research communications
H-1,2,3-triazole
and Hirshfeld surface analysis of 4-azido-2-(3,5-dimethylphenyl)-5-(4-nitrophenyl)-2aOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, bDepartment of Engineering and Applied Sciences, Azerbaijan State University of Economics, M. Mukhtarov 194, Baku AZ1001, Azerbaijan, cPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, dN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, eInstitute of Catalysis and Inorganic Chemistry , 113 H. Javid Ave., AZ1143 Baku, Azerbaijan, fDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Türkiye, gDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and hDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: akkurt@erciyes.edu.tr,, ajaya.bhattarai@mmamc.tu.edu.np
In the title compound, C16H13N7O2, the 3,5-dimethylphenyl and 4-nitrophenyl rings are inclined to the central 2H-1,2,3-triazole ring by 1.80 (7) and 1.79 (7)°, respectively, and to one another by 2.16 (7)°. In the crystal, the molecules are linked by C—H⋯N hydrogen bonds and π–π stacking interactions [centroid-to-centroid distances = 3.7295 (9) and 3.7971 (9) Å], forming ribbons along the b-axis direction. These ribbons are connected to each other by weak van der Waals interactions and the stability of the is ensured. A Hirshfeld surface analysis of the indicates that the most important contributions to the crystal packing are from H⋯H (31.5%), N⋯H/H⋯N (19.2%), O⋯H/H⋯O (14.5%), N⋯C/C⋯C (10.9%) and C⋯H/H⋯C (10.2%) contacts.
Keywords: crystal structure; hydrogen bonds; azido group; 2H-1,2,3-triazole; Hirshfeld surface analysis.
CCDC reference: 2293836
1. Chemical context
Triazoles are used as biological agents for their anti-inflammatory, anti-thrombotic and anti-viral activities (Blass et al., 2006; Caliendo et al., 1999; Phillips et al., 2009). At the same time, 2H-1,2,3-triazoles are effective catalysts (Zhao et al., 2008; Yan et al., 2006; Chandrasekhar et al., 2010) and are used as ionic liquids (Yoshida et al., 2012) in organic synthesis. It should be noted that many methods for their preparation are quite complicated, which limits the possibilities of studying the biological activity of these compounds and also their use in other fields of science and technology. In general, the development of new synthesis methods for 2H-1,2,3-triazole derivatives has been a constant in the field of organic synthesis. Since the 1,2,3-triazole ring is an integral part of many medicinal preparations, research on their synthesis (Kamijo et al., 2002; Liu et al., 2008; Ghozlan et al., 2006; Kalisiak et al., 2008; Koszytkowska-Stawińska et al., 2012) and biological activities is constantly increasing (Ferreira et al., 2013; Tan et al., 2002; Prusiner & Sundaralingam, 1973; Toniolo et al., 2017; Caliendo et al., 1999; Blass et al., 2006; von Mutius et al., 2012; Ferreira et al., 2013). In particular, we can mention the synthesis of new 1,2,3-triazole-based drugs against tuberculosis (Sanna et al., 2000). In this regard, the synthesis of 4-azido-2H-1,2,3-triazole derivatives (Tsyrenova et al., 2021) from the reaction of dichlorodiazadienes with NaN3 is a relevant issue. In the following scheme (Fig. 1), on the basis of the synthesis of (E)-1-(2,2-dichloro-1-(4-nitrophenyl)vinyl)-2-(3,5-dimethylphenyl) diazene obtained from the reaction of N-substituted hydrazone (Maharramov et al., 2018; Nenajdenko et al., 2020; Shikhaliyev et al., 2018, 2019a,b, 2021a,b) and CCl4 with NaN3, 4-azido-2-(3,5-dimethylphenyl)-5-(4-nitrophenyl)-2H-1,2,3-triazole was synthesized and its structure was confirmed by single-crystal X-ray analysis.
2. Structural commentary
The molecule of the title compound, (Fig. 2), except for the methyl H atoms, can be described as essentially planar [maximum deviations = 0.060 (1) Å for C15 and −0.076 (1) Å for N6] with the substituents rotated slightly around the triazole centre. The planar 3,5-dimethylphenyl (C6–C11) and 4-nitrophenyl (C14–C19) rings are inclined to the central 2H-1,2,3-triazole ring (N1–N3/C4/C5) by 1.80 (7) and 1.79 (7)°, respectively, and to one another by 2.16 (7)°. The nitro group is co-planar with the benzene ring (C14–C19) to which it is connected [torsion angles O1—N7—C17—C16 = 0.4 (2)° and O2—N7—C17—C16 = −179.18 (12)°]. The azido group (–N3=N4+=N5−) is almost co-planar with the central 2H-1,2,3-triazole ring to which it is connected [N6—N5—N4 = 171.56 (14)° and torsion angles N5—N4—C4—N3 = −1.69 (19)° and N5—N4—C4—C5 = 177.54 (13)°].
