) | 0.3120 (3) | 0.0405 (6) | |
C21 | 0.0784 (5) | 0.50587 (19) | 0.4044 (5) | 0.0551 (10) | |
H21A | 0.075716 | 0.469985 | 0.448488 | 0.083* | |
H21B | −0.038264 | 0.519122 | 0.357418 | 0.083* | |
H21C | 0.140992 | 0.534251 | 0.469463 | 0.083* | |
C22 | 0.1605 (5) | 0.54375 (17) | 0.2284 (4) | 0.0503 (9) | |
H22A | 0.259076 | 0.541176 | 0.202153 | 0.075* | |
H22B | 0.165269 | 0.579467 | 0.275069 | 0.075* | |
H22C | 0.055571 | 0.542499 | 0.150377 | 0.075* | |
C23 | 0.2273 (5) | 0.44708 (17) | 0.3000 (4) | 0.0456 (8) | |
H23 | 0.218115 | 0.417283 | 0.355074 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S2 | 0.0435 (3) | 0.0159 (3) | 0.0262 (3) | 0.0076 (2) | 0.0178 (3) | 0.0043 (2) |
S9 | 0.0488 (3) | 0.0145 (3) | 0.0281 (3) | 0.0061 (2) | 0.0234 (3) | 0.0048 (2) |
O18 | 0.0219 (7) | 0.0219 (8) | 0.0180 (9) | 0.0023 (7) | 0.0067 (6) | 0.0003 (7) |
N1 | 0.0383 (11) | 0.0165 (9) | 0.0250 (11) | 0.0039 (8) | 0.0172 (9) | 0.0016 (9) |
N3 | 0.0264 (9) | 0.0145 (9) | 0.0198 (10) | 0.0028 (7) | 0.0117 (8) | 0.0030 (8) |
N4 | 0.0233 (8) | 0.0140 (9) | 0.0230 (10) | 0.0021 (7) | 0.0112 (8) | 0.0016 (8) |
N7 | 0.0298 (9) | 0.0144 (9) | 0.0200 (10) | 0.0022 (8) | 0.0120 (8) | 0.0017 (8) |
N8 | 0.0390 (11) | 0.0148 (10) | 0.0236 (11) | 0.0044 (9) | 0.0191 (9) | 0.0029 (9) |
N10 | 0.0538 (14) | 0.0157 (10) | 0.0324 (13) | 0.0092 (10) | 0.0287 (11) | 0.0052 (9) |
C2 | 0.0205 (9) | 0.0158 (11) | 0.0232 (12) | 0.0015 (8) | 0.0090 (9) | −0.0009 (9) |
C5 | 0.0221 (10) | 0.0135 (10) | 0.0192 (11) | 0.0007 (8) | 0.0093 (9) | 0.0007 (8) |
C6 | 0.0307 (11) | 0.0158 (11) | 0.0208 (11) | 0.0010 (9) | 0.0141 (9) | 0.0012 (10) |
C9 | 0.0345 (12) | 0.0169 (12) | 0.0248 (12) | 0.0016 (9) | 0.0141 (10) | 0.0011 (10) |
C11 | 0.0199 (9) | 0.0165 (10) | 0.0186 (11) | 0.0023 (8) | 0.0081 (8) | 0.0007 (9) |
C12 | 0.014 (3) | 0.023 (5) | 0.013 (4) | −0.002 (3) | 0.005 (2) | 0.002 (3) |
C13 | 0.028 (3) | 0.015 (4) | 0.017 (4) | 0.001 (2) | 0.011 (2) | 0.007 (3) |
C14 | 0.020 (2) | 0.031 (5) | 0.023 (4) | 0.004 (3) | 0.007 (2) | 0.004 (4) |
C15 | 0.025 (4) | 0.025 (5) | 0.024 (4) | 0.000 (3) | 0.011 (3) | 0.003 (3) |
C16 | 0.025 (4) | 0.021 (4) | 0.017 (4) | −0.002 (3) | 0.009 (3) | 0.002 (3) |
C17 | 0.019 (3) | 0.016 (4) | 0.013 (4) | 0.000 (3) | 0.008 (3) | 0.004 (2) |
C12A | 0.033 (5) | 0.013 (4) | 0.011 (5) | 0.004 (3) | 0.014 (3) | 0.000 (3) |
C13A | 0.019 (3) | 0.028 (6) | 0.020 (5) | 0.004 (3) | 0.008 (3) | 0.005 (4) |
C14A | 0.023 (3) | 0.025 (6) | 0.021 (5) | 0.003 (4) | 0.008 (3) | 0.004 (4) |
C15A | 0.018 (3) | 0.022 (6) | 0.020 (5) | 0.002 (4) | 0.006 (3) | −0.004 (4) |
C16A | 0.030 (5) | 0.021 (5) | 0.018 (5) | −0.004 (4) | 0.009 (4) | 0.003 (4) |
C17A | 0.022 (4) | 0.020 (5) | 0.019 (6) | 0.008 (4) | 0.006 (4) | 0.001 (4) |
C19 | 0.0297 (11) | 0.0270 (13) | 0.0184 (12) | 0.0000 (10) | 0.0065 (10) | −0.0003 (10) |
O24 | 0.0539 (13) | 0.0453 (14) | 0.0487 (15) | 0.0031 (11) | 0.0343 (12) | 0.0024 (11) |
N20 | 0.0429 (13) | 0.0399 (15) | 0.0428 (16) | −0.0030 (11) | 0.0206 (12) | −0.0034 (13) |
C21 | 0.056 (2) | 0.060 (2) | 0.060 (3) | −0.0086 (19) | 0.0335 (19) | −0.013 (2) |
C22 | 0.0547 (19) | 0.0407 (18) | 0.059 (2) | −0.0030 (16) | 0.0248 (17) | 0.0019 (18) |
C23 | 0.0524 (18) | 0.0432 (18) | 0.050 (2) | −0.0031 (15) | 0.0299 (17) | −0.0010 (16) |
S2—C2 | 1.680 (3) | C15—C16 | 1.368 (9) |
S9—C9 | 1.697 (3) | C15—H15 | 0.9500 |
O18—C11 | 1.426 (3) | C16—C17 | 1.394 (9) |
O18—C19 | 1.430 (3) | C16—H16 | 0.9500 |
N1—C2 | 1.319 (4) | C17—H17 | 0.9500 |
N1—H1A | 0.92 (2) | C12A—C17A | 1.390 (14) |
N1—H1B | 0.92 (2) | C12A—C13A | 1.407 (13) |
N3—N4 | 1.365 (3) | C13A—C14A | 1.413 (13) |
N3—C2 | 1.366 (3) | C13A—H13A | 0.9500 |
N3—H3 | 0.90 (2) | C14A—C15A | 1.398 (12) |
N4—C5 | 1.294 (3) | C14A—H14A | 0.9500 |
N7—C6 | 1.288 (3) | C15A—C16A | 1.361 (12) |
N7—N8 | 1.362 (3) | C15A—H15A | 0.9500 |
N8—C9 | 1.360 (3) | C16A—C17A | 1.401 (13) |
N8—H8 | 0.88 (2) | C16A—H16A | 0.9500 |
N10—C9 | 1.318 (4) | C17A—H17A | 0.9500 |
N10—H10A | 0.91 (2) | C19—H19A | 0.9800 |
N10—H10B | 0.90 (2) | C19—H19B | 0.9800 |
C5—C6 | 1.452 (3) | C19—H19C | 0.9800 |
C5—C11 | 1.530 (3) | O24—C23 | 1.238 (4) |
C6—H6 | 0.9500 | N20—C23 | 1.332 (5) |
C11—C12A | 1.492 (19) | N20—C22 | 1.426 (5) |
C11—C12 | 1.558 (13) | N20—C21 | 1.456 (5) |
C11—H11 | 1.0000 | C21—H21A | 0.9800 |
C12—C17 | 1.384 (10) | C21—H21B | 0.9800 |
C12—C13 | 1.402 (10) | C21—H21C | 0.9800 |
C13—C14 | 1.404 (10) | C22—H22A | 0.9800 |
C13—H13 | 0.9500 | C22—H22B | 0.9800 |
C14—C15 | 1.387 (9) | C22—H22C | 0.9800 |
C14—H14 | 0.9500 | C23—H23 | 0.9500 |
C11—O18—C19 | 112.21 (18) | C15—C16—H16 | 119.6 |
C2—N1—H1A | 117 (3) | C17—C16—H16 | 119.6 |
C2—N1—H1B | 121 (3) | C12—C17—C16 | 119.3 (8) |
H1A—N1—H1B | 119 (4) | C12—C17—H17 | 120.3 |
N4—N3—C2 | 120.8 (2) | C16—C17—H17 | 120.3 |
N4—N3—H3 | 120 (2) | C17A—C12A—C13A | 119.3 (13) |
C2—N3—H3 | 118 (2) | C17A—C12A—C11 | 121.0 (13) |
C5—N4—N3 | 116.6 (2) | C13A—C12A—C11 | 119.7 (13) |
C6—N7—N8 | 116.0 (2) | C12A—C13A—C14A | 118.2 (12) |
C9—N8—N7 | 118.7 (2) | C12A—C13A—H13A | 120.9 |
C9—N8—H8 | 119 (2) | C14A—C13A—H13A | 120.9 |
N7—N8—H8 | 123 (2) | C15A—C14A—C13A | 121.2 (10) |
C9—N10—H10A | 128 (2) | C15A—C14A—H14A | 119.4 |
C9—N10—H10B | 124 (3) | C13A—C14A—H14A | 119.4 |
H10A—N10—H10B | 107 (4) | C16A—C15A—C14A | 120.2 (10) |
N1—C2—N3 | 117.3 (2) | C16A—C15A—H15A | 119.9 |
N1—C2—S2 | 125.8 (2) | C14A—C15A—H15A | 119.9 |
N3—C2—S2 | 116.9 (2) | C15A—C16A—C17A | 119.5 (11) |
N4—C5—C6 | 114.5 (2) | C15A—C16A—H16A | 120.3 |
N4—C5—C11 | 125.7 (2) | C17A—C16A—H16A | 120.3 |
C6—C5—C11 | 119.8 (2) | C12A—C17A—C16A | 121.7 (12) |
N7—C6—C5 | 119.3 (2) | C12A—C17A—H17A | 119.2 |
N7—C6—H6 | 120.3 | C16A—C17A—H17A | 119.2 |
C5—C6—H6 | 120.3 | O18—C19—H19A | 109.5 |
N10—C9—N8 | 117.3 (2) | O18—C19—H19B | 109.5 |
N10—C9—S9 | 123.8 (2) | H19A—C19—H19B | 109.5 |
N8—C9—S9 | 118.9 (2) | O18—C19—H19C | 109.5 |
O18—C11—C12A | 117.2 (9) | H19A—C19—H19C | 109.5 |
O18—C11—C5 | 106.77 (19) | H19B—C19—H19C | 109.5 |
C12A—C11—C5 | 108.1 (10) | C23—N20—C22 | 121.8 (3) |
O18—C11—C12 | 109.5 (6) | C23—N20—C21 | 121.2 (3) |
C5—C11—C12 | 112.3 (8) | C22—N20—C21 | 116.8 (3) |
O18—C11—H11 | 109.4 | N20—C21—H21A | 109.5 |
C5—C11—H11 | 109.4 | N20—C21—H21B | 109.5 |
C12—C11—H11 | 109.4 | H21A—C21—H21B | 109.5 |
C17—C12—C13 | 120.6 (9) | N20—C21—H21C | 109.5 |
C17—C12—C11 | 121.8 (9) | H21A—C21—H21C | 109.5 |
C13—C12—C11 | 117.5 (9) | H21B—C21—H21C | 109.5 |
C12—C13—C14 | 118.9 (8) | N20—C22—H22A | 109.5 |
C12—C13—H13 | 120.6 | N20—C22—H22B | 109.5 |
C14—C13—H13 | 120.6 | H22A—C22—H22B | 109.5 |
C15—C14—C13 | 119.9 (8) | N20—C22—H22C | 109.5 |
C15—C14—H14 | 120.1 | H22A—C22—H22C | 109.5 |
C13—C14—H14 | 120.1 | H22B—C22—H22C | 109.5 |
C16—C15—C14 | 120.5 (8) | O24—C23—N20 | 125.1 (4) |
C16—C15—H15 | 119.8 | O24—C23—H23 | 117.5 |
C14—C15—H15 | 119.8 | N20—C23—H23 | 117.5 |
C15—C16—C17 | 120.8 (8) | ||
C2—N3—N4—C5 | −175.4 (2) | C5—C11—C12—C13 | 73.3 (16) |
C6—N7—N8—C9 | −175.4 (2) | C17—C12—C13—C14 | 0 (3) |
N4—N3—C2—N1 | 1.7 (3) | C11—C12—C13—C14 | −176.8 (14) |
N4—N3—C2—S2 | −179.27 (16) | C12—C13—C14—C15 | 0 (2) |
N3—N4—C5—C6 | −179.78 (19) | C13—C14—C15—C16 | −1.5 (19) |
N3—N4—C5—C11 | 0.4 (3) | C14—C15—C16—C17 | 2.8 (19) |
N8—N7—C6—C5 | −179.5 (2) | C13—C12—C17—C16 | 1 (3) |
N4—C5—C6—N7 | −175.5 (2) | C11—C12—C17—C16 | 178.0 (14) |
C11—C5—C6—N7 | 4.3 (3) | C15—C16—C17—C12 | −3 (2) |
N7—N8—C9—N10 | 2.6 (4) | O18—C11—C12A—C17A | 12 (2) |
N7—N8—C9—S9 | −178.22 (17) | C5—C11—C12A—C17A | −109 (2) |
C19—O18—C11—C12A | 79.2 (11) | O18—C11—C12A—C13A | −165.2 (16) |
C19—O18—C11—C5 | −159.5 (2) | C5—C11—C12A—C13A | 74 (2) |
C19—O18—C11—C12 | 78.8 (8) | C17A—C12A—C13A—C14A | 1 (3) |
N4—C5—C11—O18 | −50.3 (3) | C11—C12A—C13A—C14A | 178.2 (18) |
C6—C5—C11—O18 | 129.9 (2) | C12A—C13A—C14A—C15A | 0 (3) |
N4—C5—C11—C12A | 76.6 (9) | C13A—C14A—C15A—C16A | 0 (2) |
C6—C5—C11—C12A | −103.2 (9) | C14A—C15A—C16A—C17A | −2 (2) |
N4—C5—C11—C12 | 69.6 (6) | C13A—C12A—C17A—C16A | −3 (4) |
C6—C5—C11—C12 | −110.1 (6) | C11—C12A—C17A—C16A | 179.8 (19) |
O18—C11—C12—C17 | 14.8 (19) | C15A—C16A—C17A—C12A | 4 (3) |
C5—C11—C12—C17 | −103.6 (16) | C22—N20—C23—O24 | 4.0 (6) |
O18—C11—C12—C13 | −168.3 (13) | C21—N20—C23—O24 | 178.9 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···N4 | 0.92 (3) | 2.27 (4) | 2.670 (3) | 106 (3) |
N1—H1B···S9i | 0.92 (4) | 2.54 (4) | 3.450 (2) | 172 (4) |
N3—H3···O18 | 0.90 (2) | 2.04 (3) | 2.694 (3) | 129 (3) |
N8—H8···O24ii | 0.87 (3) | 2.07 (4) | 2.847 (4) | 149 (3) |
N10—H10A···S9iii | 0.91 (3) | 2.72 (3) | 3.570 (3) | 156 (3) |
N10—H10B···S2iv | 0.91 (4) | 2.42 (4) | 3.322 (3) | 175 (4) |
C6—H6···O24ii | 0.95 | 2.54 | 3.224 (4) | 129 |
C11—H11···N7 | 1.00 | 2.42 | 2.853 (3) | 105 |
C11—H11···S9iii | 1.00 | 2.87 | 3.706 (2) | 141 |
C17—H17···O18 | 0.95 | 2.45 | 2.787 (16) | 101 |
C21—H21B···S9v | 0.98 | 2.98 | 3.951 (5) | 171 |
Symmetry codes: (i) x−1/2, y+1/2, z; (ii) x, −y+1, z+1/2; (iii) x, −y+1, z−1/2; (iv) x+1/2, y−1/2, z; (v) x−1, −y+1, z−1/2. |
Contact | Distance | Symmetry operation |
S2···H10B | 2.42 | -1/2 + x, 1/2 + y, z |
H16···O24 | 2.73 | 1/2 + x, 1/2 + y, z |
H19A···N3 | 2.71 | -1/2 + x, 3/2 - y, -1/2 + z |
S9···H10A | 2.72 | x, 1 - y, 1/2 + z |
S9···H21B | 2.98 | 1 + x, 1 - y, 1/2 + z |
H6···H16A | 2.49 | -1/2 + x, 3/2 - y, 1/2 + z |
N3···H15A | 2.56 | -1 + x, y, z |
H8···O24 | 2.07 | x, 1 - y, 1/2 + z |
H19B···H22A | 2.58 | x, y, z |
H22C···H21A | 2.31 | x, 1 - y, -1/2 + z |
Acknowledgements
The authors' contributions are as follows. Conceptualization, FIG, MA and AB; synthesis, AVK, EVS and KIK; X-ray analysis, AIS and ZA; writing (review and editing of the manuscript) FIG, MA and AB; supervision, FIG, MA and AB.
References
Afkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. 2019, 262–270. Web of Science CSD CrossRef CAS Google Scholar
Alonso, L., Burón, R., López-Torres, E. & Mendiola, M. A. (2022). Crystals, 12, 310. https://doi. org/10.3390/cryst12030310 Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gabe, E. J., Taylor, M. R., Glusker, J. P., Minkin, J. A. & Patterson, A. L. (1969). Acta Cryst. B25, 1620–1631. CSD CrossRef IUCr Journals Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019–1031. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. A Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932–3940. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107–111. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112. Web of Science CSD CrossRef Google Scholar
Guseinov, F. I., Pistsov, M. F., Malinnikov, V. M., Lavrova, O. M., Movsumzade, E. M. & Kustov, L. M. (2020). Mendeleev Commun. 30, 674–675. Web of Science CSD CrossRef CAS Google Scholar
Guseinov, F. I., Pistsov, M. F., Movsumzade, E. M., Kustov, L. M., Tafeenko, V. A., Chernyshev, V. V., Gurbanov, A. V., Mahmudov, K. T. & Pombeiro, A. J. L. (2017). Crystals, 7, 327. Web of Science CSD CrossRef Google Scholar
Guseinov, F. N., Burangulova, R. N., Mukhamedzyanova, E. F., Strunin, B. P., Sinyashin, O. G., Litvinov, I. A. & Gubaidullin, A. T. (2006). Chem. Heterocycl. Compd. 42, 943–947. CrossRef CAS Google Scholar
Holland, J. P., Aigbirhio, F. I., Betts, H. M., Bonnitcha, P. D., Burke, P., Christlieb, M., Churchill, G. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Green, J. C., Peach, J. M., Vasudevan, S. R. & Warren, J. E. (2007). Inorg. Chem. 46, 465–485. Web of Science CSD CrossRef PubMed CAS Google Scholar
Khalilov, A. N. (2021). Rev. Roum. Chim. 66, 719–723. Google Scholar
Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761. Web of Science CrossRef Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Kuznetsov, M. L., Silva, T. F. S., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2011). J. Phys. Org. Chem. 24, 764–773. Web of Science CrossRef CAS Google Scholar
Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zangrando, E., Bauzá, A., Maniukiewicz, W., Carballo, R., Gurbanov, A. V. & Frontera, A. (2017c). CrystEngComm, 19, 3322–3330. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279. Web of Science CSD CrossRef Google Scholar
Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772. Web of Science CSD CrossRef Google Scholar
Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187–189. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938. Web of Science CrossRef CAS Google Scholar
Martins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076–4086. Web of Science CrossRef CAS Google Scholar
Paterson, B. M., Karas, J. A., Scanlon, D. B., White, J. M. & Donnelly, P. S. (2010). Inorg. Chem. 49, 1884–1893. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rigaku OD (2023). CrysAlis PRO 1.171.42.91a. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Safarova, A. S., Brito, I., Cisterna, J., Cardenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Krist.-New Cryst. Struct. 234, 1183–1185. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018–6025. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.