research communications
of dibenzylammonium hydrogen (4-aminophenyl)arsonate monohydrate
aLaboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bICMUB UMR 6302, Université de Bourgogne (UB), Faculté des Sciences, 9 avenue Alain Savary, 21000 DIJON, France
*Correspondence e-mail: waly.diallo@ucad.edu.sn, hcattey@u-bourgogne.fr
This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.
The title salt, C14H16N+·C6H7AsNO3−·H2O or [(C6H5CH2)2NH2][H2NC6H4As(OH)O2]·H2O, (I), was synthesized by mixing an aqueous solution of (4-aminophenyl)arsonic acid with an ethanolic solution of dibenzylamine at room temperature. Compound I crystallizes in the monoclinic P21/c The three components forming I are linked via N—H⋯O and O—H⋯O intermolecular hydrogen bonds, resulting in the propagation of an infinite zigzag chain. Additional weak interactions between neighbouring chains, such as π–π and N—H⋯O contacts, involving phenyl rings, –NH2 and –As(OH)O3 functions, and H2O, respectively, lead to a three-dimensional network.
Keywords: crystal structure; group 15 - pnictogen elements; organic salt; phenylarsonic derivatives; hydrogen bonds; infinite chain.
CCDC reference: 2297206
1. Chemical context
Organoarsenic compounds have been known for a long time and sparked great interest when they were discovered. Tetramethyldiarsine (Me2As-AsMe2), commonly known as Cacodyl, was isolated in the middle of the 18th century by Cadet de Glaussicourt (Garje & Jain, 1999). During the next century, in 1859, Antoine Béchamp reported the synthesis of p-arsanilic acid sodium salt (named Atoxyl) by reacting aniline with arsenic acid. This compound was employed for pharmaceutical applications, in particular against trypanosomal infection. Subsequently, in the early 20th century, Paul Ehrlich was inspired by this work to develop a new organoarsenic derivative, called Arsphenamine or Salvarsan (Ehrlich & Bertheim, 1907). This molecule has proved particularly effective in the treatment of syphilis and sleeping sickness (African Trypanosomiasis) and is considered as being the first chemotherapeutic agent (Williams, 2009). The use of organoarsenicals as medicines was subsequently abandoned in favour of penicillin, as they were found to be highly toxic to humans, causing significant side effects (including blindness). However, they have continued to be used, until recently, as feed additives and veterinary drugs, particularly in the livestock and poultry breeding industry, but with serious negative effects on the environment. Soil and groundwater contamination resulting from the excessive use of aromatic organoarsenic compounds is now a major environmental concern (Fei et al., 2018). Current investigations involving academics focus on improving analytical detection (Depalma et al., 2008; Yang et al., 2018) and remediation methods (Jun et al., 2015; Chen et al., 2022).
From a structural point of view, the ). Since then, the X-ray structure for the zwitterionic form of p-arsanilic acid (p-ammoniophenylarsonate) has been determined (CUDSEZ: Shimada, 1961; CUDSEZ01: Nuttall & Hunter, 1996) as well as of the hydrated ammonium and sodium salt hydrates of 4-aminophenylarsonic acid (KOKWOY, KOKWUE: Smith & Wermuth, 2014). We report herein the structure of a new salt of 4-aminophenylarsonate, isolated from a mixture of (4-aminophenyl)arsonic acid and dibenzylamine and characterized as dibenzylammonium hydrogen (4-aminophenyl)arsonate monohydrate, [(C6H5CH2)2NH2][H2NC6H4As(OH)O2]·H2O (I).
of phenylarsonic acid was first solved in the early 1960s (refcode ARSACP: Shimada, 19602. Structural commentary
The , comprises one dibenzylammonium cation [(C6H5CH2)2NH2]+, one hydrogen (4-aminophenyl)arsonate anion [H2NC6H5As(OH)O2]− and one water molecule of solvation. The three components of I are linked together through intermolecular N—H⋯O and O—H⋯O hydrogen bonds. The As atom of the anion is bonded to three O atoms and one carbon atom of the phenyl ring, describing a slightly distorted tetrahedral geometry [O1—As—C1 = 103.71 (6)°, O2—As—C1 = 110.47 (6)°, O3—As—C1 = 111.73 (6)°, O2—As—O1 = 110.71 (5)°, O3—As—O1 = 108.46 (5)°, O3—As—O2 = 111.48 (5)°]. The As—O bonds exhibit two distinct lengths: As—O1 = 1.7267 (10) Å, and As—O2 = 1.6730 (10) Å and As—O3 =1.6699 (10) Å, which can be considered to be identical. The As—O1 distance is consistent with the presence of a hydroxyl group (Yang et al., 2002), while the As—O2 and As—O3 distances, which are shorter, reflect rather a double-bond character. In the literature, based on a comparison of structural examples, the average length of the As—O bond is defined as 1.77 Å and that of the As=O bond as 1.67 Å (Nuttall & Hunter, 1996). The nature of the As=O2 and As=O3 double bonds implies that the negative charge is delocalized on the arsonate. The three oxygen atoms of the arsonate function are engaged in hydrogen bonding, the O1 and O2 atoms being linked head-to-tail [O1—H⋯O2iv, D⋯A = 2.5444 (15) Å; symmetry code: (iv) −x, −y + 1, −z + 1, Table 1]. The length of the As—C1 bond [1.8955 (13) Å] is within the range of values measured for related compounds such as ammonium 4-nitrophenylarsonate (Yang et al., 2002) and guanidinium phenylarsonate (Smith & Wermuth, 2010). An amino group is positioned on the phenyl ring in the para position to the arsonate function. Both functional groups are contained in the plane of the phenyl ring. The negative charge of [H2NC6H4As(OH)O2]− is compensated by the presence of one dibenzylammonium cation, [(C6H5CH2)2NH2]+, whose NH2+ group is hydrogen bonded to the oxygen atom O3 of the arsonate function [N1—H1A⋯O3, D⋯A = 2.6842 (16) Å, N1—H1B⋯O3iii, D⋯A = 2.7260 (15) Å; symmetry code: (iii) −x + 1, −y + 1, −z + 1]. Moreover, the dibenzylammonium cation shows a syn–anti conformation, displaying C—C—N—C torsion angles of 57.65 (16)° and −178.14 (11)°, which are in the range of previous examples of X-ray structures involving [(C6H5CH2)2NH2]+ (Trivedi & Dastidar, 2006). A water molecule (co-solvent of the reaction) participates in a hydrogen-bond interaction with the oxygen atom O2 of –As(OH)O2− [O4—H4A⋯O2V, D⋯A = 2.8074 (18) Å; symmetry code: (v) 1 + x, y, z] completes the composition of salt I. From a spectroscopic point of view, the infrared spectrum of I (ATR mode) highlights ν(As—C) and ν(As—O) absorption bands, which are characteristic of the arsonate function (Cowen et al., 2008), at 1096 cm−1 and between 925–690 cm−1, respectively. The percentages of C, H, N and O determined by elemental analysis support the chemical composition of I, but show that the salt is partially dehydrated (see the Synthesis and crystallization section).
of the title salt, which is depicted in Fig. 13. Supramolecular features
At the supramolecular stage, two levels of organization can be observed in the I:
of(i) The propagation of one-dimensional zigzag chains along the a-axis direction resulting from the hydrogen-bonding interactions (Fig. 2). The NH2 groups of two dibenzylammonium cations are involved in two independent hydrogen bonds, oriented perpendicularly [O3⋯N1⋯O3 = 92.63 (5)°], with the oxygen atoms O3 of two arsonate moieties [N1—H1A⋯O3 and N1—H1B⋯O3iii, Table 1]. This leads to the formation of a tetrameric unit describing a four-membered ring (Fig. 3). These units are linked together by two additional and parallel hydrogen bonds involving two hydrogen (4-aminophenyl)arsonate anions [O1—H1⋯O2iv, Table 1]. This creates a six-membered ring. In addition, the water molecule contained in I is also in hydrogen-bonding interaction with the oxygen atom O2 of the arsonate group [O4—H4A⋯O2v, Table 1]. The 4-aminophenyl groups can be viewed as perpendicular to the chain axis and positioned alternately on either side of it.
(ii) The association of chains leading to a three-dimensional network and resulting from a combination of weak interactions (Fig. 4). Two types of π–π stacking interactions involving the phenyl rings of the dibenzylammonium cations can be described (Fig. 5): (a) centroid(C15–C20)–centroid (C15i–C20i) = 3.9384 (10) Å, interplanar distance = 3.4310 (18) Å, slip angle (angle between the normal to the plane and the centroid–centroid vector) = 29.4, corresponding to a slippage distance of 1.933 Å; symmetry code: (i) 1 − x, 2 − y, 1 − z; (b) centroid(C8–C13)–centroid(C15ii–C20ii) = 4.0178 (10) Å, interplanar distance = 3.5093 (6) Å, slip angle = 29.1°, corresponding to a slippage distance of 1.957 Å; symmetry code: (ii) 1 − x, − + y, − z. In addition, the NH2 groups located in the para position of C6H4As(OH)O2, interact via hydrogen bonding with a water molecule [N2—H2A⋯O41 = 3.165 (2) Å] and the O1 oxygen atom of an adjacent –As(OH)O2 function [N2—H2B⋯O1ii = 3.0769 (17) Å] (symmetry codes as in Table 1).
4. Database survey
A search of the Cambridge Structural Database (WebCSD update 11/2022; Groom et al., 2016), revealed that, to date, there are relatively few X-ray structures exhibiting the isolated hydrogen phenylarsonate moiety, C6H5As(OH)O2−. To our knowledge, eleven examples including this fragment have already been identified: ammonium 4-nitrophenylarsonate (AHILAE: Yang et al., 2002), guanidinium phenylarsonate guanidine dihydrate (DUSCIE: Smith & Wermuth, 2010), p-aminophenylarsonic acid (CUDSEZ: Shimada, 1961; CUDSEZ01: Nuttall & Hunter, 1996), ammonium hydrogen (4-aminophenyl)arsonate monohydrate (KOKWOY: Smith & Wermuth, 2014), 1-(4-hydroxy-2-methylphenyl)-2,4,6-triphenylpyridinium hydrogen o-arsanilate monohydrate (PAZRIS: Wojtas et al., 2006), tetrabutylammonium hydrogen phenylarsonate–phenylarsonic acid (QECBEH: Reck & Schmitt, 2012), 3-ammonio-4-hydroxyphenylarsonate (ROBDAO: Lloyd et al., 2008), hexaaquamanganese(II) bis[hydrogen (4-aminophenyl)arsonate] tetrahydrate (UBURIV: Smith & Wermuth, 2016a), hexaaqua-magnesium bis(hydrogen (4-aminophenyl)arsonate) tetrahydrate (UDAPIB: Smith & Wermuth, 2017a), 2,3-dimethoxy-10-oxostrychnidin-19-ium hydrogen (4-aminophenyl)arsonate tetrahydrate (ULIROY: Smith & Wermuth, 2016b), 2,4-diamino-5-(3,4,5-trimethoxybenzyl)pyrimidinium 4-hydroxy-3-nitrophenylarsonate monohydrate (XEMZIZ: Pan et al., 2006). In coordination chemistry, phenylarsonic acid and its derivatives constitute also suitable ligands to generate coordination polymers and heteropolyoxometalates in the presence of transition metals (Lesikar-Parrish et al., 2013), main-group metals (Xie et al., 2008), alkali metals (Smith & Wermuth, 2017a) and alkali-earth metal precursors (Smith & Wermuth, 2017b). Regarding the dibenzylammonium cation, [(C6H5CH2)2NH2]+, 117 hits incorporating such an entity were found in the Cambridge Structural Database.
5. Synthesis and crystallization
All chemicals were purchased from Sigma-Aldrich (Germany) and used without any further purification. (4-Aminophenyl)arsonic acid [H2NC6H4As(OH)2O] was prepared according to a previous work (Lewis & Cheetham, 1923), by reacting aniline (C6H5NH2) and arsenic acid (As(OH)3O). The title salt was obtained by neutralization of an aqueous solution (20 mL) of (4-aminophenyl)arsonic acid (2.15 g, 9.90 mmol) with dibenzylamine ((C6H5CH2)2NH) (3.90 g, 19.80 mmol) dissolved in 20 mL of ethanol. The mixture was stirred for about two h at room temperature (301 K). After three days of slow solvent evaporation, colourless prism-shaped crystals of [(C6H5CH2)2NH2][H2NC6H4As(OH)O2]·H2O (5.25 g, 64% yield), suitable for an X-ray crystallographic analysis, were collected from the solvent (m.p. 393 K). FT–IR (ATR, Bruker Alpha FTIR spectrometer, cm−1): 3447, 3304, 3187, 1595, 1501, 1454, 1096, 923, 878, 825,752, 735, 695. Elemental analysis (Elemental Analyser, ThermoFisher FlashSmart CHNS/O) – analysis calculated for C20H23N2O3As·0.25H2O (418.83), salt I partially dehydrated: C, 57.35; H, 5.66; N, 6.69; O, 12.41; found: C, 57.82; H, 5.61; N, 6.62; O, 12.37%.
6. details
Crystal data, data collection and structure . The contains the dibenzylammonium hydrogen (4-aminophenyl)arsonate monohydrate. The water molecule was found disordered over two main positions with occupancy factors that converged to 0.94:0.06. Hence, the minor part of the water molecule was refined only isotropically and without the hydrogen atoms. The hydrogen atoms for the major component of the water molecule were refined geometrically as a rigid group (O—H = 0.87 Å) with Uiso(H) = 1.5Ueq(O). C-bound hydrogen atoms were placed at calculated positions [C—H = 0.95 Å (aromatic) or 0.99 Å (methylene group)] and H atoms of the NH2 and OH terminal groups were placed geometrically (N—H = 0.83–0.84 Å, O—H = 0.83 Å) and refined as riding with Uiso(H) = 1.2Ueq(N, C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 2297206
https://doi.org/10.1107/S205698902300837X/dj2065sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902300837X/dj2065Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902300837X/dj2065Isup3.cml
Data collection: APEX2 V8.34A (Bruker, 2014); cell
SAINT V8.34A (Bruker, 2013); data reduction: SAINT V8.34A (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).C14H16N+·C6H7AsNO3−·H2O | F(000) = 896 |
Mr = 432.34 | Dx = 1.438 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.8242 (5) Å | Cell parameters from 9824 reflections |
b = 10.6574 (6) Å | θ = 2.8–27.5° |
c = 19.2507 (11) Å | µ = 1.73 mm−1 |
β = 97.7500 (18)° | T = 100 K |
V = 1997.15 (19) Å3 | Prism, clear light colourless |
Z = 4 | 0.5 × 0.25 × 0.18 mm |
Bruker D8 VENTURE diffractometer | 4584 independent reflections |
Radiation source: X-ray tube, Siemens KFF Mo 2K-90C | 4119 reflections with I > 2σ(I) |
TRIUMPH curved crystal monochromator | Rint = 0.037 |
Detector resolution: 1024 x 1024 pixels mm-1 | θmax = 27.5°, θmin = 2.8° |
φ and ω scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −13→13 |
Tmin = 0.610, Tmax = 0.746 | l = −24→25 |
67932 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.022 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.054 | w = 1/[σ2(Fo2) + (0.0228P)2 + 1.3431P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
4584 reflections | Δρmax = 0.42 e Å−3 |
261 parameters | Δρmin = −0.21 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
As | 0.15165 (2) | 0.51188 (2) | 0.42563 (2) | 0.01186 (5) | |
O1 | 0.04372 (11) | 0.38487 (9) | 0.42927 (6) | 0.0184 (2) | |
O2 | 0.09995 (10) | 0.63317 (9) | 0.47065 (5) | 0.0167 (2) | |
O3 | 0.31128 (10) | 0.46779 (10) | 0.45696 (5) | 0.0176 (2) | |
N2 | 0.08041 (14) | 0.62660 (14) | 0.11336 (7) | 0.0208 (3) | |
H2A | 0.062 (2) | 0.565 (2) | 0.0867 (10) | 0.025* | |
H2B | 0.043 (2) | 0.694 (2) | 0.1009 (10) | 0.025* | |
C1 | 0.13469 (13) | 0.55046 (13) | 0.32872 (7) | 0.0126 (3) | |
C2 | 0.13667 (14) | 0.45347 (13) | 0.27999 (7) | 0.0152 (3) | |
H2 | 0.149937 | 0.369445 | 0.295952 | 0.018* | |
C3 | 0.11956 (15) | 0.47831 (14) | 0.20880 (7) | 0.0164 (3) | |
H3 | 0.121018 | 0.411363 | 0.176326 | 0.020* | |
C4 | 0.10001 (14) | 0.60216 (14) | 0.18428 (7) | 0.0150 (3) | |
C5 | 0.10337 (14) | 0.69966 (13) | 0.23332 (8) | 0.0166 (3) | |
H5 | 0.094757 | 0.784146 | 0.217604 | 0.020* | |
C6 | 0.11920 (14) | 0.67391 (13) | 0.30476 (7) | 0.0150 (3) | |
H6 | 0.119468 | 0.740721 | 0.337450 | 0.018* | |
O4 | 0.94231 (17) | 0.85325 (13) | 0.45149 (7) | 0.0389 (3) | 0.94 |
H4A | 0.999317 | 0.790435 | 0.455138 | 0.058* | 0.94 |
H4B | 0.870836 | 0.825432 | 0.468917 | 0.058* | 0.94 |
N1 | 0.43532 (12) | 0.63057 (11) | 0.55144 (6) | 0.0142 (2) | |
H1A | 0.391629 | 0.570678 | 0.522995 | 0.017* | |
H1B | 0.523283 | 0.604491 | 0.564385 | 0.017* | |
C7 | 0.36565 (15) | 0.64208 (13) | 0.61550 (7) | 0.0156 (3) | |
H7A | 0.268703 | 0.667011 | 0.601690 | 0.019* | |
H7B | 0.411155 | 0.708549 | 0.646221 | 0.019* | |
C8 | 0.37054 (14) | 0.52036 (13) | 0.65533 (7) | 0.0134 (3) | |
C9 | 0.49603 (15) | 0.46656 (14) | 0.68231 (8) | 0.0167 (3) | |
H9 | 0.579319 | 0.506225 | 0.674660 | 0.020* | |
C10 | 0.50021 (15) | 0.35571 (14) | 0.72019 (8) | 0.0194 (3) | |
H10 | 0.586162 | 0.319539 | 0.738161 | 0.023* | |
C11 | 0.37894 (16) | 0.29743 (15) | 0.73190 (8) | 0.0227 (3) | |
H11 | 0.381734 | 0.221469 | 0.757878 | 0.027* | |
C12 | 0.25392 (16) | 0.35050 (15) | 0.70557 (9) | 0.0251 (3) | |
H12 | 0.170863 | 0.311054 | 0.713808 | 0.030* | |
C13 | 0.24933 (15) | 0.46135 (15) | 0.66711 (8) | 0.0200 (3) | |
H13 | 0.163208 | 0.496855 | 0.648829 | 0.024* | |
C14 | 0.43754 (16) | 0.75047 (14) | 0.51084 (8) | 0.0194 (3) | |
H14A | 0.342130 | 0.775473 | 0.493084 | 0.023* | |
H14B | 0.486851 | 0.736507 | 0.469927 | 0.023* | |
C15 | 0.50659 (15) | 0.85489 (14) | 0.55510 (8) | 0.0182 (3) | |
C16 | 0.42794 (16) | 0.94873 (15) | 0.57986 (8) | 0.0220 (3) | |
H16 | 0.330863 | 0.947490 | 0.568182 | 0.026* | |
C17 | 0.49027 (19) | 1.04468 (15) | 0.62169 (9) | 0.0277 (4) | |
H17 | 0.435865 | 1.108628 | 0.638562 | 0.033* | |
C18 | 0.6313 (2) | 1.04676 (17) | 0.63861 (9) | 0.0322 (4) | |
H18 | 0.673979 | 1.112232 | 0.667157 | 0.039* | |
C19 | 0.71081 (18) | 0.95354 (18) | 0.61403 (10) | 0.0323 (4) | |
H19 | 0.807876 | 0.955423 | 0.625699 | 0.039* | |
C20 | 0.64919 (16) | 0.85748 (16) | 0.57247 (9) | 0.0249 (3) | |
H20 | 0.703946 | 0.793541 | 0.555854 | 0.030* | |
H1 | 0.002 (3) | 0.386 (3) | 0.4638 (14) | 0.062 (8)* | |
O4B | 0.729 (2) | 0.7346 (18) | 0.4434 (10) | 0.026 (4)* | 0.06 |
U11 | U22 | U33 | U12 | U13 | U23 | |
As | 0.01149 (7) | 0.01330 (7) | 0.01092 (7) | −0.00011 (5) | 0.00195 (5) | −0.00127 (5) |
O1 | 0.0235 (5) | 0.0140 (5) | 0.0192 (5) | −0.0066 (4) | 0.0084 (4) | −0.0043 (4) |
O2 | 0.0200 (5) | 0.0125 (5) | 0.0187 (5) | −0.0005 (4) | 0.0070 (4) | −0.0030 (4) |
O3 | 0.0143 (5) | 0.0226 (5) | 0.0150 (5) | 0.0041 (4) | −0.0009 (4) | −0.0025 (4) |
N2 | 0.0233 (7) | 0.0235 (7) | 0.0151 (6) | 0.0019 (6) | 0.0010 (5) | 0.0037 (5) |
C1 | 0.0096 (6) | 0.0163 (6) | 0.0119 (6) | −0.0005 (5) | 0.0018 (5) | 0.0004 (5) |
C2 | 0.0157 (7) | 0.0132 (6) | 0.0164 (7) | 0.0004 (5) | 0.0011 (5) | 0.0009 (5) |
C3 | 0.0179 (7) | 0.0164 (7) | 0.0147 (7) | 0.0000 (5) | 0.0013 (5) | −0.0022 (5) |
C4 | 0.0097 (6) | 0.0198 (7) | 0.0158 (7) | 0.0003 (5) | 0.0026 (5) | 0.0029 (5) |
C5 | 0.0149 (7) | 0.0140 (6) | 0.0211 (7) | 0.0016 (5) | 0.0035 (5) | 0.0042 (5) |
C6 | 0.0127 (6) | 0.0147 (6) | 0.0179 (7) | −0.0005 (5) | 0.0035 (5) | −0.0018 (5) |
O4 | 0.0569 (10) | 0.0308 (7) | 0.0304 (7) | 0.0169 (7) | 0.0104 (7) | 0.0108 (6) |
N1 | 0.0149 (6) | 0.0140 (6) | 0.0132 (6) | −0.0003 (4) | 0.0007 (4) | 0.0000 (4) |
C7 | 0.0170 (7) | 0.0144 (6) | 0.0160 (7) | 0.0009 (5) | 0.0045 (5) | −0.0008 (5) |
C8 | 0.0143 (6) | 0.0137 (6) | 0.0123 (6) | −0.0003 (5) | 0.0023 (5) | −0.0020 (5) |
C9 | 0.0129 (6) | 0.0194 (7) | 0.0181 (7) | −0.0015 (5) | 0.0031 (5) | 0.0003 (6) |
C10 | 0.0160 (7) | 0.0223 (7) | 0.0198 (7) | 0.0047 (6) | 0.0016 (6) | 0.0031 (6) |
C11 | 0.0253 (8) | 0.0182 (7) | 0.0247 (8) | 0.0005 (6) | 0.0043 (6) | 0.0059 (6) |
C12 | 0.0172 (7) | 0.0229 (8) | 0.0354 (9) | −0.0053 (6) | 0.0044 (7) | 0.0068 (7) |
C13 | 0.0119 (7) | 0.0214 (7) | 0.0260 (8) | −0.0005 (5) | −0.0001 (6) | 0.0028 (6) |
C14 | 0.0230 (8) | 0.0187 (7) | 0.0161 (7) | −0.0018 (6) | 0.0010 (6) | 0.0048 (6) |
C15 | 0.0204 (7) | 0.0173 (7) | 0.0169 (7) | −0.0042 (6) | 0.0022 (6) | 0.0057 (6) |
C16 | 0.0226 (8) | 0.0191 (7) | 0.0246 (8) | −0.0032 (6) | 0.0050 (6) | 0.0045 (6) |
C17 | 0.0409 (10) | 0.0180 (7) | 0.0256 (8) | −0.0041 (7) | 0.0095 (7) | 0.0018 (6) |
C18 | 0.0434 (10) | 0.0244 (8) | 0.0276 (9) | −0.0172 (8) | 0.0004 (8) | 0.0012 (7) |
C19 | 0.0237 (8) | 0.0356 (10) | 0.0358 (10) | −0.0118 (7) | −0.0023 (7) | 0.0051 (8) |
C20 | 0.0207 (8) | 0.0257 (8) | 0.0283 (8) | −0.0022 (6) | 0.0037 (6) | 0.0044 (7) |
As—O1 | 1.7267 (10) | C7—C8 | 1.5044 (19) |
As—O2 | 1.6730 (10) | C8—C9 | 1.395 (2) |
As—O3 | 1.6699 (10) | C8—C13 | 1.392 (2) |
As—C1 | 1.8955 (13) | C9—H9 | 0.9500 |
O1—H1 | 0.83 (3) | C9—C10 | 1.386 (2) |
N2—H2A | 0.84 (2) | C10—H10 | 0.9500 |
N2—H2B | 0.83 (2) | C10—C11 | 1.389 (2) |
N2—C4 | 1.3776 (19) | C11—H11 | 0.9500 |
C1—C2 | 1.3978 (19) | C11—C12 | 1.385 (2) |
C1—C6 | 1.3957 (19) | C12—H12 | 0.9500 |
C2—H2 | 0.9500 | C12—C13 | 1.392 (2) |
C2—C3 | 1.384 (2) | C13—H13 | 0.9500 |
C3—H3 | 0.9500 | C14—H14A | 0.9900 |
C3—C4 | 1.406 (2) | C14—H14B | 0.9900 |
C4—C5 | 1.401 (2) | C14—C15 | 1.506 (2) |
C5—H5 | 0.9500 | C15—C16 | 1.387 (2) |
C5—C6 | 1.391 (2) | C15—C20 | 1.396 (2) |
C6—H6 | 0.9500 | C16—H16 | 0.9500 |
O4—H4A | 0.8696 | C16—C17 | 1.391 (2) |
O4—H4B | 0.8701 | C17—H17 | 0.9500 |
N1—H1A | 0.9100 | C17—C18 | 1.380 (3) |
N1—H1B | 0.9100 | C18—H18 | 0.9500 |
N1—C7 | 1.4939 (17) | C18—C19 | 1.386 (3) |
N1—C14 | 1.4995 (18) | C19—H19 | 0.9500 |
C7—H7A | 0.9900 | C19—C20 | 1.387 (2) |
C7—H7B | 0.9900 | C20—H20 | 0.9500 |
O1—As—C1 | 103.71 (6) | C13—C8—C7 | 120.22 (13) |
O2—As—O1 | 110.71 (5) | C13—C8—C9 | 119.09 (13) |
O2—As—C1 | 110.47 (6) | C8—C9—H9 | 119.7 |
O3—As—O1 | 108.46 (5) | C10—C9—C8 | 120.55 (13) |
O3—As—O2 | 111.48 (5) | C10—C9—H9 | 119.7 |
O3—As—C1 | 111.73 (5) | C9—C10—H10 | 120.0 |
As—O1—H1 | 113.0 (19) | C9—C10—C11 | 120.09 (14) |
H2A—N2—H2B | 116.7 (18) | C11—C10—H10 | 120.0 |
C4—N2—H2A | 116.7 (13) | C10—C11—H11 | 120.1 |
C4—N2—H2B | 116.7 (13) | C12—C11—C10 | 119.73 (14) |
C2—C1—As | 119.52 (10) | C12—C11—H11 | 120.1 |
C6—C1—As | 121.39 (10) | C11—C12—H12 | 119.8 |
C6—C1—C2 | 119.08 (13) | C11—C12—C13 | 120.33 (14) |
C1—C2—H2 | 119.6 | C13—C12—H12 | 119.8 |
C3—C2—C1 | 120.83 (13) | C8—C13—H13 | 119.9 |
C3—C2—H2 | 119.6 | C12—C13—C8 | 120.20 (14) |
C2—C3—H3 | 119.8 | C12—C13—H13 | 119.9 |
C2—C3—C4 | 120.33 (13) | N1—C14—H14A | 109.2 |
C4—C3—H3 | 119.8 | N1—C14—H14B | 109.2 |
N2—C4—C3 | 120.31 (13) | N1—C14—C15 | 111.83 (12) |
N2—C4—C5 | 120.99 (13) | H14A—C14—H14B | 107.9 |
C5—C4—C3 | 118.69 (13) | C15—C14—H14A | 109.2 |
C4—C5—H5 | 119.7 | C15—C14—H14B | 109.2 |
C6—C5—C4 | 120.62 (13) | C16—C15—C14 | 119.86 (14) |
C6—C5—H5 | 119.7 | C16—C15—C20 | 119.40 (14) |
C1—C6—H6 | 119.8 | C20—C15—C14 | 120.73 (14) |
C5—C6—C1 | 120.37 (13) | C15—C16—H16 | 119.8 |
C5—C6—H6 | 119.8 | C15—C16—C17 | 120.45 (15) |
H4A—O4—H4B | 104.5 | C17—C16—H16 | 119.8 |
H1A—N1—H1B | 107.7 | C16—C17—H17 | 120.1 |
C7—N1—H1A | 108.8 | C18—C17—C16 | 119.86 (16) |
C7—N1—H1B | 108.8 | C18—C17—H17 | 120.1 |
C7—N1—C14 | 113.62 (11) | C17—C18—H18 | 119.9 |
C14—N1—H1A | 108.8 | C17—C18—C19 | 120.13 (16) |
C14—N1—H1B | 108.8 | C19—C18—H18 | 119.9 |
N1—C7—H7A | 109.4 | C18—C19—H19 | 119.9 |
N1—C7—H7B | 109.4 | C18—C19—C20 | 120.25 (16) |
N1—C7—C8 | 111.30 (11) | C20—C19—H19 | 119.9 |
H7A—C7—H7B | 108.0 | C15—C20—H20 | 120.0 |
C8—C7—H7A | 109.4 | C19—C20—C15 | 119.91 (16) |
C8—C7—H7B | 109.4 | C19—C20—H20 | 120.0 |
C9—C8—C7 | 120.67 (13) | ||
As—C1—C2—C3 | 177.66 (11) | N1—C14—C15—C20 | 74.49 (17) |
As—C1—C6—C5 | −178.33 (10) | C7—N1—C14—C15 | 57.65 (16) |
O1—As—C1—C2 | −44.30 (12) | C7—C8—C9—C10 | 178.70 (13) |
O1—As—C1—C6 | 135.23 (11) | C7—C8—C13—C12 | −178.27 (14) |
O2—As—C1—C2 | −162.96 (10) | C8—C9—C10—C11 | −0.3 (2) |
O2—As—C1—C6 | 16.57 (13) | C9—C8—C13—C12 | 0.3 (2) |
O3—As—C1—C2 | 72.32 (12) | C9—C10—C11—C12 | 0.0 (2) |
O3—As—C1—C6 | −108.15 (11) | C10—C11—C12—C13 | 0.4 (3) |
N2—C4—C5—C6 | 178.11 (13) | C11—C12—C13—C8 | −0.6 (2) |
C1—C2—C3—C4 | 0.1 (2) | C13—C8—C9—C10 | 0.2 (2) |
C2—C1—C6—C5 | 1.2 (2) | C14—N1—C7—C8 | −178.14 (11) |
C2—C3—C4—N2 | −178.78 (13) | C14—C15—C16—C17 | 179.01 (14) |
C2—C3—C4—C5 | 2.3 (2) | C14—C15—C20—C19 | −179.17 (15) |
C3—C4—C5—C6 | −3.0 (2) | C15—C16—C17—C18 | 0.1 (2) |
C4—C5—C6—C1 | 1.3 (2) | C16—C15—C20—C19 | −0.1 (2) |
C6—C1—C2—C3 | −1.9 (2) | C16—C17—C18—C19 | 0.0 (3) |
N1—C7—C8—C9 | 60.72 (17) | C17—C18—C19—C20 | −0.2 (3) |
N1—C7—C8—C13 | −120.76 (14) | C18—C19—C20—C15 | 0.2 (3) |
N1—C14—C15—C16 | −104.55 (16) | C20—C15—C16—C17 | 0.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O4i | 0.84 (2) | 2.37 (2) | 3.165 (2) | 158.0 (18) |
N2—H2B···O1ii | 0.83 (2) | 2.25 (2) | 3.0769 (17) | 175.6 (18) |
N1—H1A···O3 | 0.91 | 1.78 | 2.6842 (16) | 172 |
N1—H1B···O3iii | 0.91 | 1.89 | 2.7260 (15) | 151 |
O1—H1···O2iv | 0.83 (3) | 1.73 (3) | 2.5445 (15) | 170 (3) |
O4—H4A···O2v | 0.87 | 1.95 | 2.8074 (18) | 169 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+1, −z+1; (v) x+1, y, z. |
Acknowledgements
The authors are grateful for general and financial support from the University Cheikh Anta Diop-Dakar (Senegal), the University of Bourgogne-Dijon (France) and the Centre National de la Recherche Scientifique (CNRS-France). They would like to thank in particular Ms T. Régnier for elemental analysis measurements.
References
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, H., Liu, W., Cheng, L., Meledina, M., Meledin, A., Van Deun, R., Leus, K. & Van Der Voort, P. (2022). Chem. Eng. J. 429, 132162. Web of Science CrossRef Google Scholar
Cowen, S., Duggal, M., Hoang, T. & Al-Abadleh, H. A. (2008). Can. J. Chem. 86, 942–950. Web of Science CrossRef CAS Google Scholar
Depalma, S. S. C. O. T. T., Cowen, S., Hoang, T. & Al-Abadleh, H. A. (2008). Environ. Sci. Technol. 42, 1922–1927. Web of Science CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ehrlich, P. & Bertheim, A. (1907). Ber. Dtsch. Chem. Ges. 40, 3292–3297. CrossRef CAS Google Scholar
Fei, J., Wang, T., Zhou, Y., Wang, Z., Min, X., Ke, Y., Hu, W. & Chai, L. (2018). Chemosphere, 207, 665–675. Web of Science CrossRef CAS PubMed Google Scholar
Garje, S. S. & Jain, V. K. (1999). Main Group Met. Chem. 22, 45–58. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jun, J. W., Tong, M., Jung, B. K., Hasan, Z., Zhong, C. & Jhung, S. H. (2015). Chem. Eur. J. 21, 347–354. Web of Science CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lesikar-Parrish, L. A., Neilson, R. H. & Richards, A. F. (2013). J. Solid State Chem. 198, 424–432. CAS Google Scholar
Lewis, W. L. & Cheetham, H. C. (1923). Org. Synth. 3, 13–16. Google Scholar
Lloyd, N. C., Morgan, H. W., Nicholson, B. K. & Ronimus, R. S. (2008). J. Organomet. Chem. 693, 2443–2450. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nuttall, R. H. & Hunter, W. N. (1996). Acta Cryst. C52, 1681–1683. CSD CrossRef CAS IUCr Journals Google Scholar
Pan, T.-T., Liu, B.-X. & Xu, D.-J. (2006). Acta Cryst. E62, m2198–m2199. Web of Science CSD CrossRef IUCr Journals Google Scholar
Reck, L. & Schmitt, W. (2012). Acta Cryst. E68, m1212–m1213. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shimada, A. (1960). Bull. Chem. Soc. Jpn, 33, 301–304. CSD CrossRef CAS Web of Science Google Scholar
Shimada, A. (1961). Bull. Chem. Soc. Jpn, 34, 639–643. CSD CrossRef CAS Web of Science Google Scholar
Smith, G. & Wermuth, U. D. (2010). Acta Cryst. E66, o1893–o1894. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Smith, G. & Wermuth, U. D. (2014). Acta Cryst. C70, 738–741. Web of Science CSD CrossRef IUCr Journals Google Scholar
Smith, G. & Wermuth, U. D. (2016a). IUCrData, 1, x161985. Google Scholar
Smith, G. & Wermuth, U. D. (2016b). Acta Cryst. E72, 751–755. CSD CrossRef IUCr Journals Google Scholar
Smith, G. & Wermuth, U. D. (2017a). Acta Cryst. E73, 203–208. CSD CrossRef IUCr Journals Google Scholar
Smith, G. & Wermuth, U. D. (2017b). Acta Cryst. C73, 61–67. Web of Science CSD CrossRef IUCr Journals Google Scholar
Trivedi, D. R. & Dastidar, P. (2006). Cryst. Growth Des. 6, 2115-2121. Google Scholar
Williams, K. J. (2009). J. R. Soc. Med. 102, 343–348. Web of Science CrossRef PubMed CAS Google Scholar
Wojtas, Ł., Milart, P. & Stadnicka, K. (2006). J. Mol. Struct. 782, 157–164. Web of Science CSD CrossRef CAS Google Scholar
Xie, Y.-P., Yang, J., Ma, J.-F., Zhang, L.-P., Song, S.-Y. & Su, Z.-M. (2008). Chem. Eur. J. 14, 4093–4103. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yang, J., Ma, J.-F., Liu, Y.-C., Zheng, G.-L., Li, L., Liu, J.-F., Hu, N.-H. & Jia, H.-Q. (2002). Acta Cryst. C58, m613–m614. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Yang, T., Wang, L., Liu, Y., Jiang, J., Huang, Z., Pang, S.-Y., Cheng, H., Gao, D. & Ma, J. (2018). Environ. Sci. Technol. 52, 13325–13335. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.