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, the molecules are linked by C—H⋯N hydrogen bonds and π–π stacking interactions [Cg1⋯Cg2i = 3.7295 (9) Å; slippage = 1.489 Å and Cg2⋯Cg3ii = 3.7971 (9) Å; slippage = 1.783 Å; symmetry codes: (i) −x + 1, −y, −z + 1, (ii) −x + 1, −y + 1, −z + 1; Cg1, Cg2 and Cg3 are the centroids of the 2H-1,2,3-triazole (N1–N3/C4/C5), 3,5-dimethylphenyl (C6–C11) and 4-nitrophenyl (C14–C19) rings, respectively], forming ribbons along the b-axis direction (Tables 1 and 2; Fig. 3). These ribbons are connected to each other by weak van der Waals interactions and the stability of the is ensured.
|
In order to investigate the intermolecular interactions in a visual manner, a Hirshfeld surface analysis was performed using CrystalExplorer 17.5 (Spackman et al., 2021). The bright-red spots on the Hirshfeld surface mapped over dnorm (Fig. 4) indicate the presence of C—H⋯N interactions. The fingerprint plots (Fig. 5) are given for all contacts, and those delineated into H⋯H (31.5%), N⋯H/H⋯N (19.2%), O⋯H/H⋯O (14.5%), N⋯C/C⋯N (10.9%), C⋯H/H⋯C (10.2%), C⋯C (5.2%), O⋯N/N⋯O (4.0%), O⋯C/C⋯O (2.4%) and N⋯N (2.1%). The most important contributions to the crystal packing are H⋯H and N⋯H/H⋯N contacts.
4. Database survey
The ten most similar compounds found in a search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) for the 2H-1,2,3-triazole group are JADSEP (Canseco-González et al., 2015), JELTEC (Zukerman-Schpector et al., 2017), HUYTEC (Haslinger et al., 2015), FEVLIE, FEVLOK, FEVLUQ, FEVMAX, FEVMEB and FEVMOL (Farrán et al., 2018) and SECQUO (Altimari et al., 2012).
In the crystal of JADSEP, molecules are linked via C—H⋯I hydrogen bonds, forming slabs parallel to the ab plane. Within the slabs there are weak π–π interactions present involving the mesityl and phenyl rings. In the crystal of JELTEC, the three-dimensional packing is stabilized by a combination of methylene-C—H⋯O, methylene-C—H⋯π, C—H⋯π and nitro-O⋯π (nitrobenzene) interactions, along with weak π (triazolyl)–π (nitrobenzene) contacts. In the crystal of HUYTEC, the water molecules are connected into [010] chains by O—H⋯O hydrogen bonds, while O—H⋯N hydrogen bonds connect the water molecules to the organic molecules, generating corrugated (100) sheets. In the crystals of FEVLIE, FEVLOK, FEVLUQ, FEVMAX, FEVMEB and FEVMOL, there are no Car—H⋯F—C intramolecular contacts. If the were coplanar with the triazole ring, the C—F and the C—H atoms would be too close. Thus, the is more efficient than the weak hydrogen bond. Only compound FEVMOL clearly shows a hydrogen bond (O—H⋯N). In the crystal of SECQUO, the molecules pack in a head-to-tail arrangement along the a-axis direction with closest inter-centroid distances between the triazole rings of 3.7372 (12) Å.
5. Synthesis and crystallization
The title compound was synthesized according to a literature protocol (Tsyrenova et al., 2021). A 20 ml screw-neck vial was charged with DMSO (20 ml), (E)-1-[2,2-dichloro-1-(4-nitrophenyl)vinyl]-2-(3,5-dimethylphenyl)diazene (350 mg, 1 mmol) and sodium azide (NaN3; 390 mq; 3 mmol). After 1–3 h (until TLC analysis showed complete consumption of the corresponding triazole), the reaction mixture was poured into a 0.01 M solution of HCl (100 ml, pH = 2–3), and extracted with dichloromethane (3 × 20 ml). The combined organic phase was washed with water (3 × 50 ml), brine (30 ml), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by on silica gel using appropriate mixtures of hexane and dichloromethane (v/v: 3/1–1/1). Red solid (yield 75%); m.p. 375 K. Analysis calculated for C16H13N7O2 (M = 335.33): 1H NMR (300 MHz, chloroform-d) δ 8.84 (s, 1H), 8.40–8.27 (m, 1H), 8.20 (d, J = 8.2 Hz, 1H), 7.68 (s, 2H), 7.62 (t, J = 8.0 Hz, 1H), 7.02 (s, 1H), 2.44 (s, 6H). 13C NMR (75 MHz, CDCl3) δ 143.9, 134.7, 134.4, 130.1, 127.3, 126.1, 125.0, 118.3, 116.5, 111.4, 16.8. The compound was dissolved in dichloromethane and then left at room temperature for slow evaporation; red crystal of the title compound suitable for X-rays started to form after ca 2 d.
6. Refinement
Crystal data, data collection and structure . All H atoms were positioned geometrically and allowed to ride on their parent atoms (C—H = 0.95–0.98 Å) with Uiso(H) = 1.2 or 1.5Ueq(C). Owing to poor agreement between observed and calculated intensities, sixteen outliers (6 1, 12 0, 11 0, 12 1, 6 1, 7 1, 5 1, 2 6, 2 1, 1 1 4, 4 1, 1 1, 0 2 0, 1 2, 4 4, 2 0 5) were omitted during the final cycle.
details are summarized in Table 3Supporting information
CCDC reference: 2293836
https://doi.org/10.1107/S2056989023007855/zn2031sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023007855/zn2031Isup2.hkl
Data collection: Marccd (Doyle, 2011); cell
iMosflm (Battye et al., 2011); data reduction: iMosflm (Battye et al., 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C16H13N7O2 | Z = 2 |
Mr = 335.33 | F(000) = 348 |
Triclinic, P1 | Dx = 1.452 Mg m−3 |
a = 7.4400 (8) Å | Synchrotron radiation, λ = 0.79313 Å |
b = 9.920 (1) Å | Cell parameters from 1000 reflections |
c = 11.5200 (13) Å | θ = 2.1–28.0° |
α = 93.071 (9)° | µ = 0.13 mm−1 |
β = 105.349 (10)° | T = 100 K |
γ = 108.879 (11)° | Prism, red |
V = 766.71 (16) Å3 | 0.09 × 0.05 × 0.03 mm |
Rayonix SX165 CCD diffractometer | 2976 reflections with I > 2σ(I) |
/f scan | Rint = 0.025 |
Absorption correction: multi-scan (SCALA; Evans, 2006) | θmax = 31.0°, θmin = 2.1° |
Tmin = 0.969, Tmax = 0.990 | h = −9→9 |
13293 measured reflections | k = −12→12 |
3466 independent reflections | l = −14→14 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.133 | w = 1/[σ2(Fo2) + (0.0764P)2 + 0.1976P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
3466 reflections | Δρmax = 0.27 e Å−3 |
229 parameters | Δρmin = −0.22 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: difference Fourier map | Extinction coefficient: 0.074 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.18207 (18) | 0.76197 (12) | 0.92289 (10) | 0.0446 (3) | |
O2 | −0.03369 (17) | 0.69879 (12) | 0.74319 (11) | 0.0423 (3) | |
N1 | 0.47322 (16) | 0.30620 (12) | 0.54670 (10) | 0.0295 (3) | |
N2 | 0.59776 (16) | 0.23870 (12) | 0.53829 (10) | 0.0280 (3) | |
N3 | 0.74669 (16) | 0.25675 (12) | 0.64053 (10) | 0.0295 (3) | |
N4 | 0.83239 (17) | 0.38805 (13) | 0.84246 (10) | 0.0326 (3) | |
N5 | 0.96905 (17) | 0.34031 (13) | 0.87091 (10) | 0.0332 (3) | |
N6 | 1.10029 (19) | 0.30585 (14) | 0.91074 (12) | 0.0387 (3) | |
N7 | 0.11839 (19) | 0.69804 (13) | 0.81792 (11) | 0.0343 (3) | |
C4 | 0.71164 (19) | 0.34137 (14) | 0.71900 (12) | 0.0291 (3) | |
C5 | 0.54163 (19) | 0.37371 (14) | 0.66201 (12) | 0.0282 (3) | |
C6 | 0.57495 (19) | 0.15443 (14) | 0.42750 (12) | 0.0279 (3) | |
C7 | 0.41649 (19) | 0.14311 (14) | 0.32646 (12) | 0.0284 (3) | |
H7 | 0.3240 | 0.1885 | 0.3323 | 0.034* | |
C8 | 0.3946 (2) | 0.06480 (14) | 0.21667 (12) | 0.0305 (3) | |
C9 | 0.5333 (2) | −0.00175 (14) | 0.21177 (13) | 0.0325 (3) | |
H9 | 0.5185 | −0.0562 | 0.1373 | 0.039* | |
C10 | 0.6915 (2) | 0.00999 (15) | 0.31301 (13) | 0.0331 (3) | |
C11 | 0.7126 (2) | 0.08921 (15) | 0.42256 (13) | 0.0323 (3) | |
H11 | 0.8196 | 0.0984 | 0.4929 | 0.039* | |
C12 | 0.2269 (2) | 0.05374 (16) | 0.10597 (13) | 0.0361 (3) | |
H12A | 0.1186 | −0.0385 | 0.0952 | 0.054* | |
H12B | 0.2744 | 0.0595 | 0.0341 | 0.054* | |
H12C | 0.1783 | 0.1330 | 0.1163 | 0.054* | |
C13 | 0.8416 (2) | −0.05959 (18) | 0.30537 (15) | 0.0420 (4) | |
H13A | 0.9732 | 0.0151 | 0.3219 | 0.063* | |
H13B | 0.8026 | −0.1137 | 0.2236 | 0.063* | |
H13C | 0.8465 | −0.1254 | 0.3657 | 0.063* | |
C14 | 0.43732 (19) | 0.45871 (14) | 0.70518 (12) | 0.0280 (3) | |
C15 | 0.5043 (2) | 0.53230 (15) | 0.82427 (12) | 0.0319 (3) | |
H15 | 0.6221 | 0.5286 | 0.8796 | 0.038* | |
C16 | 0.4004 (2) | 0.61052 (15) | 0.86228 (12) | 0.0330 (3) | |
H16 | 0.4453 | 0.6600 | 0.9433 | 0.040* | |
C17 | 0.2301 (2) | 0.61509 (14) | 0.77992 (12) | 0.0303 (3) | |
C18 | 0.1596 (2) | 0.54308 (15) | 0.66123 (13) | 0.0326 (3) | |
H18 | 0.0421 | 0.5477 | 0.6063 | 0.039* | |
C19 | 0.2631 (2) | 0.46465 (15) | 0.62443 (12) | 0.0317 (3) | |
H19 | 0.2160 | 0.4142 | 0.5437 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0571 (7) | 0.0466 (6) | 0.0388 (6) | 0.0239 (5) | 0.0224 (5) | 0.0007 (5) |
O2 | 0.0407 (6) | 0.0442 (6) | 0.0509 (6) | 0.0247 (5) | 0.0162 (5) | 0.0061 (5) |
N1 | 0.0288 (5) | 0.0328 (6) | 0.0295 (6) | 0.0152 (5) | 0.0077 (4) | 0.0019 (4) |
N2 | 0.0263 (5) | 0.0323 (6) | 0.0273 (5) | 0.0144 (4) | 0.0065 (4) | 0.0030 (4) |
N3 | 0.0273 (5) | 0.0334 (6) | 0.0283 (6) | 0.0133 (4) | 0.0059 (4) | 0.0041 (4) |
N4 | 0.0292 (6) | 0.0376 (6) | 0.0305 (6) | 0.0154 (5) | 0.0050 (5) | −0.0014 (5) |
