research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of (2Z,2′E)-2,2′-(3-meth­­oxy-3-phenylpropane-1,2-diyl­­idene)bis­­(hydrazine-1-carbo­thio­amide) di­methyl­formamide monosolvate

crossmark logo

aKosygin State University of Russia, 117997 Moscow, Russian Federation, bN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation, cMIREA, Russian Technology University, Lomonosov Institute of Fine Chemical Technology, Moscow, 119571, Russian Federation, dDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Türkiye, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: akkurt@erciyes.edu.tr, ajaya.bhattarai@mmamc.tu.edu.np

Edited by C. Schulzke, Universität Greifswald, Germany (Received 4 August 2023; accepted 11 September 2023; online 14 September 2023)

The overall mol­ecular configuration of the title compound, C12H16N6OS2·C3H7NO, is stabilized in the solid state by intra­molecular C—H⋯N, C—H⋯O, N—H⋯N and N—H⋯O inter­actions, forming S(5) ring motifs. In the crystal, mol­ecules are linked to each other and solvent di­methyl­formamide mol­ecules by N—H⋯S, N—H⋯O, C—H⋯O and C—H⋯S hydrogen bonds, forming a three dimensional network. The phenyl ring of the title compound is disordered over two sites with an occupancy ratio of 0.57 (4):0.43 (4). A Hirshfeld surface analysis was performed to qu­antify the contributions of the different inter­molecular inter­actions, indicating that the most important contributions to the crystal packing are from H⋯H (38.7%), S⋯H / H⋯S (24.0%), C⋯H / H⋯C (18.5%) and N⋯H / H⋯N (9.8%) inter­actions.

1. Chemical context

Hydrazones are very attractive compounds in synthesis, catalysis, crystal engineering and medicinal chemistry due to their reactivity, hydrogen-bonding donor ability and broad spectrum of biological activities (Afkhami et al., 2019[Afkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. 2019, 262-270.]; Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.],b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. A Eur. J. 26, 14833-14837.]; Mahmoudi et al., 2017a[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192-205.],b[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763-4772.],c[Mahmoudi, G., Zangrando, E., Bauzá, A., Maniukiewicz, W., Carballo, R., Gurbanov, A. V. & Frontera, A. (2017c). Cryst­EngComm, 19, 3322-3330.]; Khalilov 2021[Khalilov, A. N. (2021). Rev. Roum. Chim. 66, 719-723.]; Martins et al., 2017[Martins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076-4086.]). The most common synthetic pathway for the synthesis of hydrazones is the reaction of appropriate hydrazines with different aldehydes or ketones in various organic solvents (Khalilov et al., 2021[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.]). For example, hydrazinecarbo­thio­amide has been well explored as a substrate in the synthesis of hydrazones (Safarova et al., 2019[Safarova, A. S., Brito, I., Cisterna, J., Cardenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Krist.-New Cryst. Struct. 234, 1183-1185.]; Velásquez et al., 2019[Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018-6025.]). The functional properties of hydrazones can be improved by attaching electron-withdrawing or -donating substituents to the hydrazone moiety (Gurbanov et al., 2022b[Gurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932-3940.], 2017[Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107-111.], 2021[Gurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112.]; Kopylovich et al., 2011[Kopylovich, M. N., Mahmudov, K. T., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Kuznetsov, M. L., Silva, T. F. S., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2011). J. Phys. Org. Chem. 24, 764-773.]). In fact, due to the participation of the substituents in various sorts of inter­molecular inter­actions (Mahmudov et al., 2010[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923-2938.], 2012[Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187-189.], 2022[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.]; Mahmoudi et al., 2019[Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108-117.], 2021[Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.]) the catalytic activity of metal complexes of hydrazones has been improved in comparison to those with unsubstituted ligands (Gurbanov et al., 2022a[Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019-1031.]). In order to continue our work in this perspective, we have synthesized a new hydrazone di­methyl­formamide monosolvate, (2Z,2′E)-2,2′-(3-meth­oxy-3-phenyl­propane-1,2-diyl­idene)bis­(hydrazine-1-carbo­thio­amide)·DMF via reaction of hydrazinecarbo­thio­amide with the highly reactive substrate 2-chloro-2-(di­eth­oxy­meth­yl)-3-phenyl­oxirane, which may be also replaced by 1-chloro-3,3-dieth­oxy-1-phenyl­propan-2-one (Guseinov et al., 2006[Guseinov, F. N., Burangulova, R. N., Mukhamedzyanova, E. F., Strunin, B. P., Sinyashin, O. G., Litvinov, I. A. & Gubaidullin, A. T. (2006). Chem. Heterocycl. Compd. 42, 943-947.], 2017[Guseinov, F. I., Pistsov, M. F., Movsumzade, E. M., Kustov, L. M., Tafeenko, V. A., Chernyshev, V. V., Gurbanov, A. V., Mahmudov, K. T. & Pombeiro, A. J. L. (2017). Crystals, 7, 327.], 2020[Guseinov, F. I., Pistsov, M. F., Malinnikov, V. M., Lavrova, O. M., Movsumzade, E. M. & Kustov, L. M. (2020). Mendeleev Commun. 30, 674-675.]).

