research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 4-azido-2-(3,5-di­methyl­phen­yl)-5-(4-nitro­phen­yl)-2H-1,2,3-triazole

crossmark logo

aOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, bDepartment of Engineering and Applied Sciences, Azerbaijan State University of Economics, M. Mukhtarov 194, Baku AZ1001, Azerbaijan, cPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, dN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, eInstitute of Catalysis and Inorganic Chemistry , 113 H. Javid Ave., AZ1143 Baku, Azerbaijan, fDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Türkiye, gDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and hDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: akkurt@erciyes.edu.tr,, ajaya.bhattarai@mmamc.tu.edu.np

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 7 July 2023; accepted 8 September 2023; online 14 September 2023)

In the title compound, C16H13N7O2, the 3,5-di­methyl­phenyl and 4-nitro­phenyl rings are inclined to the central 2H-1,2,3-triazole ring by 1.80 (7) and 1.79 (7)°, respectively, and to one another by 2.16 (7)°. In the crystal, the mol­ecules are linked by C—H⋯N hydrogen bonds and ππ stacking inter­actions [centroid-to-centroid distances = 3.7295 (9) and 3.7971 (9) Å], forming ribbons along the b-axis direction. These ribbons are connected to each other by weak van der Waals inter­actions and the stability of the crystal structure is ensured. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (31.5%), N⋯H/H⋯N (19.2%), O⋯H/H⋯O (14.5%), N⋯C/C⋯C (10.9%) and C⋯H/H⋯C (10.2%) contacts.

1. Chemical context

Triazoles are used as biological agents for their anti-inflammatory, anti-thrombotic and anti-viral activities (Blass et al., 2006[Blass, B. E., Coburn, K., Lee, W., Fairweather, N., Fluxe, A., Wu, S., Janusz, J. M., Murawsky, M., Fadayel, G. M., Fang, B., Hare, M., Ridgeway, J., White, R., Jackson, C., Djandjighian, L., Hedges, R., Wireko, F. C. & Ritter, A. L. (2006). Bioorg. Med. Chem. Lett. 16, 4629-4632.]; Caliendo et al., 1999[Caliendo, G., Fiorino, F., Grieco, P., Perissutti, E., Santagada, V., Meli, R., Raso, G. M., Zanesco, A. & De Nucci, G. (1999). Eur. J. Med. Chem. 34, 1043-1051.]; Phillips et al., 2009[Phillips, O. A., Udo, E. E., Abdel-Hamid, M. E. & Varghese, R. (2009). Eur. J. Med. Chem. 44, 3217-3227.]). At the same time, 2H-1,2,3-triazoles are effective catalysts (Zhao et al., 2008[Zhao, Y. B., Zhang, L. W., Wu, L. Y., Zhong, X., Li, R. & Ma, J. T. (2008). Tetrahedron Asymmetry, 19, 1352-1355.]; Yan et al., 2006[Yan, Z. Y., Niu, Y. N., Wei, H. L., Wu, L. Y., Zhao, Y. B. & Liang, Y. M. (2006). Tetrahedron Asymmetry, 17, 3288-3293.]; Chandrasekhar et al., 2010[Chandrasekhar, S., Kumar, T. P., Haribabu, K. & Reddy, C. R. (2010). Tetrahedron Asymmetry, 21, 2372-2375.]) and are used as ionic liquids (Yoshida et al., 2012[Yoshida, Y., Takizawa, S. & Sasai, H. (2012). Tetrahedron Asymmetry, 23, 843-851.]) in organic synthesis. It should be noted that many methods for their preparation are quite complicated, which limits the possibilities of studying the biological activity of these compounds and also their use in other fields of science and technology. In general, the development of new synthesis methods for 2H-1,2,3-triazole derivatives has been a constant in the field of organic synthesis. Since the 1,2,3-triazole ring is an integral part of many medicinal preparations, research on their synthesis (Kamijo et al., 2002[Kamijo, S., Jin, T., Huo, Z. & Yamamoto, Y. (2002). Tetrahedron Lett. 43, 9707-9710.]; Liu et al., 2008[Liu, Y., Yan, W., Chen, Y., Petersen, J. L. & Shi, X. (2008). Org. Lett. 10, 5389-5392.]; Ghozlan et al., 2006[Ghozlan, S. A., Abdelhamid, I. A., Ibrahim, H. M. & Elnagdi, M. H. (2006). Arkivoc, 2006, 53-60.]; Kalisiak et al., 2008[Kalisiak, J., Sharpless, K. B. & Fokin, V. V. (2008). Org. Lett. 10, 3171-3174.]; Koszytkowska-Stawińska et al., 2012[Koszytkowska-Stawińska, M., Mironiuk-Puchalska, E. & Rowicki, T. (2012). Tetrahedron, 68, 214-225.]) and biological activities is constantly increasing (Ferreira et al., 2013[Ferreira, V. F., da Rocha, D. R., da Silva, F. C., Ferreira, P. G., Boechat, N. A. & Magalhães, J. L. (2013). Expert Opin. Ther. Pat. 23, 319-331.]; Tan et al., 2002[Tan, S. L., Pause, A., Shi, Y. & Sonenberg, N. (2002). Nat. Rev. Drug Discov. 1, 867-881.]; Prusiner & Sundaralingam, 1973[Prusiner, P. T. & Sundaralingam, M. (1973). Nature New Biol. 244, 116-118.]; Toniolo et al., 2017[Toniolo, N., Taveri, G., Hurle, K., Roether, J., Ercole, P., Dlouhy, I. & Boccaccini, A. R. (2017). Journal of Ceramic Science and Technology, 8, 411-420.]; Caliendo et al., 1999[Caliendo, G., Fiorino, F., Grieco, P., Perissutti, E., Santagada, V., Meli, R., Raso, G. M., Zanesco, A. & De Nucci, G. (1999). Eur. J. Med. Chem. 34, 1043-1051.]; Blass et al., 2006[Blass, B. E., Coburn, K., Lee, W., Fairweather, N., Fluxe, A., Wu, S., Janusz, J. M., Murawsky, M., Fadayel, G. M., Fang, B., Hare, M., Ridgeway, J., White, R., Jackson, C., Djandjighian, L., Hedges, R., Wireko, F. C. & Ritter, A. L. (2006). Bioorg. Med. Chem. Lett. 16, 4629-4632.]; von Mutius et al., 2012[Mutius, E. von & Drazen, J. M. (2012). N. Engl. J. Med. 366, 827-834.]; Ferreira et al., 2013[Ferreira, V. F., da Rocha, D. R., da Silva, F. C., Ferreira, P. G., Boechat, N. A. & Magalhães, J. L. (2013). Expert Opin. Ther. Pat. 23, 319-331.]). In particular, we can mention the synthesis of new 1,2,3-triazole-based drugs against tuberculosis (Sanna et al., 2000[Sanna, P., Carta, A. & Nikookar, M. E. (2000). Eur. J. Med. Chem. 35, 535-543.]). In this regard, the synthesis of 4-azido-2H-1,2,3-triazole derivatives (Tsyrenova et al., 2021[Tsyrenova, B. D., Khrustalev, V. N. & Nenajdenko, V. G. (2021). Org. Biomol. Chem. 19, 8140-8152.]) from the reaction of di­chlorodi­aza­dienes with NaN3 is a relevant issue. In the following scheme (Fig. 1[link]), on the basis of the synthesis of (E)-1-(2,2-di­chloro-1-(4-nitro­phen­yl)vin­yl)-2-(3,5-di­methyl­phen­yl) diazene obtained from the reaction of N-substituted hydrazone (Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. (2018). Dyes Pigments, 159, 135-141.]; Nenajdenko et al., 2020[Nenajdenko, V. G., Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2020). Molecules, 25, 5013.]; Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. (2018). Dyes Pigments, 150, 377-381.], 2019a[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. (2019a). CrystEngComm, 21, 5032-5038.],b[Shikhaliyev, N. G., Suleymanova, G. T., İsrayilova, A. A., Ganbarov, K. G., Babayeva, G. V., Garazadeh, K. A., Mammadova, G. Z. & Nenajdenko, V. G. (2019b). Organic Chemistry, (part vi), 64-73.], 2021a[Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Tsyrenova, B. D., Nenajdenko, V. G., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2021a). Mendeleev Commun. 31, 191-193.],b[Shikhaliyev, N. G., Maharramov, A. M., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Shikhaliyeva, I. M., Babazade, A. A. & Nenajdenko, V. G. (2021b). Organic Chemistry, (part iii), 67-75.]) and CCl4 with NaN3, 4-azido-2-(3,5-di­methyl­phen­yl)-5-(4-nitro­phen­yl)-2H-1,2,3-triazole was synthesized and its structure was confirmed by single-crystal X-ray analysis.

[Scheme 1]
[Figure 1]
Figure 1
Reaction scheme for the synthesis of the title compound.

2. Structural commentary

The mol­ecule of the title compound, (Fig. 2[link]), except for the methyl H atoms, can be described as essentially planar [maximum deviations = 0.060 (1) Å for C15 and −0.076 (1) Å for N6] with the substituents rotated slightly around the triazole centre. The planar 3,5-di­methyl­phenyl (C6–C11) and 4-nitro­phenyl (C14–C19) rings are inclined to the central 2H-1,2,3-triazole ring (N1–N3/C4/C5) by 1.80 (7) and 1.79 (7)°, respectively, and to one another by 2.16 (7)°. The nitro group is co-planar with the benzene ring (C14–C19) to which it is connected [torsion angles O1—N7—C17—C16 = 0.4 (2)° and O2—N7—C17—C16 = −179.18 (12)°]. The azido group (–N3=N4+=N5) is almost co-planar with the central 2H-1,2,3-triazole ring to which it is connected [N6—N5—N4 = 171.56 (14)° and torsion angles N5—N4—C4—N3 = −1.69 (19)° and N5—N4—C4—C5 = 177.54 (13)°].