N5 | 0.0331 (6) | 0.0367 (6) | 0.0288 (6) | 0.0134 (5) | 0.0065 (5) | 0.0032 (5) |
N6 | 0.0351 (6) | 0.0455 (7) | 0.0364 (6) | 0.0196 (5) | 0.0057 (5) | 0.0058 (5) |
N7 | 0.0402 (6) | 0.0317 (6) | 0.0383 (6) | 0.0160 (5) | 0.0193 (5) | 0.0052 (5) |
C4 | 0.0276 (6) | 0.0317 (6) | 0.0286 (6) | 0.0123 (5) | 0.0069 (5) | 0.0046 (5) |
C5 | 0.0278 (6) | 0.0304 (6) | 0.0272 (6) | 0.0116 (5) | 0.0077 (5) | 0.0035 (5) |
C6 | 0.0290 (6) | 0.0288 (6) | 0.0290 (6) | 0.0127 (5) | 0.0106 (5) | 0.0035 (5) |
C7 | 0.0268 (6) | 0.0289 (6) | 0.0311 (7) | 0.0117 (5) | 0.0091 (5) | 0.0027 (5) |
C8 | 0.0298 (6) | 0.0294 (6) | 0.0320 (7) | 0.0104 (5) | 0.0093 (5) | 0.0026 (5) |
C9 | 0.0360 (7) | 0.0306 (6) | 0.0344 (7) | 0.0139 (5) | 0.0143 (6) | 0.0014 (5) |
C10 | 0.0342 (7) | 0.0332 (7) | 0.0379 (7) | 0.0167 (6) | 0.0146 (6) | 0.0052 (5) |
C11 | 0.0306 (6) | 0.0369 (7) | 0.0334 (7) | 0.0174 (6) | 0.0093 (5) | 0.0058 (5) |
C12 | 0.0359 (7) | 0.0384 (7) | 0.0314 (7) | 0.0152 (6) | 0.0049 (6) | −0.0029 (5) |
C13 | 0.0411 (8) | 0.0484 (8) | 0.0449 (8) | 0.0268 (7) | 0.0136 (6) | 0.0019 (7) |
C14 | 0.0279 (6) | 0.0292 (6) | 0.0273 (6) | 0.0110 (5) | 0.0080 (5) | 0.0031 (5) |
C15 | 0.0312 (6) | 0.0357 (7) | 0.0279 (6) | 0.0133 (5) | 0.0056 (5) | 0.0021 (5) |
C16 | 0.0366 (7) | 0.0344 (7) | 0.0278 (6) | 0.0131 (6) | 0.0091 (5) | 0.0004 (5) |
C17 | 0.0329 (7) | 0.0301 (6) | 0.0324 (7) | 0.0136 (5) | 0.0139 (5) | 0.0038 (5) |
C18 | 0.0310 (6) | 0.0366 (7) | 0.0320 (7) | 0.0160 (5) | 0.0075 (5) | 0.0028 (5) |
C19 | 0.0319 (7) | 0.0361 (7) | 0.0275 (6) | 0.0159 (6) | 0.0055 (5) | −0.0002 (5) |
O1—N7 | 1.2284 (16) | C9—H9 | 0.9500 |
O2—N7 | 1.2296 (17) | C10—C11 | 1.3944 (19) |
N1—N2 | 1.3261 (15) | C10—C13 | 1.5085 (19) |
N1—C5 | 1.3410 (16) | C11—H11 | 0.9500 |
N2—N3 | 1.3435 (15) | C12—H12A | 0.9800 |
N2—C6 | 1.4268 (17) | C12—H12B | 0.9800 |
N3—C4 | 1.3323 (17) | C12—H12C | 0.9800 |
N4—N5 | 1.2317 (16) | C13—H13A | 0.9800 |
N4—C4 | 1.4242 (17) | C13—H13B | 0.9800 |
N5—N6 | 1.1299 (17) | C13—H13C | 0.9800 |
N7—C17 | 1.4681 (17) | C14—C15 | 1.3996 (18) |
C4—C5 | 1.4069 (18) | C14—C19 | 1.4020 (18) |
C5—C14 | 1.4640 (18) | C15—C16 | 1.3866 (19) |
C6—C11 | 1.3876 (18) | C15—H15 | 0.9500 |
C6—C7 | 1.3897 (18) | C16—C17 | 1.383 (2) |
C7—C8 | 1.3905 (18) | C16—H16 | 0.9500 |
C7—H7 | 0.9500 | C17—C18 | 1.3886 (19) |
C8—C9 | 1.4043 (19) | C18—C19 | 1.3798 (19) |
C8—C12 | 1.4995 (19) | C18—H18 | 0.9500 |
C9—C10 | 1.389 (2) | C19—H19 | 0.9500 |
N2—N1—C5 | 104.92 (11) | C6—C11—H11 | 120.4 |
N1—N2—N3 | 115.31 (11) | C10—C11—H11 | 120.4 |
N1—N2—C6 | 121.86 (11) | C8—C12—H12A | 109.5 |
N3—N2—C6 | 122.82 (11) | C8—C12—H12B | 109.5 |
C4—N3—N2 | 102.74 (11) | H12A—C12—H12B | 109.5 |
N5—N4—C4 | 113.98 (11) | C8—C12—H12C | 109.5 |
N6—N5—N4 | 171.56 (14) | H12A—C12—H12C | 109.5 |
O1—N7—O2 | 123.90 (12) | H12B—C12—H12C | 109.5 |
O1—N7—C17 | 117.93 (12) | C10—C13—H13A | 109.5 |
O2—N7—C17 | 118.17 (12) | C10—C13—H13B | 109.5 |
N3—C4—C5 | 110.21 (11) | H13A—C13—H13B | 109.5 |
N3—C4—N4 | 122.95 (12) | C10—C13—H13C | 109.5 |
C5—C4—N4 | 126.83 (12) | H13A—C13—H13C | 109.5 |
N1—C5—C4 | 106.82 (11) | H13B—C13—H13C | 109.5 |
N1—C5—C14 | 120.20 (12) | C15—C14—C19 | 119.20 (12) |
C4—C5—C14 | 132.97 (12) | C15—C14—C5 | 122.24 (12) |
C11—C6—C7 | 121.96 (12) | C19—C14—C5 | 118.56 (12) |
C11—C6—N2 | 119.59 (12) | C16—C15—C14 | 120.60 (13) |
C7—C6—N2 | 118.43 (11) | C16—C15—H15 | 119.7 |
C6—C7—C8 | 119.39 (12) | C14—C15—H15 | 119.7 |
C6—C7—H7 | 120.3 | C17—C16—C15 | 118.67 (12) |
C8—C7—H7 | 120.3 | C17—C16—H16 | 120.7 |
C7—C8—C9 | 118.67 (13) | C15—C16—H16 | 120.7 |
C7—C8—C12 | 120.20 (12) | C16—C17—C18 | 122.11 (13) |
C9—C8—C12 | 121.13 (12) | C16—C17—N7 | 119.61 (12) |
C10—C9—C8 | 121.71 (13) | C18—C17—N7 | 118.28 (12) |
C10—C9—H9 | 119.1 | C19—C18—C17 | 118.84 (13) |
C8—C9—H9 | 119.1 | C19—C18—H18 | 120.6 |
C9—C10—C11 | 119.17 (13) | C17—C18—H18 | 120.6 |
C9—C10—C13 | 120.99 (13) | C18—C19—C14 | 120.58 (12) |
C11—C10—C13 | 119.84 (13) | C18—C19—H19 | 119.7 |
C6—C11—C10 | 119.10 (13) | C14—C19—H19 | 119.7 |
C5—N1—N2—N3 | −0.26 (15) | C8—C9—C10—C11 | 0.4 (2) |
C5—N1—N2—C6 | −179.58 (11) | C8—C9—C10—C13 | −178.68 (13) |
N1—N2—N3—C4 | 0.38 (15) | C7—C6—C11—C10 | 0.0 (2) |
C6—N2—N3—C4 | 179.70 (12) | N2—C6—C11—C10 | −178.46 (12) |
N2—N3—C4—C5 | −0.34 (14) | C9—C10—C11—C6 | −0.1 (2) |
N2—N3—C4—N4 | 179.00 (12) | C13—C10—C11—C6 | 178.98 (13) |
N5—N4—C4—N3 | −1.69 (19) | N1—C5—C14—C15 | −179.28 (12) |
N5—N4—C4—C5 | 177.54 (13) | C4—C5—C14—C15 | 1.9 (2) |
N2—N1—C5—C4 | 0.03 (14) | N1—C5—C14—C19 | 1.52 (19) |
N2—N1—C5—C14 | −179.08 (11) | C4—C5—C14—C19 | −177.31 (14) |
N3—C4—C5—N1 | 0.21 (15) | C19—C14—C15—C16 | −0.1 (2) |
N4—C4—C5—N1 | −179.10 (12) | C5—C14—C15—C16 | −179.32 (12) |
N3—C4—C5—C14 | 179.16 (13) | C14—C15—C16—C17 | −0.4 (2) |
N4—C4—C5—C14 | −0.1 (2) | C15—C16—C17—C18 | 0.5 (2) |
N1—N2—C6—C11 | 178.22 (12) | C15—C16—C17—N7 | −179.59 (12) |
N3—N2—C6—C11 | −1.1 (2) | O1—N7—C17—C16 | 0.4 (2) |
N1—N2—C6—C7 | −0.33 (19) | O2—N7—C17—C16 | −179.18 (12) |
N3—N2—C6—C7 | −179.60 (11) | O1—N7—C17—C18 | −179.69 (12) |
C11—C6—C7—C8 | −0.3 (2) | O2—N7—C17—C18 | 0.70 (19) |
N2—C6—C7—C8 | 178.25 (12) | C16—C17—C18—C19 | −0.1 (2) |
C6—C7—C8—C9 | 0.5 (2) | N7—C17—C18—C19 | −179.95 (12) |
C6—C7—C8—C12 | −178.79 (12) | C17—C18—C19—C14 | −0.5 (2) |
C7—C8—C9—C10 | −0.6 (2) | C15—C14—C19—C18 | 0.6 (2) |
C12—C8—C9—C10 | 178.72 (13) | C5—C14—C19—C18 | 179.82 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···N1 | 0.95 | 2.47 | 2.7900 (18) | 100 |
C12—H12A···N6i | 0.98 | 2.61 | 3.570 (2) | 166 |
C15—H15···N4 | 0.95 | 2.51 | 3.174 (2) | 127 |
C19—H19···N1 | 0.95 | 2.47 | 2.810 (2) | 101 |
Symmetry code: (i) −x+1, −y, −z+1. |
O1···C12 | 3.36 | x, 1 + y, 1 + z |
N5···O1 | 2.98 | 1 - x, 1 - y, 2 - z |
H13A···O2 | 2.90 | 1 - x, 1 - y, 1 - z |
H7···H13A | 2.59 | -1 + x, y, z |
H19···H18 | 2.37 | -x, 1 - y, 1 - z |
H12A···N6 | 2.61 | 1 - x, -y, 1 - z |
H13C···H11 | 2.51 | 2 - x, -y, 1 - z |
H15···N6 | 2.75 | 2 - x, 1 - y, 2 - z |
H12A···C12 | 2.93 | -x, -y, -z |
Acknowledgements
The authors' contributions are as follows. Conceptualization, ZA, MA and AB; synthesis, AA, AN and GTA; X-ray analysis, VK, SG and MA; writing (review and editing of the manuscript) ZA, MA and AB; funding acquisition, NQS, and AM; supervision, NQS, MA and AB.
Funding information
This work was funded by the Science Development Foundation under the President of the Republic of Azerbaijan, grant No. EIF–BGM-4-RFTF-1/2017–21/13/4.
References
Altimari, J. M., Healy, P. C. & Henderson, L. C. (2012). Acta Cryst. E68, o3159. CSD CrossRef IUCr Journals Google Scholar
Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. Web of Science CrossRef CAS IUCr Journals Google Scholar
Blass, B. E., Coburn, K., Lee, W., Fairweather, N., Fluxe, A., Wu, S., Janusz, J. M., Murawsky, M., Fadayel, G. M., Fang, B., Hare, M., Ridgeway, J., White, R., Jackson, C., Djandjighian, L., Hedges, R., Wireko, F. C. & Ritter, A. L. (2006). Bioorg. Med. Chem. Lett. 16, 4629–4632. Web of Science CSD CrossRef PubMed CAS Google Scholar
Caliendo, G., Fiorino, F., Grieco, P., Perissutti, E., Santagada, V., Meli, R., Raso, G. M., Zanesco, A. & De Nucci, G. (1999). Eur. J. Med. Chem. 34, 1043–1051. Web of Science CrossRef CAS Google Scholar
Canseco-González, D., García, J. J. & Flores-Alamo, M. (2015). Acta Cryst. E71, o1041–o1042. CSD CrossRef IUCr Journals Google Scholar
Chandrasekhar, S., Kumar, T. P., Haribabu, K. & Reddy, C. R. (2010). Tetrahedron Asymmetry, 21, 2372–2375. Web of Science CrossRef CAS Google Scholar
Doyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, IL 60201, USA. Google Scholar
Evans, P. (2006). Acta Cryst. D62, 72–82. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrán, M. Á., Bonet, M. Á., Claramunt, R. M., Torralba, M. C., Alkorta, I. & Elguero, J. (2018). Acta Cryst. C74, 513–522. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ferreira, V. F., da Rocha, D. R., da Silva, F. C., Ferreira, P. G., Boechat, N. A. & Magalhães, J. L. (2013). Expert Opin. Ther. Pat. 23, 319–331. Web of Science CrossRef CAS PubMed Google Scholar
Ghozlan, S. A., Abdelhamid, I. A., Ibrahim, H. M. & Elnagdi, M. H. (2006). Arkivoc, 2006, 53–60. Web of Science CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Haslinger, S., Laus, G., Wurst, K. & Schottenberger, H. (2015). Acta Cryst. E71, o945–o946. CSD CrossRef IUCr Journals Google Scholar
Kalisiak, J., Sharpless, K. B. & Fokin, V. V. (2008). Org. Lett. 10, 3171–3174. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kamijo, S., Jin, T., Huo, Z. & Yamamoto, Y. (2002). Tetrahedron Lett. 43, 9707–9710. Web of Science CrossRef CAS Google Scholar
Koszytkowska-Stawińska, M., Mironiuk-Puchalska, E. & Rowicki, T. (2012). Tetrahedron, 68, 214–225. Google Scholar
Liu, Y., Yan, W., Chen, Y., Petersen, J. L. & Shi, X. (2008). Org. Lett. 10, 5389–5392. Web of Science CSD CrossRef PubMed CAS Google Scholar
Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. (2018). Dyes Pigments, 159, 135–141. Web of Science CrossRef CAS Google Scholar
Mutius, E. von & Drazen, J. M. (2012). N. Engl. J. Med. 366, 827–834. Web of Science PubMed Google Scholar
Nenajdenko, V. G., Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2020). Molecules, 25, 5013. Web of Science CSD CrossRef PubMed Google Scholar
Phillips, O. A., Udo, E. E., Abdel-Hamid, M. E. & Varghese, R. (2009). Eur. J. Med. Chem. 44, 3217–3227. Web of Science CrossRef PubMed CAS Google Scholar
Prusiner, P. T. & Sundaralingam, M. (1973). Nature New Biol. 244, 116–118. CrossRef CAS PubMed Web of Science Google Scholar
Sanna, P., Carta, A. & Nikookar, M. E. (2000). Eur. J. Med. Chem. 35, 535–543. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Tsyrenova, B. D., Nenajdenko, V. G., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2021a). Mendeleev Commun. 31, 191–193. Web of Science CSD CrossRef CAS Google Scholar
Shikhaliyev, N. G., Maharramov, A. M., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Shikhaliyeva, I. M., Babazade, A. A. & Nenajdenko, V. G. (2021b). Organic Chemistry, (part iii), 67–75. Google Scholar
Shikhaliyev, N. G., Suleymanova, G. T., İsrayilova, A. A., Ganbarov, K. G., Babayeva, G. V., Garazadeh, K. A., Mammadova, G. Z. & Nenajdenko, V. G. (2019b). Organic Chemistry, (part vi), 64–73. Google Scholar
Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. (2018). Dyes Pigments, 150, 377–381. Web of Science CSD CrossRef CAS Google Scholar
Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. (2019a). CrystEngComm, 21, 5032–5038. Web of Science CSD CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tan, S. L., Pause, A., Shi, Y. & Sonenberg, N. (2002). Nat. Rev. Drug Discov. 1, 867–881. Web of Science CrossRef PubMed CAS Google Scholar
Toniolo, N., Taveri, G., Hurle, K., Roether, J., Ercole, P., Dlouhy, I. & Boccaccini, A. R. (2017). Journal of Ceramic Science and Technology, 8, 411–420. Google Scholar
Tsyrenova, B. D., Khrustalev, V. N. & Nenajdenko, V. G. (2021). Org. Biomol. Chem. 19, 8140–8152. Web of Science CSD CrossRef CAS PubMed Google Scholar
Yan, Z. Y., Niu, Y. N., Wei, H. L., Wu, L. Y., Zhao, Y. B. & Liang, Y. M. (2006). Tetrahedron Asymmetry, 17, 3288–3293. Web of Science CrossRef CAS Google Scholar
Yoshida, Y., Takizawa, S. & Sasai, H. (2012). Tetrahedron Asymmetry, 23, 843–851. Web of Science CrossRef CAS Google Scholar
Zhao, Y. B., Zhang, L. W., Wu, L. Y., Zhong, X., Li, R. & Ma, J. T. (2008). Tetrahedron Asymmetry, 19, 1352–1355. Web of Science CrossRef CAS Google Scholar
Zukerman-Schpector, J., Dallasta Pedroso, S., Sousa Madureira, L., Weber Paixão, M., Ali, A. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1716–1720. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.