[Scheme 1]

2. Structural commentary

As shown in Fig. 1[link], the title compound adopts a Z configuration about the C5=C6 double bond with regard to the 3-meth­oxy-3-phenyl­propane group and E configuration regarding the hydrazine-1-carbo­thio­amide moieties. The bond has a length of 1.452 (3) Å. The mol­ecular conformation of the title compound is stabilized by intra­molecular C11—H11⋯N7, C17—H17⋯O18, N1—H1A⋯N4 and N3—H3⋯O18 classical and non-classical hydrogen-bonding inter­actions, resulting in S(5) ring motifs (Table 1[link]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). The C12–C17 phenyl ring is disordered over two sites with occupancy factors in a 0.57 (4) to 0.43 (4) ratio. The major (C12–C17) and minor (C12A–C17A) components of the disordered phenyl ring subtend a dihedral angle of 2.0 (9)° to each other, i.e. they are nearly co-planar. Bond lengths and angles of the title compound are generally in agreement with those reported for related compounds, as discussed in the Database survey section below.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N4 0.92 (3) 2.27 (4) 2.670 (3) 106 (3)
N1—H1B⋯S9i 0.92 (4) 2.54 (4) 3.450 (2) 172 (4)
N3—H3⋯O18 0.90 (2) 2.04 (3) 2.694 (3) 129 (3)
N8—H8⋯O24ii 0.87 (3) 2.07 (4) 2.847 (4) 149 (3)
N10—H10A⋯S9iii 0.91 (3) 2.72 (3) 3.570 (3) 156 (3)
N10—H10B⋯S2iv 0.91 (4) 2.42 (4) 3.322 (3) 175 (4)
C6—H6⋯O24ii 0.95 2.54 3.224 (4) 129
C11—H11⋯N7 1.00 2.42 2.853 (3) 105
C11—H11⋯S9iii 1.00 2.87 3.706 (2) 141
C17—H17⋯O18 0.95 2.45 2.787 (16) 101
C21—H21B⋯S9v 0.98 2.98 3.951 (5) 171
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [x, -y+1, z-{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (v) [x-1, -y+1, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labeling and displacement ellipsoids drawn at the 30% probability level. Intra­molecular C11—H11⋯N7, C17—H17⋯O18, N1—H1A⋯N4 and N3—H3⋯O18 inter­actions are shown as dashed lines. The minor component of the disorder was omitted for clarity reasons.

3. Supra­molecular features and Hirshfeld surface analysis

Mol­ecules in the crystal of the title compound are linked to each other and to the solvent di­methyl­formamide by classical and non-classical N—H⋯S, N—H⋯O, C—H⋯O and C—H⋯S hydrogen bonds (Table 1[link]; Figs. 2[link], 3[link] and 4[link]), resulting in a three-dimensional network. Fig. 5[link] shows all inter­actions as supplied in Table 1[link]. In addition some offset weak C/N—H⋯π inter­actions are observed.

[Figure 2]
Figure 2
View of the mol­ecular packing along the a-axis. Intra­molecular C—H⋯N, C—H⋯O, N—H⋯N and N—H⋯O inter­actions and inter­molecular N—H⋯S, N—H⋯O, C—H⋯O and C—H⋯S hydrogen bonds are shown as dashed lines. The minor part of the disorder and hydrogen atoms not involved in hydrogen bonding were omitted for clarity reasons.
[Figure 3]
Figure 3
View of the mol­ecular packing along the b-axis. Intra­molecular C—H⋯N, C—H⋯O, N—H⋯N and N—H⋯O inter­actions and inter­molecular N—H⋯S, N—H⋯O, C—H⋯O and C—H⋯S hydrogen bonds are shown as dashed lines. The minor part of the disorder and hydrogen atoms not involved in hydrogen bonding were omitted for clarity reasons.
[Figure 4]
Figure 4
View of the mol­ecular packing along the c-axis. Intra­molecular C—H⋯N, C—H⋯O, N—H⋯N and N—H⋯O inter­actions and inter­molecular N—H⋯S, N—H⋯O, C—H⋯O and C—H⋯S hydrogen bonds are shown as dashed lines. The minor part of the disorder and hydrogen atoms not involved in hydrogen bonding were omitted for clarity reasons.
[Figure 5]
Figure 5
A general view of the possible intra- and inter­molecular hydrogen bonds of the mol­ecule. The minor disorder component was omitted for clarity. Symmetry codes: (i) x − [{1\over 2}], y + [{1\over 2}], z; (ii) x, −y + 1, z + [{1\over 2}]; (iii) x, −y + 1, z − [{1\over 2}]; (iv) x + [{1\over 2}], y − [{1\over 2}], z; (v) x − 1, −y + 1, z − [{1\over 2}].

Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) was used to perform a Hirshfeld surface analysis and to generate the corresponding two-dimensional fingerprint plots, with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed color scale of −0.5044 (red) to +1.5170 (blue) a.u. (Fig. 6[link]). The red spots symbolize short contacts and negative dnorm values on the surface corresponding to the N—H⋯S, N—H⋯O and C—H⋯O hydrogen bonds mentioned above (Table 1[link]). The N1—H1B⋯S9, N8—H8⋯O24, N10—H10A⋯S9, N10—H10B⋯S2 and C6—H6⋯O24 inter­actions, which play a key role in the mol­ecular packing of the title compound, are responsible for the red spots observed around S2, S9 and O24.

[Figure 6]
Figure 6
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm.

The overall two-dimensional fingerprint plot for the title compound is provided in Fig. 7[link]a, and those delineated into N—H⋯S, N—H⋯O and C—H⋯O contacts are shown in Fig. 7[link]be, while numerical details of the different contacts are supplied in Table 2[link]. The most important contributions to the Hirshfeld surfaces from the various inter­atomic contacts are H⋯H (38.7%), S⋯H / H⋯S (24.0%), C⋯H/H⋯C (18.5%) and N⋯H/H⋯N ((9.8%). Other, less notable contacts comprise O⋯H/H⋯O (5.0%), S⋯N/N⋯S (1.7%), S⋯C/C⋯S (0.7%), O⋯N/N⋯O (0.5%), N⋯C/C⋯N (0.4%), N⋯N (0.2%), C⋯C (0.2%) and S⋯O/O⋯S (0.1%); they have little, if any, directional influence on the mol­ecular packing.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
S2⋯H10B 2.42 [{1\over 2}] + x, [{1\over 2}] + y, z
H16⋯O24 2.73 [{1\over 2}] + x, [{1\over 2}] + y, z
H19A⋯N3 2.71 [{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z
S9⋯H10A 2.72 x, 1 − y, [{1\over 2}] + z
S9⋯H21B 2.98 1 + x, 1 − y, [{1\over 2}] + z
H6⋯H16A 2.49 [{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z
N3⋯H15A 2.56 −1 + x, y, z
H8⋯O24 2.07 x, 1 − y, [{1\over 2}] + z
H19B⋯H22A 2.58 x, y, z
H22C⋯H21A 2.31 x, 1 − y, −[{1\over 2}] + z
[Figure 7]
Figure 7
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and those delineated into (b) H⋯H, (c) S⋯H/H⋯S, (d) C⋯H/H⋯C and (e) N⋯H/H⋯N inter­actions. [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

A database search was carried out using ConQUEST (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), part of the software for version 2023.2.0 of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). A search for the keyword `hydrazinecarbo­thio­amide' resulted in nearly 600 hits. A search for the structural bis-hydrazinecarbo­thio­amide motif without considering hydrogen atoms narrowed that down to 45. For a more detailed analysis, four of those compounds were chosen as relatively more closely related to the title compound, yet with a variation of the substituent(s) numbers and position on the bis-hydrazinecarbo­thio­amide backbone. These are: (E,E)-N,N-dimethyl-2-{3-[(methyl­carbamo­thio­yl)hydrazono]butan-2-yl­idene}hydrazinecarbo­thio­amide (CD refcode ERABIJ; Paterson et al., 2010[Paterson, B. M., Karas, J. A., Scanlon, D. B., White, J. M. & Donnelly, P. S. (2010). Inorg. Chem. 49, 1884-1893.]), diacetyl-2-(4-N-ethyl-3-thio­semicarbazone)-3-(4-N-allyl-3-thio­semicarbazone) di­methyl­sulfoxide solvate (JEXXOA; Holland et al., 2007[Holland, J. P., Aigbirhio, F. I., Betts, H. M., Bonnitcha, P. D., Burke, P., Christlieb, M., Churchill, G. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Green, J. C., Peach, J. M., Vasudevan, S. R. & Warren, J. E. (2007). Inorg. Chem. 46, 465-485.]), 2-keto-3-eth­oxy­butyraldehyde­bis­(thio­semicarbazone) (KEBASC10; Gabe et al., 1969[Gabe, E. J., Taylor, M. R., Glusker, J. P., Minkin, J. A. & Patterson, A. L. (1969). Acta Cryst. B25, 1620-1631.]) and N,1-dimethyl-2-{3-[2-(methyl­carbamo­thio­yl)hydrazinyl­idene]butan-2-yl­idene}hydrazine-1-carbo­thio­amide (RECKAP; Alonso et al., 2022[Alonso, L., Burón, R., López-Torres, E. & Mendiola, M. A. (2022). Crystals, 12, 310. https://doi. org/10.3390/cryst12030310]).

In the crystal of ERABIJ (monoclinic space group: P21/c, Z = 4), the mol­ecule adopts an (E, E)-configuration about the imine double bonds. The arm bearing a dimethyl substituent has a slightly shorter C—S [1.6802 (19) Å] bond length and a longer C—N [1.341 (2) Å] bond length than the arm with a single methyl substituent [1.693 (2) and 1.323 (3) Å, respectively]. These bond lengths indicate that there is some extensive delocalization throughout the mol­ecule while one tautomeric form still dominates.

In the crystal of JEXXOA (monoclinic space group: P21/c, Z = 2), the unsymmetrical bis­(thio­semicarbazone) lies on a crystallographic center of inversion. The carbon–carbon bond length between C5 and C6 is 1.478 (3) Å, which is exactly the same as the average bond length expected for a single bond between two sp2-hybridized carbon atoms. Other bond lengths are indicative of the presence of a conjugated system here as well.

In the crystal of KEBASC10 (monoclinic space group: P21/c, Z = 8), there are two mol­ecules per asymmetric unit. The bis-hydrazinecarbo­thio­amide motif is outstretched (i.e. not bent) and extends from one sulfur atom to the other as head and tail atoms. The mol­ecule is approximately planar except for the side chain. The bond distances and angles are very similar in the two mol­ecules of the asymmetric unit. There is an intra­molecular N—H⋯O hydrogen bond, which stabilizes the mol­ecular structure, similar to what is observed in the title compound. The packing of the mol­ecule seems dominated by the formation of N—H⋯S hydrogen bonds. There is also one very short C—H⋯S inter­molecular distance between the two mol­ecules in the asymmetric unit, which may be strong enough to cause some distortion, in one mol­ecule more than in the other. The tendency of mol­ecules that are crystallographically independent but have opposite absolute configurations to associate may explain why they have co-crystallized in this case and why there are, hence, two independent mol­ecules in the asymmetric unit.

In the crystal of RECKAP (triclinic space group: P[\overline{1}], Z = 2), the compound is in the thione form yet resonant, which is supported by the C—S bond distances, which are inter­mediate between those of single and double bonds (1.82 and 1.56 Å, respectively) and the presence of the hydrazinic hydrogen H2. The azomethine bonds both have a length of 1.29 Å, which is in accordance with double bonds. The N—N bonds are both shorter than 1.44 Å, which agrees well with those of similar thio­semicarbazones. The two arms of the mol­ecule adopt the E configuration with respect to the central C3—C4 single bond and both azomethine nitro­gen atoms N3 and N4 are in an E configuration relative to the thione sulfur atoms. The ligand is not planar and the two arms form an angle of 73.51°. The mol­ecules are held together in the crystal through an extended network of inter­molecular hydrogen bonds involving the amine nitro­gen atoms N1 and N6 and the sulfur atoms.

All the mol­ecules discussed here, including the title compound, adopt an E configuration of the hydrazine moieties attached to the central C—C bond. The differences in substitution do not affect this. However, the latter gives rise to a variation in the inter­molecular inter­actions and can also result in distinct mol­ecular shapes from the more common (almost) planar arrangement of the bis-hydrazinecarbo­thio­amide motif to a substantial twisting to nearly perpendicular.

5. Synthesis and crystallization

Hydrazinecarbo­thio­amide (0.380 g, 6.25 mmol) and 2-chloro-2-(di­eth­oxy­meth­yl)-3-phenyl­oxirane (1.600 g, 6.25 mmol) in 20 mL of methanol was refluxed for 2 h. After complete dissolution of hydrazinecarbo­thio­amide, the mixture was stirred at room temperature for 24 h. The progress of the reaction was monitored by TLC in the system 9:1 chloro­form:methanol Rf = 0.53. After completion of the reaction, the solvent was evaporated. The title compound was isolated by column chromatography in a 20:1 chloro­form:methanol Rf = 0.17 system. The compound was obtained as a white solid in a yield of 0.689 g (34%); m.p. 421–423 K (with decomposition). Analysis calculated for C12H16N6OS2 (M = 324.42) C 44.43, H 4.97, N 25.91; found: C 44.35, H 4.90, N 25.94. 1H NMR (300 MHz, DMSO-d6) δ 3.52 (3H, CH3), 6.35 (1H, CH), 7.37–7.45 (5H, Ar), 8,15–8.68 (2H, NH), 10.74 (2H, NH2), 10.80 (s, 2H, NH2). 13C NMR (200 MHz, DMSO-d6) δ 57.13, 78.52, 126.22, 128.45, 136.79, 138.92, 144.20, 177.67, 178.18. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the DMF:methanol solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C12(C12A)–C17(C17A) atoms in the C12–C17 phenyl ring are disordered over two sites with occupancies of 0.57 (4) and 0.43 (4), respectively. The N-bound hydrogen atoms were located in difference maps [N1—H1A = 0.92 (2), N1—H1B = 0.92 (2), N3—H3 = 0.90 (2), N8—H8 = 0.88 (2), N10—H10A = 0.91 (2) and N10—H10B = 0.90 (2) Å] and refined by constraining the N—H distances with SADI. All carbon-bound hydrogen atoms were positioned geometrically (C—H = 0.95–1.00 Å) and were included in the refinement in the riding-model approximation with Uiso(H) = 1.2 or 1.5Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C12H16N6OS2·C3H7NO
Mr 397.52
Crystal system, space group Monoclinic, Cc
Temperature (K) 100
a, b, c (Å) 8.4573 (1), 23.5853 (3), 11.0072 (1)
β (°) 111.749 (2)
V3) 2039.29 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.57
Crystal size (mm) 0.32 × 0.12 × 0.02
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO 1.171.42.91a. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.658, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11141, 2776, 2751
Rint 0.030
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.07
No. of reflections 2776
No. of parameters 317
No. of restraints 377
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.27
Absolute structure Classical Flack method preferred over Parsons because s.u. lower
Absolute structure parameter 0.000 (16)
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO 1.171.42.91a. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2019/1 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.42.91a (Rigaku OD, 2023); cell refinement: CrysAlis PRO 1.171.42.91a (Rigaku OD, 2023); data reduction: CrysAlis PRO 1.171.42.91a (Rigaku OD, 2023); program(s) used to solve structure: SHELXT2019/1 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/1 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

\ (2Z,2'E)-2,2'-(3-Methoxy-3-phenylpropane-1,2-diylidene)\ bis(2-methylhydrazine-1-carbothioamide) dimethylformamide monosolvate top
Crystal data top
C12H16N6OS2·C3H7NOF(000) = 840
Mr = 397.52Dx = 1.295 Mg m3
Monoclinic, CcCu Kα radiation, λ = 1.54184 Å
a = 8.4573 (1) ÅCell parameters from 9940 reflections
b = 23.5853 (3) Åθ = 3.7–77.6°
c = 11.0072 (1) ŵ = 2.57 mm1
β = 111.749 (2)°T = 100 K
V = 2039.29 (5) Å3Plate, colourless
Z = 40.32 × 0.12 × 0.02 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
2776 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2751 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
ω scansθmax = 77.8°, θmin = 3.8°
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2023)
h = 1010
Tmin = 0.658, Tmax = 1.000k = 2929
11141 measured reflectionsl = 913
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0653P)2 + 0.7217P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.30 e Å3
2776 reflectionsΔρmin = 0.27 e Å3
317 parametersAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower
377 restraintsAbsolute structure parameter: 0.000 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S20.28482 (9)0.88049 (2)0.35678 (8)0.02715 (16)
S90.62361 (9)0.43859 (2)0.67836 (8)0.02788 (17)
O180.3029 (2)0.69867 (7)0.22627 (17)0.0208 (4)
N10.3182 (3)0.82853 (9)0.5810 (2)0.0250 (4)
H1A0.321 (5)0.7946 (11)0.623 (4)0.035 (10)*
H1B0.277 (5)0.8600 (14)0.609 (4)0.050 (12)*
N30.3551 (3)0.77463 (9)0.4201 (2)0.0193 (4)
H30.338 (4)0.7707 (16)0.335 (2)0.030 (9)*
N40.3832 (3)0.72789 (9)0.4985 (2)0.0194 (4)
N70.5105 (3)0.58678 (9)0.5112 (2)0.0206 (4)
N80.5322 (3)0.54302 (9)0.5966 (2)0.0237 (4)
H80.494 (4)0.5441 (15)0.660 (3)0.025 (8)*
N100.6502 (3)0.49254 (10)0.4741 (3)0.0304 (5)
H10A0.637 (4)0.5197 (13)0.412 (3)0.028 (8)*
H10B0.689 (5)0.4610 (13)0.447 (4)0.042 (10)*
C20.3196 (3)0.82596 (10)0.4617 (3)0.0196 (5)
C50.4275 (3)0.68202 (10)0.4549 (2)0.0178 (5)
C60.4552 (3)0.63348 (11)0.5415 (3)0.0211 (5)
H60.4328450.6361400.6197430.025*
C90.6017 (3)0.49391 (11)0.5749 (3)0.0245 (5)
C110.4518 (3)0.67600 (10)0.3245 (2)0.0180 (4)
H110.4628140.6349480.3063110.022*
C120.6115 (14)0.7087 (7)0.3235 (18)0.017 (2)0.57 (4)
C130.7717 (16)0.6857 (6)0.3961 (17)0.019 (2)0.57 (4)
H130.7810400.6504780.4400530.023*0.57 (4)
C140.9181 (14)0.7156 (8)0.4026 (14)0.025 (2)0.57 (4)
H141.0277770.7007270.4513500.030*0.57 (4)
C150.9025 (17)0.7670 (7)0.3378 (13)0.024 (2)0.57 (4)
H151.0016900.7876160.3439770.029*0.57 (4)
C160.7452 (17)0.7882 (6)0.2650 (14)0.0204 (19)0.57 (4)
H160.7363840.8225360.2178430.025*0.57 (4)
C170.5977 (16)0.7599 (7)0.2590 (16)0.0155 (19)0.57 (4)
H170.4889280.7756720.2112650.019*0.57 (4)
C12A0.618 (2)0.7024 (9)0.339 (2)0.017 (3)0.43 (4)
C13A0.771 (2)0.6743 (9)0.411 (2)0.022 (3)0.43 (4)
H13A0.7697800.6391610.4529010.026*0.43 (4)
C14A0.9259 (19)0.6998 (9)0.4195 (19)0.023 (2)0.43 (4)
H14A1.0303130.6813090.4673940.027*0.43 (4)
C15A0.9282 (19)0.7516 (9)0.3588 (17)0.020 (2)0.43 (4)
H15A1.0337080.7679840.3652630.025*0.43 (4)
C16A0.780 (2)0.7788 (8)0.290 (2)0.023 (3)0.43 (4)
H16A0.7813560.8146710.2515210.028*0.43 (4)
C17A0.625 (2)0.7534 (9)0.277 (2)0.021 (3)0.43 (4)
H17A0.5212000.7714770.2254990.025*0.43 (4)
C190.2808 (3)0.67848 (12)0.0984 (3)0.0257 (5)
H19A0.1913390.7005240.0327150.039*
H19B0.2480380.6383910.0910070.039*
H19C0.3877900.6826810.0840460.039*
O240.2984 (3)0.43619 (10)0.2226 (3)0.0449 (6)
N200.1627 (4)0.49731 (13)0.3120 (3)0.0405 (6)
C210.0784 (5)0.50587 (19)0.4044 (5)0.0551 (10)
H21A0.0757160.4699850.4484880.083*
H21B0.0382640.5191220.3574180.083*
H21C0.1409920.5342510.4694630.083*
C220.1605 (5)0.54375 (17)0.2284 (4)0.0503 (9)
H22A0.2590760.5411760.2021530.075*
H22B0.1652690.5794670.2750690.075*
H22C0.0555710.5424990.1503770.075*
C230.2273 (5)0.44708 (17)0.3000 (4)0.0456 (8)
H230.2181150.4172830.3550740.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0435 (3)0.0159 (3)0.0262 (3)0.0076 (2)0.0178 (3)0.0043 (2)
S90.0488 (3)0.0145 (3)0.0281 (3)0.0061 (2)0.0234 (3)0.0048 (2)
O180.0219 (7)0.0219 (8)0.0180 (9)0.0023 (7)0.0067 (6)0.0003 (7)
N10.0383 (11)0.0165 (9)0.0250 (11)0.0039 (8)0.0172 (9)0.0016 (9)
N30.0264 (9)0.0145 (9)0.0198 (10)0.0028 (7)0.0117 (8)0.0030 (8)
N40.0233 (8)0.0140 (9)0.0230 (10)0.0021 (7)0.0112 (8)0.0016 (8)
N70.0298 (9)0.0144 (9)0.0200 (10)0.0022 (8)0.0120 (8)0.0017 (8)
N80.0390 (11)0.0148 (10)0.0236 (11)0.0044 (9)0.0191 (9)0.0029 (9)
N100.0538 (14)0.0157 (10)0.0324 (13)0.0092 (10)0.0287 (11)0.0052 (9)
C20.0205 (9)0.0158 (11)0.0232 (12)0.0015 (8)0.0090 (9)0.0009 (9)
C50.0221 (10)0.0135 (10)0.0192 (11)0.0007 (8)0.0093 (9)0.0007 (8)
C60.0307 (11)0.0158 (11)0.0208 (11)0.0010 (9)0.0141 (9)0.0012 (10)
C90.0345 (12)0.0169 (12)0.0248 (12)0.0016 (9)0.0141 (10)0.0011 (10)
C110.0199 (9)0.0165 (10)0.0186 (11)0.0023 (8)0.0081 (8)0.0007 (9)
C120.014 (3)0.023 (5)0.013 (4)0.002 (3)0.005 (2)0.002 (3)
C130.028 (3)0.015 (4)0.017 (4)0.001 (2)0.011 (2)0.007 (3)
C140.020 (2)0.031 (5)0.023 (4)0.004 (3)0.007 (2)0.004 (4)
C150.025 (4)0.025 (5)0.024 (4)0.000 (3)0.011 (3)0.003 (3)
C160.025 (4)0.021 (4)0.017 (4)0.002 (3)0.009 (3)0.002 (3)
C170.019 (3)0.016 (4)0.013 (4)0.000 (3)0.008 (3)0.004 (2)
C12A0.033 (5)0.013 (4)0.011 (5)0.004 (3)0.014 (3)0.000 (3)
C13A0.019 (3)0.028 (6)0.020 (5)0.004 (3)0.008 (3)0.005 (4)
C14A0.023 (3)0.025 (6)0.021 (5)0.003 (4)0.008 (3)0.004 (4)
C15A0.018 (3)0.022 (6)0.020 (5)0.002 (4)0.006 (3)0.004 (4)
C16A0.030 (5)0.021 (5)0.018 (5)0.004 (4)0.009 (4)0.003 (4)
C17A0.022 (4)0.020 (5)0.019 (6)0.008 (4)0.006 (4)0.001 (4)
C190.0297 (11)0.0270 (13)0.0184 (12)0.0000 (10)0.0065 (10)0.0003 (10)
O240.0539 (13)0.0453 (14)0.0487 (15)0.0031 (11)0.0343 (12)0.0024 (11)
N200.0429 (13)0.0399 (15)0.0428 (16)0.0030 (11)0.0206 (12)0.0034 (13)
C210.056 (2)0.060 (2)0.060 (3)0.0086 (19)0.0335 (19)0.013 (2)
C220.0547 (19)0.0407 (18)0.059 (2)0.0030 (16)0.0248 (17)0.0019 (18)
C230.0524 (18)0.0432 (18)0.050 (2)0.0031 (15)0.0299 (17)0.0010 (16)
Geometric parameters (Å, º) top
S2—C21.680 (3)C15—C161.368 (9)
S9—C91.697 (3)C15—H150.9500
O18—C111.426 (3)C16—C171.394 (9)
O18—C191.430 (3)C16—H160.9500
N1—C21.319 (4)C17—H170.9500
N1—H1A0.92 (2)C12A—C17A1.390 (14)
N1—H1B0.92 (2)C12A—C13A1.407 (13)
N3—N41.365 (3)C13A—C14A1.413 (13)
N3—C21.366 (3)C13A—H13A0.9500
N3—H30.90 (2)C14A—C15A1.398 (12)
N4—C51.294 (3)C14A—H14A0.9500
N7—C61.288 (3)C15A—C16A1.361 (12)
N7—N81.362 (3)C15A—H15A0.9500
N8—C91.360 (3)C16A—C17A1.401 (13)
N8—H80.88 (2)C16A—H16A0.9500
N10—C91.318 (4)C17A—H17A0.9500
N10—H10A0.91 (2)C19—H19A0.9800
N10—H10B0.90 (2)C19—H19B0.9800
C5—C61.452 (3)C19—H19C0.9800
C5—C111.530 (3)O24—C231.238 (4)
C6—H60.9500N20—C231.332 (5)
C11—C12A1.492 (19)N20—C221.426 (5)
C11—C121.558 (13)N20—C211.456 (5)
C11—H111.0000C21—H21A0.9800
C12—C171.384 (10)C21—H21B0.9800
C12—C131.402 (10)C21—H21C0.9800
C13—C141.404 (10)C22—H22A0.9800
C13—H130.9500C22—H22B0.9800
C14—C151.387 (9)C22—H22C0.9800
C14—H140.9500C23—H230.9500
C11—O18—C19112.21 (18)C15—C16—H16119.6
C2—N1—H1A117 (3)C17—C16—H16119.6
C2—N1—H1B121 (3)C12—C17—C16119.3 (8)
H1A—N1—H1B119 (4)C12—C17—H17120.3
N4—N3—C2120.8 (2)C16—C17—H17120.3
N4—N3—H3120 (2)C17A—C12A—C13A119.3 (13)
C2—N3—H3118 (2)C17A—C12A—C11121.0 (13)
C5—N4—N3116.6 (2)C13A—C12A—C11119.7 (13)
C6—N7—N8116.0 (2)C12A—C13A—C14A118.2 (12)
C9—N8—N7118.7 (2)C12A—C13A—H13A120.9
C9—N8—H8119 (2)C14A—C13A—H13A120.9
N7—N8—H8123 (2)C15A—C14A—C13A121.2 (10)
C9—N10—H10A128 (2)C15A—C14A—H14A119.4
C9—N10—H10B124 (3)C13A—C14A—H14A119.4
H10A—N10—H10B107 (4)C16A—C15A—C14A120.2 (10)
N1—C2—N3117.3 (2)C16A—C15A—H15A119.9
N1—C2—S2125.8 (2)C14A—C15A—H15A119.9
N3—C2—S2116.9 (2)C15A—C16A—C17A119.5 (11)
N4—C5—C6114.5 (2)C15A—C16A—H16A120.3
N4—C5—C11125.7 (2)C17A—C16A—H16A120.3
C6—C5—C11119.8 (2)C12A—C17A—C16A121.7 (12)
N7—C6—C5119.3 (2)C12A—C17A—H17A119.2
N7—C6—H6120.3C16A—C17A—H17A119.2
C5—C6—H6120.3O18—C19—H19A109.5
N10—C9—N8117.3 (2)O18—C19—H19B109.5
N10—C9—S9123.8 (2)H19A—C19—H19B109.5
N8—C9—S9118.9 (2)O18—C19—H19C109.5
O18—C11—C12A117.2 (9)H19A—C19—H19C109.5
O18—C11—C5106.77 (19)H19B—C19—H19C109.5
C12A—C11—C5108.1 (10)C23—N20—C22121.8 (3)
O18—C11—C12109.5 (6)C23—N20—C21121.2 (3)
C5—C11—C12112.3 (8)C22—N20—C21116.8 (3)
O18—C11—H11109.4N20—C21—H21A109.5
C5—C11—H11109.4N20—C21—H21B109.5
C12—C11—H11109.4H21A—C21—H21B109.5
C17—C12—C13120.6 (9)N20—C21—H21C109.5
C17—C12—C11121.8 (9)H21A—C21—H21C109.5
C13—C12—C11117.5 (9)H21B—C21—H21C109.5
C12—C13—C14118.9 (8)N20—C22—H22A109.5
C12—C13—H13120.6N20—C22—H22B109.5
C14—C13—H13120.6H22A—C22—H22B109.5
C15—C14—C13119.9 (8)N20—C22—H22C109.5
C15—C14—H14120.1H22A—C22—H22C109.5
C13—C14—H14120.1H22B—C22—H22C109.5
C16—C15—C14120.5 (8)O24—C23—N20125.1 (4)
C16—C15—H15119.8O24—C23—H23117.5
C14—C15—H15119.8N20—C23—H23117.5
C15—C16—C17120.8 (8)
C2—N3—N4—C5175.4 (2)C5—C11—C12—C1373.3 (16)
C6—N7—N8—C9175.4 (2)C17—C12—C13—C140 (3)
N4—N3—C2—N11.7 (3)C11—C12—C13—C14176.8 (14)
N4—N3—C2—S2179.27 (16)C12—C13—C14—C150 (2)
N3—N4—C5—C6179.78 (19)C13—C14—C15—C161.5 (19)
N3—N4—C5—C110.4 (3)C14—C15—C16—C172.8 (19)
N8—N7—C6—C5179.5 (2)C13—C12—C17—C161 (3)
N4—C5—C6—N7175.5 (2)C11—C12—C17—C16178.0 (14)
C11—C5—C6—N74.3 (3)C15—C16—C17—C123 (2)
N7—N8—C9—N102.6 (4)O18—C11—C12A—C17A12 (2)
N7—N8—C9—S9178.22 (17)C5—C11—C12A—C17A109 (2)
C19—O18—C11—C12A79.2 (11)O18—C11—C12A—C13A165.2 (16)
C19—O18—C11—C5159.5 (2)C5—C11—C12A—C13A74 (2)
C19—O18—C11—C1278.8 (8)C17A—C12A—C13A—C14A1 (3)
N4—C5—C11—O1850.3 (3)C11—C12A—C13A—C14A178.2 (18)
C6—C5—C11—O18129.9 (2)C12A—C13A—C14A—C15A0 (3)
N4—C5—C11—C12A76.6 (9)C13A—C14A—C15A—C16A0 (2)
C6—C5—C11—C12A103.2 (9)C14A—C15A—C16A—C17A2 (2)
N4—C5—C11—C1269.6 (6)C13A—C12A—C17A—C16A3 (4)
C6—C5—C11—C12110.1 (6)C11—C12A—C17A—C16A179.8 (19)
O18—C11—C12—C1714.8 (19)C15A—C16A—C17A—C12A4 (3)
C5—C11—C12—C17103.6 (16)C22—N20—C23—O244.0 (6)
O18—C11—C12—C13168.3 (13)C21—N20—C23—O24178.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N40.92 (3)2.27 (4)2.670 (3)106 (3)
N1—H1B···S9i0.92 (4)2.54 (4)3.450 (2)172 (4)
N3—H3···O180.90 (2)2.04 (3)2.694 (3)129 (3)
N8—H8···O24ii0.87 (3)2.07 (4)2.847 (4)149 (3)
N10—H10A···S9iii0.91 (3)2.72 (3)3.570 (3)156 (3)
N10—H10B···S2iv0.91 (4)2.42 (4)3.322 (3)175 (4)
C6—H6···O24ii0.952.543.224 (4)129
C11—H11···N71.002.422.853 (3)105
C11—H11···S9iii1.002.873.706 (2)141
C17—H17···O180.952.452.787 (16)101
C21—H21B···S9v0.982.983.951 (5)171
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y+1, z+1/2; (iii) x, y+1, z1/2; (iv) x+1/2, y1/2, z; (v) x1, y+1, z1/2.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
S2···H10B2.42-1/2 + x, 1/2 + y, z
H16···O242.731/2 + x, 1/2 + y, z
H19A···N32.71-1/2 + x, 3/2 - y, -1/2 + z
S9···H10A2.72x, 1 - y, 1/2 + z
S9···H21B2.981 + x, 1 - y, 1/2 + z
H6···H16A2.49-1/2 + x, 3/2 - y, 1/2 + z
N3···H15A2.56-1 + x, y, z
H8···O242.07x, 1 - y, 1/2 + z
H19B···H22A2.58x, y, z
H22C···H21A2.31x, 1 - y, -1/2 + z
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, FIG, MA and AB; synthesis, AVK, EVS and KIK; X-ray analysis, AIS and ZA; writing (review and editing of the manuscript) FIG, MA and AB; supervision, FIG, MA and AB.

References

First citationAfkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. 2019, 262–270.  Web of Science CSD CrossRef CAS Google Scholar
First citationAlonso, L., Burón, R., López-Torres, E. & Mendiola, M. A. (2022). Crystals, 12, 310. https://doi. org/10.3390/cryst12030310  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Taylor, M. R., Glusker, J. P., Minkin, J. A. & Patterson, A. L. (1969). Acta Cryst. B25, 1620–1631.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019–1031.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. A Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932–3940.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107–111.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112.  Web of Science CSD CrossRef Google Scholar
First citationGuseinov, F. I., Pistsov, M. F., Malinnikov, V. M., Lavrova, O. M., Movsumzade, E. M. & Kustov, L. M. (2020). Mendeleev Commun. 30, 674–675.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuseinov, F. I., Pistsov, M. F., Movsumzade, E. M., Kustov, L. M., Tafeenko, V. A., Chernyshev, V. V., Gurbanov, A. V., Mahmudov, K. T. & Pombeiro, A. J. L. (2017). Crystals, 7, 327.  Web of Science CSD CrossRef Google Scholar
First citationGuseinov, F. N., Burangulova, R. N., Mukhamedzyanova, E. F., Strunin, B. P., Sinyashin, O. G., Litvinov, I. A. & Gubaidullin, A. T. (2006). Chem. Heterocycl. Compd. 42, 943–947.  CrossRef CAS Google Scholar
First citationHolland, J. P., Aigbirhio, F. I., Betts, H. M., Bonnitcha, P. D., Burke, P., Christlieb, M., Churchill, G. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Green, J. C., Peach, J. M., Vasudevan, S. R. & Warren, J. E. (2007). Inorg. Chem. 46, 465–485.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKhalilov, A. N. (2021). Rev. Roum. Chim. 66, 719–723.  Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.  Web of Science CrossRef Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Kuznetsov, M. L., Silva, T. F. S., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2011). J. Phys. Org. Chem. 24, 764–773.  Web of Science CrossRef CAS Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zangrando, E., Bauzá, A., Maniukiewicz, W., Carballo, R., Gurbanov, A. V. & Frontera, A. (2017c). Cryst­EngComm, 19, 3322–3330.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.  Web of Science CSD CrossRef Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772.  Web of Science CSD CrossRef Google Scholar
First citationMahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187–189.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938.  Web of Science CrossRef CAS Google Scholar
First citationMartins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076–4086.  Web of Science CrossRef CAS Google Scholar
First citationPaterson, B. M., Karas, J. A., Scanlon, D. B., White, J. M. & Donnelly, P. S. (2010). Inorg. Chem. 49, 1884–1893.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2023). CrysAlis PRO 1.171.42.91a. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSafarova, A. S., Brito, I., Cisterna, J., Cardenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Krist.-New Cryst. Struct. 234, 1183–1185.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVelásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018–6025.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds