research communications
Synthesis, in vitro anti-proliferative activity of 2-[(4-acetylphenyl)carbamoyl]phenyl acetate
andaChemistry of Natural & Microbial Products Department, National Research Centre, Cairo, Egypt, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10, 3AT, United Kingdom, and cDepartment of Therapeutic Chemistry, National Research Centre, Dokki, Cairo, 12622, Egypt
*Correspondence e-mail: am.srour@nrc.sci.eg
2-[(4-Acetylphenyl)carbamoyl]phenyl acetate, C17H15NO4, has been synthesized and structurally characterized. In the structure, N—H⋯O hydrogen-bonding interactions form chains of molecules aligned along the [101] direction. The chains are linked by π–π and C—H⋯π interactions, forming a three dimensional network. The compound has been screened for in vitro anti-proliferative activity revealing considerable activity.
CCDC reference: 2087303
1. Chemical context
Acetylsalicylic acid (ASA), or aspirin, is a non-steroidal anti-inflammatory drug (NSAID) utilized extensively as an analgesic and antipyretic agent. It has been shown to induce apoptotic cell death in several cancer cell lines (Brune & Patrignani, 2015; Ranger et al., 2020; Abd-El-Aziz et al., 2021). Aspirin is one of the most prescribed drugs for pain relief as well as for cardiovascular prophylaxis. Decades of investigations have provided substantial evidence indicating potential in the prevention of cancer, particularly colorectal cancer (Drew et al., 2016). Comprehensive clinical benefits of aspirin-based chemoprevention strategies have lately been acknowledged. However, due to the identified risks of long-term aspirin usage, larger scale adoption of an aspirin chemoprevention strategy is likely to involve enhanced identification of individuals for whom the protective benefits compensate the side effects (Drew et al., 2016). Aspirin is recognized as a means for prevention of ischemic heart attack and stroke (Pinto et al., 2013). Although several effects of aspirin are related to its ability to inhibit cyclooxygenase (COX), a key enzyme in prostaglandin biosynthesis, COX-independent effects have also been reported (Alfonso et al., 2014). Aspirin has emerged as a promising intervention in cancer treatment in the past decade (Tran et al., 2021; Lichtenberger et al., 2019), and has a protective effect against several types of cancer (Garcia-Albeniz et al., 2011; Usman et al., 2015). It induces cell death in various cancer cell lines, such as myeloid leukaemia and HeLa cells, chronic lymphocytic leukaemia cells, colon cancer cells (Bellosillo et al., 1998), gastric cancer (Gu et al., 2005), colorectal cancer (Stark et al., 2007) and cholangiocarcinoma (Shen & Shen, 2021).
Motivated by the properties enumerated above and in continuation of our interest in the synthesis of aspirin-based scaffolds, 2-[(4-acetylphenyl)carbamoyl]phenyl acetate was synthesized and characterized. It was anticipated that the compound would present biological activity and it was tested against an NCI 60 cell-line panel.
Facile synthesis of the target 2-[(4-acetylphenyl)carbamoyl]phenyl acetate (3) was carried out through the reaction of 4'-amino acetophenone (1) and 2-(chlorocarbonyl)phenyl acetate (2) in the presence of a quantitative amount of triethyl amine (Fig. 1). The chemical identity of the product was confirmed by various spectroscopic techniques consistent with literature reports (Gao et al., 2014; Eissa et al., 2017).
2. Structural commentary
The . The phenylethanone fragment of the molecule is essentially planar with a twist angle between the phenyl ring (C3–C8) and the acetaldehyde group (C1,C2,O1) of 4.7 (2)°. In the phenylacetate group of the molecule, the acetate group (C16,C17,O3,O4) is almost perpendicular to the phenyl ring (C10–C15) with a twist angle of 82.39 (6)°. This relationship between the acetate group and the ring is similar to that found in aspirin (Tyler et al., 2020). The formamide group (C9,N1,O2) is twisted by 25.14 (14)° from one phenyl ring (C3–C8) and by 45.53 (8)° from the second (C10–C15). There is an intramolecular C5—H5⋯O2 hydrogen bond (Table 1).
is shown in Fig. 2The twist angles between the various groups in the molecule are similar to those of the N-(4-acetylphenyl)benzamide moiety in N-(4-acetylphenyl)-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]benzamide (Mourad et al., 2020).
3. Supramolecular features
In the crystal, N—H⋯O hydrogen-bonding interactions occur between neighbouring molecules related by − + x, − y, − + z, resulting in chains parallel to the [101] direction (Fig. 3, Table 1). A C12—H12⋯O4i hydrogen bond is also observed. Contacts of the type π–π are also observed between symmetry-related phenyl rings from neighbouring molecules with centroid-to-centroid distances of 4.0823 (9) Å (C3–C8 rings, 1 − x, 1 − y, 1 − z) and 3.9417 (10) Å (C10–C15 rings, 1 − x, 1 − y, −z). Additionally, a C—H⋯π interaction occurs between the edge of the C3–C8 ring and the face of the C10–C15 ring (Table 1).
4. Database survey
A search of the Cambridge Structural Database (Version 5.43, update of November, 2022; Groom et al., 2016) for structures containing the N-(4-acetylphenyl)benzamide moiety produced one hit for N-(4-acetylphenyl)-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]benzamide (LACYIB; Mourad et al., 2020).
5. Synthesis and crystallization
Melting points were determined on a Stuart SMP30 melting-point apparatus. IR spectra (KBr) were recorded on a JASCO 6100 spectrophotometer. NMR spectra were recorded on a JEOL AS 500 (DMSO-d6, 1H: 500 MHz, 13C: 125 MHz) spectrometer, JEOL USA, Inc. Mass spectra were recorded on a Shimadzu GCMS-QP 1000 EX (EI, 70 eV) spectrometer, Shimadzu Corporation, Kyoto, Japan. Elemental micro analyses were performed using a Vario Elemental analyzer, Elementar Analysensysteme GmbH, Langenselbold, Germany. Figs. S1–S4 of the Supplementary material show the spectroscopic data. The starting compound 2-(chlorocarbonyl)phenyl acetate (1) was prepared according to previously reported procedures (Sharma et al., 2011; Ngaini et al., 2012).
Synthesis of 2-[(4-acetylphenyl)carbamoyl]phenyl acetate (3)
To a stirred solution of 4′-aminoacetophenone (1) (1.35 g, 10 mmol) and triethyl amine (1.48 ml, 11 mmol) in 25 ml of dichloromethane, 2-(chlorocarbonyl)phenyl acetate (2) (1.98 g, 10 mmol) was added portion-wise over a period of 30 min, and the mixture was stirred at room temperature for 6 h (Fig. 1). The mixture was filtered, the solvent evaporated under reduced pressure, and then the solid obtained was washed with water, dried and recrystallized from benzene/pet. ether 60–80.
Buff-colored crystals; yield (2.65 g) 89%; mp 424–426 K; IR (νmax/cm−1): 3297 (NH), 1659, 1679, 1760 (C=O); 1H NMR (DMSO-d6) δ (ppm): 2.18 (s, 3H, CH3), 2.52 (s, 3H, COCH3), 7.24, 7.26 (dd, 1H, J = 1.20, 1.10 Hz, CH), 7.39 (t, 1H, J = 8.13 Hz, CH), 7.57 (t, 1H, J = 8.65 Hz, CH), 7.70, 7.71 (dd, 1H, J = 1.65, 1.65 Hz, CH), 7.85 (d, 2H, J = 8.8 Hz, CH), 7.94 (d, 2H, J = 8.8 Hz, CH), 10.71 (s, 1H, NH); 13C NMR (DMSO-d6) δ (ppm) 20.84, 26.60, 119.28, 123.48, 126.08, 129.37, 129.45, 129.53, 129.57, 132.03, 132.32, 143.64, 148.30, 164.80, 169.04, 196.74; MS: m/z (%) 297.88 (M+, 9.97); Analysis calculated for C17H15NO4 (297.31): C, 68.68; H, 5.09; N, 4.71. Found: C, 68.66; H, 5.10; N, 4.70.
6. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(C,N).
details are summarized in Table 2
|
7. In vitro anti-proliferative activity against NCI 60 cell-lines panel
The title compound was selected by the National Cancer Institute (NCI), NIH, USA under the Developmental Therapeutic Program (DTP) for the estimation of in vitro antiproliferative activity against the NCI 60 cell-line panel. This screen utilizes human tumour cell lines, representing melanoma, leukemia, colon, lung, ovary, brain, prostate, kidney and breast cancers.
The NCI screening service ranks compounds with a promising drug-like mode of action on the basis of computer-aided design. The capability of the submitted compounds to convey diversity to the NCI small molecule compound collection is critical to selecting them for screening.
The title compound was assigned NCI code NSC D-832401 representing the chemotype of this work. It was screened at an initial 10 μM one-dose % inhibition assay on the full NCI 60 cell-line panel. The results are shown in Fig. 4. The results are represented as cell growth % for the compound in each of the panels. The lowest cell-growth promotion was observed on leukemia RPMI-8226 cell line (GP = 92.72%), non-small-cell lung cancer NCI-H522 (GP = 94.57%), colon cancer HCT-15 (GP = 98.05%), CNS cancer SNB-75 (GP = 80.85%), melanoma MDA-MB-43 (GP = 95.29%), ovarian cancer OVCAR-4 (GP = 96.33%), renal cancer A498 (GP = 81.27%) and breast cancer T-47D (GP = 89.47%).
Thus, in general, the compound displays considerable in vitro anti-proliferative activity at 10 μM against most of the tested cancer cell lines. This supports possible future experiments on this compound including the determination of IC50 (for the most promising cell line) and cytotoxicity in normal cells.
Supporting information
CCDC reference: 2087303
https://doi.org/10.1107/S2056989023008526/dj2060sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023008526/dj2060Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989023008526/dj2060Isup3.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989023008526/dj2060sup4.docx
Data collection: CrysAlis PRO 1.171.40.53 (Rigaku OD, 2019); cell
CrysAlis PRO 1.171.40.53 (Rigaku OD, 2019); data reduction: CrysAlis PRO 1.171.40.53 (Rigaku OD, 2019); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2019/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020).C17H15NO4 | F(000) = 624 |
Mr = 297.30 | Dx = 1.318 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 11.6286 (5) Å | Cell parameters from 5304 reflections |
b = 8.6913 (4) Å | θ = 4.1–76.2° |
c = 15.8180 (7) Å | µ = 0.78 mm−1 |
β = 110.380 (5)° | T = 296 K |
V = 1498.62 (12) Å3 | Needle, yellow |
Z = 4 | 0.35 × 0.14 × 0.13 mm |
Agilent SuperNova, Dual, Cu at home/near, Atlas diffractometer | 2612 reflections with I > 2σ(I) |
ω scans | Rint = 0.027 |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2019) | θmax = 76.9°, θmin = 4.1° |
Tmin = 0.390, Tmax = 1.000 | h = −14→14 |
17065 measured reflections | k = −10→10 |
3141 independent reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.134 | w = 1/[σ2(Fo2) + (0.0761P)2 + 0.1892P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.002 |
3141 reflections | Δρmax = 0.17 e Å−3 |
201 parameters | Δρmin = −0.16 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5388 (2) | 0.1466 (3) | 0.63141 (13) | 0.0868 (6) | |
H1A | 0.587598 | 0.105244 | 0.689002 | 0.130* | |
H1B | 0.498487 | 0.064212 | 0.591739 | 0.130* | |
H1C | 0.478372 | 0.215398 | 0.638833 | 0.130* | |
C2 | 0.61923 (14) | 0.23211 (19) | 0.59205 (9) | 0.0576 (4) | |
C3 | 0.56774 (12) | 0.29253 (17) | 0.49855 (9) | 0.0505 (3) | |
C4 | 0.64622 (13) | 0.36063 (19) | 0.46058 (10) | 0.0587 (4) | |
H4 | 0.728942 | 0.370691 | 0.495050 | 0.070* | |
C5 | 0.60455 (13) | 0.41363 (19) | 0.37314 (10) | 0.0589 (4) | |
H5 | 0.658915 | 0.457351 | 0.348638 | 0.071* | |
C6 | 0.48068 (12) | 0.40141 (16) | 0.32165 (8) | 0.0490 (3) | |
C7 | 0.40109 (13) | 0.3340 (2) | 0.35836 (10) | 0.0624 (4) | |
H7 | 0.318208 | 0.325327 | 0.324040 | 0.075* | |
C8 | 0.44443 (13) | 0.2795 (2) | 0.44606 (10) | 0.0619 (4) | |
H8 | 0.390386 | 0.233633 | 0.470096 | 0.074* | |
C9 | 0.48064 (13) | 0.56038 (17) | 0.19145 (9) | 0.0539 (3) | |
C10 | 0.41025 (12) | 0.58347 (17) | 0.09278 (9) | 0.0512 (3) | |
C11 | 0.38681 (13) | 0.73080 (17) | 0.05690 (10) | 0.0532 (3) | |
C12 | 0.32771 (14) | 0.7548 (2) | −0.03390 (11) | 0.0629 (4) | |
H12 | 0.311768 | 0.854402 | −0.056485 | 0.075* | |
C13 | 0.29218 (15) | 0.6303 (2) | −0.09134 (10) | 0.0668 (4) | |
H13 | 0.252995 | 0.646157 | −0.152872 | 0.080* | |
C14 | 0.31454 (15) | 0.4827 (2) | −0.05786 (10) | 0.0634 (4) | |
H14 | 0.291076 | 0.398867 | −0.096645 | 0.076* | |
C15 | 0.37213 (14) | 0.45989 (19) | 0.03382 (10) | 0.0574 (4) | |
H15 | 0.385567 | 0.360130 | 0.056397 | 0.069* | |
C16 | 0.52387 (15) | 0.93013 (18) | 0.12475 (11) | 0.0606 (4) | |
C17 | 0.5436 (2) | 1.0612 (2) | 0.18968 (14) | 0.0858 (6) | |
H17A | 0.559486 | 1.021628 | 0.249346 | 0.129* | |
H17B | 0.471610 | 1.124674 | 0.172543 | 0.129* | |
H17C | 0.612495 | 1.121222 | 0.188800 | 0.129* | |
N1 | 0.43273 (11) | 0.45087 (15) | 0.23117 (7) | 0.0547 (3) | |
H1 | 0.366161 | 0.407257 | 0.197490 | 0.066* | |
O1 | 0.72755 (11) | 0.25066 (17) | 0.63648 (8) | 0.0776 (4) | |
O2 | 0.57285 (12) | 0.63430 (15) | 0.23103 (8) | 0.0745 (4) | |
O3 | 0.41633 (10) | 0.85821 (13) | 0.11491 (8) | 0.0629 (3) | |
O4 | 0.58982 (12) | 0.89231 (15) | 0.08529 (9) | 0.0739 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0814 (12) | 0.1205 (18) | 0.0571 (9) | 0.0023 (11) | 0.0223 (9) | 0.0268 (10) |
C2 | 0.0559 (8) | 0.0687 (9) | 0.0445 (7) | 0.0146 (6) | 0.0127 (6) | 0.0053 (6) |
C3 | 0.0473 (7) | 0.0592 (8) | 0.0412 (6) | 0.0072 (5) | 0.0108 (5) | 0.0026 (5) |
C4 | 0.0424 (7) | 0.0737 (10) | 0.0497 (7) | −0.0019 (6) | 0.0030 (5) | 0.0093 (6) |
C5 | 0.0461 (7) | 0.0745 (10) | 0.0496 (7) | −0.0079 (6) | 0.0087 (6) | 0.0102 (6) |
C6 | 0.0478 (7) | 0.0533 (7) | 0.0391 (6) | −0.0021 (5) | 0.0067 (5) | 0.0010 (5) |
C7 | 0.0422 (7) | 0.0892 (11) | 0.0470 (7) | −0.0061 (7) | 0.0045 (5) | 0.0094 (7) |
C8 | 0.0470 (7) | 0.0872 (11) | 0.0497 (7) | −0.0017 (7) | 0.0146 (6) | 0.0110 (7) |
C9 | 0.0555 (7) | 0.0560 (8) | 0.0444 (7) | −0.0038 (6) | 0.0101 (6) | 0.0016 (5) |
C10 | 0.0477 (7) | 0.0579 (8) | 0.0452 (7) | −0.0002 (5) | 0.0127 (5) | 0.0061 (6) |
C11 | 0.0479 (7) | 0.0588 (8) | 0.0545 (7) | 0.0020 (6) | 0.0198 (6) | 0.0055 (6) |
C12 | 0.0563 (8) | 0.0691 (10) | 0.0619 (9) | 0.0089 (7) | 0.0190 (7) | 0.0216 (7) |
C13 | 0.0589 (8) | 0.0881 (12) | 0.0467 (7) | −0.0016 (8) | 0.0102 (6) | 0.0154 (7) |
C14 | 0.0633 (9) | 0.0749 (10) | 0.0465 (7) | −0.0083 (7) | 0.0122 (6) | −0.0003 (7) |
C15 | 0.0595 (8) | 0.0576 (8) | 0.0495 (7) | −0.0028 (6) | 0.0118 (6) | 0.0045 (6) |
C16 | 0.0676 (9) | 0.0522 (8) | 0.0618 (8) | 0.0008 (6) | 0.0223 (7) | 0.0114 (6) |
C17 | 0.1228 (17) | 0.0633 (10) | 0.0751 (12) | −0.0140 (11) | 0.0391 (12) | −0.0023 (9) |
N1 | 0.0501 (6) | 0.0636 (7) | 0.0401 (6) | −0.0099 (5) | 0.0029 (4) | 0.0047 (5) |
O1 | 0.0566 (7) | 0.1113 (11) | 0.0531 (6) | 0.0140 (6) | 0.0042 (5) | 0.0188 (6) |
O2 | 0.0769 (8) | 0.0774 (8) | 0.0537 (6) | −0.0279 (6) | 0.0031 (5) | 0.0077 (5) |
O3 | 0.0680 (7) | 0.0566 (6) | 0.0695 (7) | 0.0020 (5) | 0.0307 (5) | 0.0010 (5) |
O4 | 0.0680 (7) | 0.0697 (8) | 0.0905 (9) | −0.0052 (5) | 0.0356 (7) | 0.0014 (6) |
C1—C2 | 1.490 (3) | C9—C10 | 1.5022 (18) |
C1—H1A | 0.9600 | C10—C11 | 1.389 (2) |
C1—H1B | 0.9600 | C10—C15 | 1.390 (2) |
C1—H1C | 0.9600 | C11—C12 | 1.375 (2) |
C2—O1 | 1.221 (2) | C11—O3 | 1.4024 (18) |
C2—C3 | 1.4848 (18) | C12—C13 | 1.380 (3) |
C3—C4 | 1.388 (2) | C12—H12 | 0.9300 |
C3—C8 | 1.3890 (19) | C13—C14 | 1.378 (2) |
C4—C5 | 1.3759 (19) | C13—H13 | 0.9300 |
C4—H4 | 0.9300 | C14—C15 | 1.384 (2) |
C5—C6 | 1.3902 (19) | C14—H14 | 0.9300 |
C5—H5 | 0.9300 | C15—H15 | 0.9300 |
C6—C7 | 1.382 (2) | C16—O4 | 1.191 (2) |
C6—N1 | 1.4101 (16) | C16—O3 | 1.358 (2) |
C7—C8 | 1.384 (2) | C16—C17 | 1.497 (3) |
C7—H7 | 0.9300 | C17—H17A | 0.9600 |
C8—H8 | 0.9300 | C17—H17B | 0.9600 |
C9—O2 | 1.2194 (18) | C17—H17C | 0.9600 |
C9—N1 | 1.3619 (19) | N1—H1 | 0.8600 |
C2—C1—H1A | 109.5 | C11—C10—C9 | 120.41 (13) |
C2—C1—H1B | 109.5 | C15—C10—C9 | 121.66 (13) |
H1A—C1—H1B | 109.5 | C12—C11—C10 | 121.50 (14) |
C2—C1—H1C | 109.5 | C12—C11—O3 | 118.87 (14) |
H1A—C1—H1C | 109.5 | C10—C11—O3 | 119.49 (12) |
H1B—C1—H1C | 109.5 | C11—C12—C13 | 119.64 (15) |
O1—C2—C3 | 120.27 (15) | C11—C12—H12 | 120.2 |
O1—C2—C1 | 119.83 (14) | C13—C12—H12 | 120.2 |
C3—C2—C1 | 119.89 (14) | C14—C13—C12 | 120.25 (14) |
C4—C3—C8 | 118.28 (12) | C14—C13—H13 | 119.9 |
C4—C3—C2 | 118.95 (13) | C12—C13—H13 | 119.9 |
C8—C3—C2 | 122.74 (14) | C13—C14—C15 | 119.59 (15) |
C5—C4—C3 | 121.56 (13) | C13—C14—H14 | 120.2 |
C5—C4—H4 | 119.2 | C15—C14—H14 | 120.2 |
C3—C4—H4 | 119.2 | C14—C15—C10 | 121.16 (15) |
C4—C5—C6 | 119.58 (14) | C14—C15—H15 | 119.4 |
C4—C5—H5 | 120.2 | C10—C15—H15 | 119.4 |
C6—C5—H5 | 120.2 | O4—C16—O3 | 123.25 (16) |
C7—C6—C5 | 119.67 (13) | O4—C16—C17 | 126.61 (17) |
C7—C6—N1 | 118.01 (12) | O3—C16—C17 | 110.13 (15) |
C5—C6—N1 | 122.28 (13) | C16—C17—H17A | 109.5 |
C6—C7—C8 | 120.17 (13) | C16—C17—H17B | 109.5 |
C6—C7—H7 | 119.9 | H17A—C17—H17B | 109.5 |
C8—C7—H7 | 119.9 | C16—C17—H17C | 109.5 |
C7—C8—C3 | 120.73 (14) | H17A—C17—H17C | 109.5 |
C7—C8—H8 | 119.6 | H17B—C17—H17C | 109.5 |
C3—C8—H8 | 119.6 | C9—N1—C6 | 126.92 (12) |
O2—C9—N1 | 124.00 (13) | C9—N1—H1 | 116.5 |
O2—C9—C10 | 121.78 (13) | C6—N1—H1 | 116.5 |
N1—C9—C10 | 114.22 (12) | C16—O3—C11 | 116.38 (12) |
C11—C10—C15 | 117.84 (13) | ||
O1—C2—C3—C4 | 4.4 (2) | C9—C10—C11—C12 | 176.85 (13) |
C1—C2—C3—C4 | −174.76 (17) | C15—C10—C11—O3 | 175.68 (13) |
O1—C2—C3—C8 | −177.69 (16) | C9—C10—C11—O3 | −7.6 (2) |
C1—C2—C3—C8 | 3.1 (2) | C10—C11—C12—C13 | −1.0 (2) |
C8—C3—C4—C5 | −0.4 (2) | O3—C11—C12—C13 | −176.59 (14) |
C2—C3—C4—C5 | 177.60 (15) | C11—C12—C13—C14 | 0.7 (2) |
C3—C4—C5—C6 | 1.1 (3) | C12—C13—C14—C15 | 0.4 (3) |
C4—C5—C6—C7 | −1.0 (2) | C13—C14—C15—C10 | −1.3 (2) |
C4—C5—C6—N1 | −178.77 (15) | C11—C10—C15—C14 | 1.1 (2) |
C5—C6—C7—C8 | 0.2 (3) | C9—C10—C15—C14 | −175.65 (14) |
N1—C6—C7—C8 | 178.10 (15) | O2—C9—N1—C6 | −1.7 (3) |
C6—C7—C8—C3 | 0.5 (3) | C10—C9—N1—C6 | 178.01 (13) |
C4—C3—C8—C7 | −0.4 (3) | C7—C6—N1—C9 | 156.85 (16) |
C2—C3—C8—C7 | −178.31 (16) | C5—C6—N1—C9 | −25.3 (2) |
O2—C9—C10—C11 | −43.7 (2) | O4—C16—O3—C11 | 2.0 (2) |
N1—C9—C10—C11 | 136.62 (15) | C17—C16—O3—C11 | −178.92 (13) |
O2—C9—C10—C15 | 132.97 (18) | C12—C11—O3—C16 | −85.66 (17) |
N1—C9—C10—C15 | −46.7 (2) | C10—C11—O3—C16 | 98.63 (16) |
C15—C10—C11—C12 | 0.1 (2) |
Cg1 is the centroid of the C10–C15 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O2 | 0.93 | 2.35 | 2.8792 (19) | 116 |
C12—H12···O4i | 0.93 | 2.59 | 3.396 (2) | 145 |
N1—H1···O1ii | 0.86 | 2.08 | 2.9181 (16) | 164 |
C8—H8···Cg1iii | 0.93 | 3.20 | 4.0960 (15) | 164 |
Symmetry codes: (i) −x+1, −y+2, −z; (ii) x−1/2, −y+1/2, z−1/2; (iii) −x+1/2, y−1/2, −z+1/2. |
Acknowledgements
We are grateful for support by the National Research Center, Cairo, Egypt, and by Cardiff University, UK. We would like to thank the National Cancer Institute, NIH, USA for estimating the in vitro antiproliferative activity.
References
Abd-El-Aziz, A. S., Benaaisha, M. R., Abdelghani, A. A., Bissessur, R., Abdel-Rahman, L. H., Fayez, A. M. & El-ezz, D. A. (2021). Biomolecules, 11, 1568. Web of Science PubMed Google Scholar
Alfonso, L., Ai, G., Spitale, R. C. & Bhat, G. J. (2014). Br. J. Cancer, 111, 61–67. Web of Science CrossRef CAS PubMed Google Scholar
Bellosillo, B., Piqué, M., Barragán, M., Castaño, E., Villamor, N., Colomer, D., Montserrat, E., Pons, G. & Gil, J. (1998). Blood, 92, 1406–1414. CrossRef CAS PubMed Google Scholar
Brune, K. & Patrignani, P. (2015). J Pain Res. pp. 105–118. Web of Science CrossRef PubMed Google Scholar
Drew, D. A., Cao, Y. & Chan, A. T. (2016). Nat. Rev. Cancer, 16, 173–186. Web of Science CrossRef CAS PubMed Google Scholar
Eissa, I. H., Mohammad, H., Qassem, O. A., Younis, W., Abdelghany, T. M., Elshafeey, A., Abd Rabo Moustafa, M. M., Seleem, M. N. & Mayhoub, A. S. (2017). Eur. J. Med. Chem. 130, 73–85. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gao, S., Xu, Z., Wang, X., Feng, H., Wang, L., Zhao, Y., Wang, Y. & Tang, X. (2014). Asian J. Chem. 26, 7157–7159. CrossRef Google Scholar
Garcia-Albeniz, X. & Chan, A. T. (2011). Best Pract. Res. Clin. Gastroenterol. 25, 461–472. Web of Science CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gu, Q., Wang, J. D., Xia, H. H., Lin, M. C., He, H., Zou, B., Tu, S. P., Yang, Y., Liu, X. G., Lam, S. K., Wong, W. M., Chan, A. O., Yuen, M. F., Kung, H. F. & Wong, B. C. (2005). Carcinogenesis, 26, 541–546. Web of Science CrossRef PubMed CAS Google Scholar
Lichtenberger, L. M. & Vijayan, K. V. (2019). Cancer Res. 79, 3820–3823. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mourad, A. A. E., Mourad, M. A. E. & Jones, P. G. (2020). Drug. Des. Dev. Ther. Vol. 14, 3111–3130. Web of Science CSD CrossRef CAS Google Scholar
Ngaini, Z., Mohd Arif, M. A., Hussain, H., Mei, E. S., Tang, D. & Kamaluddin, D. H. (2012). Phosphorus Sulfur Silicon, 187, 1–7. Web of Science CrossRef CAS Google Scholar
Pinto, A., Di Raimondo, D., Tuttolomondo, A., Buttà, C. & Licata, G. (2013). Curr. Vasc. Pharmacol. 11, 803–811. Web of Science CrossRef CAS PubMed Google Scholar
Ranger, G. S., McKinley-Brown, C., Rogerson, E. & Schimp-Manuel, K. (2020). Permanente J. 24, 19.116. CrossRef Google Scholar
Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sharma, H., Patil, S., Sanchez, T. W., Neamati, N., Schinazi, R. F. & Buolamwini, J. K. (2011). Bioorg. Med. Chem. 19, 2030–2045. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shen, X. & Shen, X. (2021). Int. J. Cancer, 148, 1323–1330. Web of Science CrossRef CAS PubMed Google Scholar
Stark, L. A., Reid, K., Sansom, O. J., Din, F. V., Guichard, S., Mayer, I., Jodrell, D. I., Clarke, A. R. & Dunlop, M. G. (2007). Carcinogenesis, 28, 968–976. Web of Science CrossRef PubMed CAS Google Scholar
Tran, P. H. L., Lee, B. J. & Tran, T. T. D. (2021). Curr. Pharm. Des. 27, 2209–2220. Web of Science CrossRef CAS PubMed Google Scholar
Tyler, A. R., Ragbirsingh, R., McMonagle, C. J., Waddell, P. G., Heaps, S. E., Steed, J. W., Thaw, P., Hall, M. J. & Probert, M. R. (2020). Chem, 6, 1755–1765. Web of Science CSD CrossRef CAS PubMed Google Scholar
Usman, M. W., Luo, F., Cheng, H., Zhao, J. J. & Liu, P. (2015). Biochim. Biophys. Acta, 1855, 254–263. Web of Science CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.