[Figure 2]
Figure 2
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, the mol­ecules are linked by C—H⋯N hydrogen bonds and ππ stacking inter­actions [Cg1⋯Cg2i = 3.7295 (9) Å; slippage = 1.489 Å and Cg2⋯Cg3ii = 3.7971 (9) Å; slippage = 1.783 Å; symmetry codes: (i) −x + 1, −y, −z + 1, (ii) −x + 1, −y + 1, −z + 1; Cg1, Cg2 and Cg3 are the centroids of the 2H-1,2,3-triazole (N1–N3/C4/C5), 3,5-di­methyl­phenyl (C6–C11) and 4-nitro­phenyl (C14–C19) rings, respectively], forming ribbons along the b-axis direction (Tables 1[link] and 2[link]; Fig. 3[link]). These ribbons are connected to each other by weak van der Waals inter­actions and the stability of the crystal structure is ensured.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯N6i 0.98 2.61 3.570 (2) 166
Symmetry code: (i) [-x+1, -y, -z+1].

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

O1⋯C12 3.36 x, 1 + y, 1 + z
N5⋯O1 2.98 1 − x, 1 − y, 2 − z
H13A⋯O2 2.90 1 − x, 1 − y, 1 − z
H7⋯H13A 2.59 −1 + x, y, z
H19⋯H18 2.37 x, 1 − y, 1 − z
H12A⋯N6 2.61 1 − x, −y, 1 − z
H13C⋯H11 2.51 2 − x, −y, 1 − z
H15⋯N6 2.75 2 − x, 1 − y, 2 − z
H12A⋯C12 2.93 x, −y, −z
[Figure 3]
Figure 3
The crystal packing of the title compound viewed along the a-axis with inter­molecular C—H⋯N contacts and ππ stacking inter­actions shown as dashed lines.

In order to investigate the inter­molecular inter­actions in a visual manner, a Hirshfeld surface analysis was performed using CrystalExplorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The bright-red spots on the Hirshfeld surface mapped over dnorm (Fig. 4[link]) indicate the presence of C—H⋯N inter­actions. The fingerprint plots (Fig. 5[link]) are given for all contacts, and those delineated into H⋯H (31.5%), N⋯H/H⋯N (19.2%), O⋯H/H⋯O (14.5%), N⋯C/C⋯N (10.9%), C⋯H/H⋯C (10.2%), C⋯C (5.2%), O⋯N/N⋯O (4.0%), O⋯C/C⋯O (2.4%) and N⋯N (2.1%). The most important contributions to the crystal packing are H⋯H and N⋯H/H⋯N contacts.

[Figure 4]
Figure 4
(a) Front and (b) back views of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm.
[Figure 5]
Figure 5
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) N⋯H/H⋯N, (d) O⋯H/H⋯O, (e) N⋯C/C⋯N and (e) C⋯H/H⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

The ten most similar compounds found in a search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 2H-1,2,3-triazole group are JADSEP (Canseco-González et al., 2015[Canseco-González, D., García, J. J. & Flores-Alamo, M. (2015). Acta Cryst. E71, o1041-o1042.]), JELTEC (Zukerman-Schpector et al., 2017[Zukerman-Schpector, J., Dallasta Pedroso, S., Sousa Madureira, L., Weber Paixão, M., Ali, A. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1716-1720.]), HUYTEC (Haslinger et al., 2015[Haslinger, S., Laus, G., Wurst, K. & Schottenberger, H. (2015). Acta Cryst. E71, o945-o946.]), FEVLIE, FEVLOK, FEVLUQ, FEVMAX, FEVMEB and FEVMOL (Farrán et al., 2018[Farrán, M. Á., Bonet, M. Á., Claramunt, R. M., Torralba, M. C., Alkorta, I. & Elguero, J. (2018). Acta Cryst. C74, 513-522.]) and SECQUO (Altimari et al., 2012[Altimari, J. M., Healy, P. C. & Henderson, L. C. (2012). Acta Cryst. E68, o3159.]).

In the crystal of JADSEP, mol­ecules are linked via C—H⋯I hydrogen bonds, forming slabs parallel to the ab plane. Within the slabs there are weak ππ inter­actions present involving the mesityl and phenyl rings. In the crystal of JELTEC, the three-dimensional packing is stabilized by a combination of methyl­ene-C—H⋯O, methyl­ene-C—H⋯π, C—H⋯π and nitro-O⋯π (nitro­benzene) inter­actions, along with weak π (triazol­yl)–π (nitro­benzene) contacts. In the crystal of HUYTEC, the water mol­ecules are connected into [010] chains by O—H⋯O hydrogen bonds, while O—H⋯N hydrogen bonds connect the water mol­ecules to the organic mol­ecules, generating corrugated (100) sheets. In the crystals of FEVLIE, FEVLOK, FEVLUQ, FEVMAX, FEVMEB and FEVMOL, there are no Car—H⋯F—C intra­molecular contacts. If the aryl groups were coplanar with the triazole ring, the C—F and the C—H atoms would be too close. Thus, the steric effect is more efficient than the weak hydrogen bond. Only compound FEVMOL clearly shows a hydrogen bond (O—H⋯N). In the crystal of SECQUO, the mol­ecules pack in a head-to-tail arrangement along the a-axis direction with closest inter-centroid distances between the triazole rings of 3.7372 (12) Å.

5. Synthesis and crystallization

The title compound was synthesized according to a literature protocol (Tsyrenova et al., 2021[Tsyrenova, B. D., Khrustalev, V. N. & Nenajdenko, V. G. (2021). Org. Biomol. Chem. 19, 8140-8152.]). A 20 ml screw-neck vial was charged with DMSO (20 ml), (E)-1-[2,2-di­chloro-1-(4-nitro­phen­yl)vin­yl]-2-(3,5-di­methyl­phen­yl)diazene (350 mg, 1 mmol) and sodium azide (NaN3; 390 mq; 3 mmol). After 1–3 h (until TLC analysis showed complete consumption of the corresponding triazole), the reaction mixture was poured into a 0.01 M solution of HCl (100 ml, pH = 2–3), and extracted with di­chloro­methane (3 × 20 ml). The combined organic phase was washed with water (3 × 50 ml), brine (30 ml), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (v/v: 3/1–1/1). Red solid (yield 75%); m.p. 375 K. Analysis calculated for C16H13N7O2 (M = 335.33): 1H NMR (300 MHz, chloro­form-d) δ 8.84 (s, 1H), 8.40–8.27 (m, 1H), 8.20 (d, J = 8.2 Hz, 1H), 7.68 (s, 2H), 7.62 (t, J = 8.0 Hz, 1H), 7.02 (s, 1H), 2.44 (s, 6H). 13C NMR (75 MHz, CDCl3) δ 143.9, 134.7, 134.4, 130.1, 127.3, 126.1, 125.0, 118.3, 116.5, 111.4, 16.8. The compound was dissolved in di­chloro­methane and then left at room temperature for slow evaporation; red crystal of the title compound suitable for X-rays started to form after ca 2 d.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically and allowed to ride on their parent atoms (C—H = 0.95–0.98 Å) with Uiso(H) = 1.2 or 1.5Ueq(C). Owing to poor agreement between observed and calculated intensities, sixteen outliers (6 [\overline{10}] 1, [\overline{5}] 12 0, [\overline{7}] 11 0, [\overline{6}] 12 1, 6 [\overline{12}] 1, 7 [\overline{11}] 1, 5 [\overline{10}] 1, [\overline{2}] 2 6, 2 [\overline{1}] 1, 1 1 4, [\overline{2}] 4 1, [\overline{1}] 1 1, 0 2 0, [\overline{2}] 1 2, [\overline{1}] 4 4, 2 0 5) were omitted during the final refinement cycle.

Table 3
Experimental details

Crystal data
Chemical formula C16H13N7O2
Mr 335.33
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.4400 (8), 9.920 (1), 11.5200 (13)
α, β, γ (°) 93.071 (9), 105.349 (10), 108.879 (11)
V3) 766.71 (16)
Z 2
Radiation type Synchrotron, λ = 0.79313 Å
μ (mm−1) 0.13
Crystal size (mm) 0.09 × 0.05 × 0.03
 
Data collection
Diffractometer Rayonix SX165 CCD
Absorption correction Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.])
Tmin, Tmax 0.969, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 13293, 3466, 2976
Rint 0.025
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.133, 1.08
No. of reflections 3466
No. of parameters 229
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.22
Computer programs: Marccd (Doyle, 2011[Doyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, IL 60201, USA.]), iMosflm (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: Marccd (Doyle, 2011); cell refinement: iMosflm (Battye et al., 2011); data reduction: iMosflm (Battye et al., 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

4-Azido-2-(3,5-dimethylphenyl)-5-(4-nitrophenyl)-2H-1,2,3-triazole top
Crystal data top
C16H13N7O2Z = 2
Mr = 335.33F(000) = 348
Triclinic, P1Dx = 1.452 Mg m3
a = 7.4400 (8) ÅSynchrotron radiation, λ = 0.79313 Å
b = 9.920 (1) ÅCell parameters from 1000 reflections
c = 11.5200 (13) Åθ = 2.1–28.0°
α = 93.071 (9)°µ = 0.13 mm1
β = 105.349 (10)°T = 100 K
γ = 108.879 (11)°Prism, red
V = 766.71 (16) Å30.09 × 0.05 × 0.03 mm
Data collection top
Rayonix SX165 CCD
diffractometer
2976 reflections with I > 2σ(I)
/f scanRint = 0.025
Absorption correction: multi-scan
(SCALA; Evans, 2006)
θmax = 31.0°, θmin = 2.1°
Tmin = 0.969, Tmax = 0.990h = 99
13293 measured reflectionsk = 1212
3466 independent reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0764P)2 + 0.1976P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3466 reflectionsΔρmax = 0.27 e Å3
229 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.074 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.18207 (18)0.76197 (12)0.92289 (10)0.0446 (3)
O20.03369 (17)0.69879 (12)0.74319 (11)0.0423 (3)
N10.47322 (16)0.30620 (12)0.54670 (10)0.0295 (3)
N20.59776 (16)0.23870 (12)0.53829 (10)0.0280 (3)
N30.74669 (16)0.25675 (12)0.64053 (10)0.0295 (3)
N40.83239 (17)0.38805 (13)0.84246 (10)0.0326 (3)
N50.96905 (17)0.34031 (13)0.87091 (10)0.0332 (3)
N61.10029 (19)0.30585 (14)0.91074 (12)0.0387 (3)
N70.11839 (19)0.69804 (13)0.81792 (11)0.0343 (3)
C40.71164 (19)0.34137 (14)0.71900 (12)0.0291 (3)
C50.54163 (19)0.37371 (14)0.66201 (12)0.0282 (3)
C60.57495 (19)0.15443 (14)0.42750 (12)0.0279 (3)
C70.41649 (19)0.14311 (14)0.32646 (12)0.0284 (3)
H70.32400.18850.33230.034*
C80.3946 (2)0.06480 (14)0.21667 (12)0.0305 (3)
C90.5333 (2)0.00175 (14)0.21177 (13)0.0325 (3)
H90.51850.05620.13730.039*
C100.6915 (2)0.00999 (15)0.31301 (13)0.0331 (3)
C110.7126 (2)0.08921 (15)0.42256 (13)0.0323 (3)
H110.81960.09840.49290.039*
C120.2269 (2)0.05374 (16)0.10597 (13)0.0361 (3)
H12A0.11860.03850.09520.054*
H12B0.27440.05950.03410.054*
H12C0.17830.13300.11630.054*
C130.8416 (2)0.05959 (18)0.30537 (15)0.0420 (4)
H13A0.97320.01510.32190.063*
H13B0.80260.11370.22360.063*
H13C0.84650.12540.36570.063*
C140.43732 (19)0.45871 (14)0.70518 (12)0.0280 (3)
C150.5043 (2)0.53230 (15)0.82427 (12)0.0319 (3)
H150.62210.52860.87960.038*
C160.4004 (2)0.61052 (15)0.86228 (12)0.0330 (3)
H160.44530.66000.94330.040*
C170.2301 (2)0.61509 (14)0.77992 (12)0.0303 (3)
C180.1596 (2)0.54308 (15)0.66123 (13)0.0326 (3)
H180.04210.54770.60630.039*
C190.2631 (2)0.46465 (15)0.62443 (12)0.0317 (3)
H190.21600.41420.54370.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0571 (7)0.0466 (6)0.0388 (6)0.0239 (5)0.0224 (5)0.0007 (5)
O20.0407 (6)0.0442 (6)0.0509 (6)0.0247 (5)0.0162 (5)0.0061 (5)
N10.0288 (5)0.0328 (6)0.0295 (6)0.0152 (5)0.0077 (4)0.0019 (4)
N20.0263 (5)0.0323 (6)0.0273 (5)0.0144 (4)0.0065 (4)0.0030 (4)
N30.0273 (5)0.0334 (6)0.0283 (6)0.0133 (4)0.0059 (4)0.0041 (4)
N40.0292 (6)0.0376 (6)0.0305 (6)0.0154 (5)0.0050 (5)0.0014 (5)
N50.0331 (6)0.0367 (6)0.0288 (6)0.0134 (5)0.0065 (5)0.0032 (5)
N60.0351 (6)0.0455 (7)0.0364 (6)0.0196 (5)0.0057 (5)0.0058 (5)
N70.0402 (6)0.0317 (6)0.0383 (6)0.0160 (5)0.0193 (5)0.0052 (5)
C40.0276 (6)0.0317 (6)0.0286 (6)0.0123 (5)0.0069 (5)0.0046 (5)
C50.0278 (6)0.0304 (6)0.0272 (6)0.0116 (5)0.0077 (5)0.0035 (5)
C60.0290 (6)0.0288 (6)0.0290 (6)0.0127 (5)0.0106 (5)0.0035 (5)
C70.0268 (6)0.0289 (6)0.0311 (7)0.0117 (5)0.0091 (5)0.0027 (5)
C80.0298 (6)0.0294 (6)0.0320 (7)0.0104 (5)0.0093 (5)0.0026 (5)
C90.0360 (7)0.0306 (6)0.0344 (7)0.0139 (5)0.0143 (6)0.0014 (5)
C100.0342 (7)0.0332 (7)0.0379 (7)0.0167 (6)0.0146 (6)0.0052 (5)
C110.0306 (6)0.0369 (7)0.0334 (7)0.0174 (6)0.0093 (5)0.0058 (5)
C120.0359 (7)0.0384 (7)0.0314 (7)0.0152 (6)0.0049 (6)0.0029 (5)
C130.0411 (8)0.0484 (8)0.0449 (8)0.0268 (7)0.0136 (6)0.0019 (7)
C140.0279 (6)0.0292 (6)0.0273 (6)0.0110 (5)0.0080 (5)0.0031 (5)
C150.0312 (6)0.0357 (7)0.0279 (6)0.0133 (5)0.0056 (5)0.0021 (5)
C160.0366 (7)0.0344 (7)0.0278 (6)0.0131 (6)0.0091 (5)0.0004 (5)
C170.0329 (7)0.0301 (6)0.0324 (7)0.0136 (5)0.0139 (5)0.0038 (5)
C180.0310 (6)0.0366 (7)0.0320 (7)0.0160 (5)0.0075 (5)0.0028 (5)
C190.0319 (7)0.0361 (7)0.0275 (6)0.0159 (6)0.0055 (5)0.0002 (5)
Geometric parameters (Å, º) top
O1—N71.2284 (16)C9—H90.9500
O2—N71.2296 (17)C10—C111.3944 (19)
N1—N21.3261 (15)C10—C131.5085 (19)
N1—C51.3410 (16)C11—H110.9500
N2—N31.3435 (15)C12—H12A0.9800
N2—C61.4268 (17)C12—H12B0.9800
N3—C41.3323 (17)C12—H12C0.9800
N4—N51.2317 (16)C13—H13A0.9800
N4—C41.4242 (17)C13—H13B0.9800
N5—N61.1299 (17)C13—H13C0.9800
N7—C171.4681 (17)C14—C151.3996 (18)
C4—C51.4069 (18)C14—C191.4020 (18)
C5—C141.4640 (18)C15—C161.3866 (19)
C6—C111.3876 (18)C15—H150.9500
C6—C71.3897 (18)C16—C171.383 (2)
C7—C81.3905 (18)C16—H160.9500
C7—H70.9500C17—C181.3886 (19)
C8—C91.4043 (19)C18—C191.3798 (19)
C8—C121.4995 (19)C18—H180.9500
C9—C101.389 (2)C19—H190.9500
N2—N1—C5104.92 (11)C6—C11—H11120.4
N1—N2—N3115.31 (11)C10—C11—H11120.4
N1—N2—C6121.86 (11)C8—C12—H12A109.5
N3—N2—C6122.82 (11)C8—C12—H12B109.5
C4—N3—N2102.74 (11)H12A—C12—H12B109.5
N5—N4—C4113.98 (11)C8—C12—H12C109.5
N6—N5—N4171.56 (14)H12A—C12—H12C109.5
O1—N7—O2123.90 (12)H12B—C12—H12C109.5
O1—N7—C17117.93 (12)C10—C13—H13A109.5
O2—N7—C17118.17 (12)C10—C13—H13B109.5
N3—C4—C5110.21 (11)H13A—C13—H13B109.5
N3—C4—N4122.95 (12)C10—C13—H13C109.5
C5—C4—N4126.83 (12)H13A—C13—H13C109.5
N1—C5—C4106.82 (11)H13B—C13—H13C109.5
N1—C5—C14120.20 (12)C15—C14—C19119.20 (12)
C4—C5—C14132.97 (12)C15—C14—C5122.24 (12)
C11—C6—C7121.96 (12)C19—C14—C5118.56 (12)
C11—C6—N2119.59 (12)C16—C15—C14120.60 (13)
C7—C6—N2118.43 (11)C16—C15—H15119.7
C6—C7—C8119.39 (12)C14—C15—H15119.7
C6—C7—H7120.3C17—C16—C15118.67 (12)
C8—C7—H7120.3C17—C16—H16120.7
C7—C8—C9118.67 (13)C15—C16—H16120.7
C7—C8—C12120.20 (12)C16—C17—C18122.11 (13)
C9—C8—C12121.13 (12)C16—C17—N7119.61 (12)
C10—C9—C8121.71 (13)C18—C17—N7118.28 (12)
C10—C9—H9119.1C19—C18—C17118.84 (13)
C8—C9—H9119.1C19—C18—H18120.6
C9—C10—C11119.17 (13)C17—C18—H18120.6
C9—C10—C13120.99 (13)C18—C19—C14120.58 (12)
C11—C10—C13119.84 (13)C18—C19—H19119.7
C6—C11—C10119.10 (13)C14—C19—H19119.7
C5—N1—N2—N30.26 (15)C8—C9—C10—C110.4 (2)
C5—N1—N2—C6179.58 (11)C8—C9—C10—C13178.68 (13)
N1—N2—N3—C40.38 (15)C7—C6—C11—C100.0 (2)
C6—N2—N3—C4179.70 (12)N2—C6—C11—C10178.46 (12)
N2—N3—C4—C50.34 (14)C9—C10—C11—C60.1 (2)
N2—N3—C4—N4179.00 (12)C13—C10—C11—C6178.98 (13)
N5—N4—C4—N31.69 (19)N1—C5—C14—C15179.28 (12)
N5—N4—C4—C5177.54 (13)C4—C5—C14—C151.9 (2)
N2—N1—C5—C40.03 (14)N1—C5—C14—C191.52 (19)
N2—N1—C5—C14179.08 (11)C4—C5—C14—C19177.31 (14)
N3—C4—C5—N10.21 (15)C19—C14—C15—C160.1 (2)
N4—C4—C5—N1179.10 (12)C5—C14—C15—C16179.32 (12)
N3—C4—C5—C14179.16 (13)C14—C15—C16—C170.4 (2)
N4—C4—C5—C140.1 (2)C15—C16—C17—C180.5 (2)
N1—N2—C6—C11178.22 (12)C15—C16—C17—N7179.59 (12)
N3—N2—C6—C111.1 (2)O1—N7—C17—C160.4 (2)
N1—N2—C6—C70.33 (19)O2—N7—C17—C16179.18 (12)
N3—N2—C6—C7179.60 (11)O1—N7—C17—C18179.69 (12)
C11—C6—C7—C80.3 (2)O2—N7—C17—C180.70 (19)
N2—C6—C7—C8178.25 (12)C16—C17—C18—C190.1 (2)
C6—C7—C8—C90.5 (2)N7—C17—C18—C19179.95 (12)
C6—C7—C8—C12178.79 (12)C17—C18—C19—C140.5 (2)
C7—C8—C9—C100.6 (2)C15—C14—C19—C180.6 (2)
C12—C8—C9—C10178.72 (13)C5—C14—C19—C18179.82 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N10.952.472.7900 (18)100
C12—H12A···N6i0.982.613.570 (2)166
C15—H15···N40.952.513.174 (2)127
C19—H19···N10.952.472.810 (2)101
Symmetry code: (i) x+1, y, z+1.
Summary of short interatomic contacts (Å) in the title compound top
O1···C123.36x, 1 + y, 1 + z
N5···O12.981 - x, 1 - y, 2 - z
H13A···O22.901 - x, 1 - y, 1 - z
H7···H13A2.59-1 + x, y, z
H19···H182.37-x, 1 - y, 1 - z
H12A···N62.611 - x, -y, 1 - z
H13C···H112.512 - x, -y, 1 - z
H15···N62.752 - x, 1 - y, 2 - z
H12A···C122.93-x, -y, -z
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, ZA, MA and AB; synthesis, AA, AN and GTA; X-ray analysis, VK, SG and MA; writing (review and editing of the manuscript) ZA, MA and AB; funding acquisition, NQS, and AM; supervision, NQS, MA and AB.

Funding information

This work was funded by the Science Development Foundation under the President of the Republic of Azerbaijan, grant No. EIF–BGM-4-RFTF-1/2017–21/13/4.

References

First citationAltimari, J. M., Healy, P. C. & Henderson, L. C. (2012). Acta Cryst. E68, o3159.  CSD CrossRef IUCr Journals Google Scholar
First citationBattye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlass, B. E., Coburn, K., Lee, W., Fairweather, N., Fluxe, A., Wu, S., Janusz, J. M., Murawsky, M., Fadayel, G. M., Fang, B., Hare, M., Ridgeway, J., White, R., Jackson, C., Djandjighian, L., Hedges, R., Wireko, F. C. & Ritter, A. L. (2006). Bioorg. Med. Chem. Lett. 16, 4629–4632.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCaliendo, G., Fiorino, F., Grieco, P., Perissutti, E., Santagada, V., Meli, R., Raso, G. M., Zanesco, A. & De Nucci, G. (1999). Eur. J. Med. Chem. 34, 1043–1051.  Web of Science CrossRef CAS Google Scholar
First citationCanseco-González, D., García, J. J. & Flores-Alamo, M. (2015). Acta Cryst. E71, o1041–o1042.  CSD CrossRef IUCr Journals Google Scholar
First citationChandrasekhar, S., Kumar, T. P., Haribabu, K. & Reddy, C. R. (2010). Tetrahedron Asymmetry, 21, 2372–2375.  Web of Science CrossRef CAS Google Scholar
First citationDoyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, IL 60201, USA.  Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrán, M. Á., Bonet, M. Á., Claramunt, R. M., Torralba, M. C., Alkorta, I. & Elguero, J. (2018). Acta Cryst. C74, 513–522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerreira, V. F., da Rocha, D. R., da Silva, F. C., Ferreira, P. G., Boechat, N. A. & Magalhães, J. L. (2013). Expert Opin. Ther. Pat. 23, 319–331.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGhozlan, S. A., Abdelhamid, I. A., Ibrahim, H. M. & Elnagdi, M. H. (2006). Arkivoc, 2006, 53–60.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaslinger, S., Laus, G., Wurst, K. & Schottenberger, H. (2015). Acta Cryst. E71, o945–o946.  CSD CrossRef IUCr Journals Google Scholar
First citationKalisiak, J., Sharpless, K. B. & Fokin, V. V. (2008). Org. Lett. 10, 3171–3174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKamijo, S., Jin, T., Huo, Z. & Yamamoto, Y. (2002). Tetrahedron Lett. 43, 9707–9710.  Web of Science CrossRef CAS Google Scholar
First citationKoszytkowska-Stawińska, M., Mironiuk-Puchalska, E. & Rowicki, T. (2012). Tetrahedron, 68, 214–225.  Google Scholar
First citationLiu, Y., Yan, W., Chen, Y., Petersen, J. L. & Shi, X. (2008). Org. Lett. 10, 5389–5392.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMutius, E. von & Drazen, J. M. (2012). N. Engl. J. Med. 366, 827–834.  Web of Science PubMed Google Scholar
First citationNenajdenko, V. G., Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2020). Molecules, 25, 5013.  Web of Science CSD CrossRef PubMed Google Scholar
First citationPhillips, O. A., Udo, E. E., Abdel-Hamid, M. E. & Varghese, R. (2009). Eur. J. Med. Chem. 44, 3217–3227.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPrusiner, P. T. & Sundaralingam, M. (1973). Nature New Biol. 244, 116–118.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSanna, P., Carta, A. & Nikookar, M. E. (2000). Eur. J. Med. Chem. 35, 535–543.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Tsyrenova, B. D., Nenajdenko, V. G., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2021a). Mendeleev Commun. 31, 191–193.  Web of Science CSD CrossRef CAS Google Scholar
First citationShikhaliyev, N. G., Maharramov, A. M., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Shikhaliyeva, I. M., Babazade, A. A. & Nenajdenko, V. G. (2021b). Organic Chemistry, (part iii), 67–75.  Google Scholar
First citationShikhaliyev, N. G., Suleymanova, G. T., İsrayilova, A. A., Ganbarov, K. G., Babayeva, G. V., Garazadeh, K. A., Mammadova, G. Z. & Nenajdenko, V. G. (2019b). Organic Chemistry, (part vi), 64–73.  Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. (2018). Dyes Pigments, 150, 377–381.  Web of Science CSD CrossRef CAS Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. (2019a). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Pause, A., Shi, Y. & Sonenberg, N. (2002). Nat. Rev. Drug Discov. 1, 867–881.  Web of Science CrossRef PubMed CAS Google Scholar
First citationToniolo, N., Taveri, G., Hurle, K., Roether, J., Ercole, P., Dlouhy, I. & Boccaccini, A. R. (2017). Journal of Ceramic Science and Technology, 8, 411–420.  Google Scholar
First citationTsyrenova, B. D., Khrustalev, V. N. & Nenajdenko, V. G. (2021). Org. Biomol. Chem. 19, 8140–8152.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYan, Z. Y., Niu, Y. N., Wei, H. L., Wu, L. Y., Zhao, Y. B. & Liang, Y. M. (2006). Tetrahedron Asymmetry, 17, 3288–3293.  Web of Science CrossRef CAS Google Scholar
First citationYoshida, Y., Takizawa, S. & Sasai, H. (2012). Tetrahedron Asymmetry, 23, 843–851.  Web of Science CrossRef CAS Google Scholar
First citationZhao, Y. B., Zhang, L. W., Wu, L. Y., Zhong, X., Li, R. & Ma, J. T. (2008). Tetrahedron Asymmetry, 19, 1352–1355.  Web of Science CrossRef CAS Google Scholar
First citationZukerman-Schpector, J., Dallasta Pedroso, S., Sousa Madureira, L., Weber Paixão, M., Ali, A. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1716–1720.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds