research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­benzyl­ammonium hydrogen (4-amino­phen­yl)arsonate monohydrate

crossmark logo

aLaboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bICMUB UMR 6302, Université de Bourgogne (UB), Faculté des Sciences, 9 avenue Alain Savary, 21000 DIJON, France
*Correspondence e-mail: waly.diallo@ucad.edu.sn, hcattey@u-bourgogne.fr

Edited by G. Diaz de Delgado, Universidad de Los Andes Mérida, Venezuela (Received 12 April 2023; accepted 22 September 2023; online 5 October 2023)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The title salt, C14H16N+·C6H7AsNO3·H2O or [(C6H5CH2)2NH2][H2NC6H4As(OH)O2]·H2O, (I), was synthesized by mixing an aqueous solution of (4-amino­phenyl)­arsonic acid with an ethano­lic solution of di­benzyl­amine at room temperature. Compound I crystallizes in the monoclinic P21/c space group. The three components forming I are linked via N—H⋯O and O—H⋯O inter­molecular hydrogen bonds, resulting in the propagation of an infinite zigzag chain. Additional weak inter­actions between neighbouring chains, such as ππ and N—H⋯O contacts, involving phenyl rings, –NH2 and –As(OH)O3 functions, and H2O, respectively, lead to a three-dimensional network.

1. Chemical context

Organoarsenic compounds have been known for a long time and sparked great inter­est when they were discovered. Tetra­methyl­diarsine (Me2As-AsMe2), commonly known as Cacod­yl, was isolated in the middle of the 18th century by Cadet de Glaussicourt (Garje & Jain, 1999[Garje, S. S. & Jain, V. K. (1999). Main Group Met. Chem. 22, 45-58.]). During the next century, in 1859, Antoine Béchamp reported the synthesis of p-arsanilic acid sodium salt (named Atox­yl) by reacting aniline with arsenic acid. This compound was employed for pharmaceutical applications, in particular against trypanosomal infection. Subsequently, in the early 20th century, Paul Ehrlich was inspired by this work to develop a new organoarsenic derivative, called Arsphenamine or Salvarsan (Ehrlich & Bertheim, 1907[Ehrlich, P. & Bertheim, A. (1907). Ber. Dtsch. Chem. Ges. 40, 3292-3297.]). This mol­ecule has proved particularly effective in the treatment of syphilis and sleeping sickness (African Trypanosomiasis) and is considered as being the first chemotherapeutic agent (Williams, 2009[Williams, K. J. (2009). J. R. Soc. Med. 102, 343-348.]). The use of organo­arsenicals as medicines was subsequently abandoned in favour of penicillin, as they were found to be highly toxic to humans, causing significant side effects (including blindness). However, they have continued to be used, until recently, as feed additives and veterinary drugs, particularly in the livestock and poultry breeding industry, but with serious negative effects on the environment. Soil and groundwater contamination resulting from the excessive use of aromatic organoarsenic compounds is now a major environmental concern (Fei et al., 2018[Fei, J., Wang, T., Zhou, Y., Wang, Z., Min, X., Ke, Y., Hu, W. & Chai, L. (2018). Chemosphere, 207, 665-675.]). Current investigations involving academics focus on improving analytical detection (Depalma et al., 2008[Depalma, S. S. C. O. T. T., Cowen, S., Hoang, T. & Al-Abadleh, H. A. (2008). Environ. Sci. Technol. 42, 1922-1927.]; Yang et al., 2018[Yang, T., Wang, L., Liu, Y., Jiang, J., Huang, Z., Pang, S.-Y., Cheng, H., Gao, D. & Ma, J. (2018). Environ. Sci. Technol. 52, 13325-13335. ]) and remediation methods (Jun et al., 2015[Jun, J. W., Tong, M., Jung, B. K., Hasan, Z., Zhong, C. & Jhung, S. H. (2015). Chem. Eur. J. 21, 347-354.]; Chen et al., 2022[Chen, H., Liu, W., Cheng, L., Meledina, M., Meledin, A., Van Deun, R., Leus, K. & Van Der Voort, P. (2022). Chem. Eng. J. 429, 132162.]).

From a structural point of view, the crystal structure of phenyl­arsonic acid was first solved in the early 1960s (refcode ARSACP: Shimada, 1960[Shimada, A. (1960). Bull. Chem. Soc. Jpn, 33, 301-304.]). Since then, the X-ray structure for the zwitterionic form of p-arsanilic acid (p-ammonio­phenyl­arsonate) has been determined (CUDSEZ: Shimada, 1961[Shimada, A. (1961). Bull. Chem. Soc. Jpn, 34, 639-643.]; CUDSEZ01: Nuttall & Hunter, 1996[Nuttall, R. H. & Hunter, W. N. (1996). Acta Cryst. C52, 1681-1683.]) as well as of the hydrated ammonium and sodium salt hydrates of 4-amino­phenyl­arsonic acid (KOKWOY, KOKWUE: Smith & Wermuth, 2014[Smith, G. & Wermuth, U. D. (2014). Acta Cryst. C70, 738-741.]). We report herein the structure of a new salt of 4-amino­phenyl­arsonate, isolated from a mixture of (4-amino­phen­yl)arsonic acid and di­benzyl­amine and characterized as di­benzyl­ammonium hydrogen (4-amino­phen­yl)arsonate monohydrate, [(C6H5CH2)2NH2][H2NC6H4As(OH)O2]·H2O (I).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title salt, which is depicted in Fig. 1[link], comprises one di­benzyl­ammonium cation [(C6H5CH2)2NH2]+, one hydrogen (4-amino­phen­yl)arsonate anion [H2NC6H5As(OH)O2] and one water mol­ecule of solvation. The three components of I are linked together through inter­molecular N—H⋯O and O—H⋯O hydrogen bonds. The As atom of the anion is bonded to three O atoms and one carbon atom of the phenyl ring, describing a slightly distorted tetra­hedral geometry [O1—As—C1 = 103.71 (6)°, O2—As—C1 = 110.47 (6)°, O3—As—C1 = 111.73 (6)°, O2—As—O1 = 110.71 (5)°, O3—As—O1 = 108.46 (5)°, O3—As—O2 = 111.48 (5)°]. The As—O bonds exhibit two distinct lengths: As—O1 = 1.7267 (10) Å, and As—O2 = 1.6730 (10) Å and As—O3 =1.6699 (10) Å, which can be considered to be identical. The As—O1 distance is consistent with the presence of a hydroxyl group (Yang et al., 2002[Yang, J., Ma, J.-F., Liu, Y.-C., Zheng, G.-L., Li, L., Liu, J.-F., Hu, N.-H. & Jia, H.-Q. (2002). Acta Cryst. C58, m613-m614.]), while the As—O2 and As—O3 distances, which are shorter, reflect rather a double-bond character. In the literature, based on a comparison of structural examples, the average length of the As—O bond is defined as 1.77 Å and that of the As=O bond as 1.67 Å (Nuttall & Hunter, 1996[Nuttall, R. H. & Hunter, W. N. (1996). Acta Cryst. C52, 1681-1683.]). The nature of the As=O2 and As=O3 double bonds implies that the negative charge is delocalized on the arsonate. The three oxygen atoms of the arsonate function are engaged in hydrogen bonding, the O1 and O2 atoms being linked head-to-tail [O1—H⋯O2iv, DA = 2.5444 (15) Å; symmetry code: (iv) −x, −y + 1, −z + 1, Table 1[link]]. The length of the As—C1 bond [1.8955 (13) Å] is within the range of values measured for related compounds such as ammonium 4-nitro­phenyl­arsonate (Yang et al., 2002[Yang, J., Ma, J.-F., Liu, Y.-C., Zheng, G.-L., Li, L., Liu, J.-F., Hu, N.-H. & Jia, H.-Q. (2002). Acta Cryst. C58, m613-m614.]) and guanidinium phenyl­arsonate (Smith & Wermuth, 2010[Smith, G. & Wermuth, U. D. (2010). Acta Cryst. E66, o1893-o1894.]). An amino group is positioned on the phenyl ring in the para position to the arsonate function. Both functional groups are contained in the plane of the phenyl ring. The negative charge of [H2NC6H4As(OH)O2] is compensated by the presence of one di­benzyl­ammonium cation, [(C6H5CH2)2NH2]+, whose NH2+ group is hydrogen bonded to the oxygen atom O3 of the arsonate function [N1—H1A⋯O3, DA = 2.6842 (16) Å, N1—H1B⋯O3iii, DA = 2.7260 (15) Å; symmetry code: (iii) −x + 1, −y + 1, −z + 1]. Moreover, the di­benzyl­ammonium cation shows a synanti conformation, displaying C—C—N—C torsion angles of 57.65 (16)° and −178.14 (11)°, which are in the range of previous examples of X-ray structures involving [(C6H5CH2)2NH2]+ (Trivedi & Dastidar, 2006[Trivedi, D. R. & Dastidar, P. (2006). Cryst. Growth Des. 6, 2115-2121.]). A water mol­ecule (co-solvent of the reaction) participates in a hydrogen-bond inter­action with the oxygen atom O2 of –As(OH)O2 [O4—H4A⋯O2V, DA = 2.8074 (18) Å; symmetry code: (v) 1 + x, y, z] completes the composition of salt I. From a spectroscopic point of view, the infrared spectrum of I (ATR mode) highlights ν(As—C) and ν(As—O) absorption bands, which are characteristic of the arsonate function (Cowen et al., 2008[Cowen, S., Duggal, M., Hoang, T. & Al-Abadleh, H. A. (2008). Can. J. Chem. 86, 942-950.]), at 1096 cm−1 and between 925–690 cm−1, respectively. The percentages of C, H, N and O determined by elemental analysis support the chemical composition of I, but show that the salt is partially dehydrated (see the Synthesis and crystallization section).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4i 0.84 (2) 2.37 (2) 3.165 (2) 158.0 (18)
N2—H2B⋯O1ii 0.83 (2) 2.25 (2) 3.0769 (17) 175.6 (18)
N1—H1A⋯O3 0.91 1.78 2.6842 (16) 172
N1—H1B⋯O3iii 0.91 1.89 2.7260 (15) 151
O1—H1⋯O2iv 0.83 (3) 1.73 (3) 2.5445 (15) 170 (3)
O4—H4A⋯O2v 0.87 1.95 2.8074 (18) 169
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x, -y+1, -z+1]; (v) x+1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of I with displacement ellipsoids at the 30% probability level.The water mol­ecule was found to be disordered over two positions, the minor part was omitted and the major part is represented with the following symmetry code: (i): −1 + x, y, z. Dotted lines indicate hydrogen bonds.

3. Supra­molecular features

At the supra­molecular stage, two levels of organization can be observed in the crystal structure of I:

(i) The propagation of one-dimensional zigzag chains along the a-axis direction resulting from the hydrogen-bonding inter­actions (Fig. 2[link]). The NH2 groups of two di­benzyl­ammonium cations are involved in two independent hydrogen bonds, oriented perpendicularly [O3⋯N1⋯O3 = 92.63 (5)°], with the oxygen atoms O3 of two arsonate moieties [N1—H1A⋯O3 and N1—H1B⋯O3iii, Table 1[link]]. This leads to the formation of a tetra­meric unit describing a four-membered ring (Fig. 3[link]). These units are linked together by two additional and parallel hydrogen bonds involving two hydrogen (4-amino­phen­yl)arsonate anions [O1—H1⋯O2iv, Table 1[link]]. This creates a six-membered ring. In addition, the water mol­ecule contained in I is also in hydrogen-bonding inter­action with the oxygen atom O2 of the arsonate group [O4—H4A⋯O2v, Table 1[link]]. The 4-amino­phenyl groups can be viewed as perpendicular to the chain axis and positioned alternately on either side of it.

[Figure 2]
Figure 2
Mercury representation (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]; colour code: C = grey, N = blue, O = red, As = pink, H = white] of the infinite chain structure of I propagating along the a-axis direction via hydrogen bonds (dotted cyan lines).
[Figure 3]
Figure 3
Mercury representation (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]; colour code: C = grey, N = blue, O = red, As = pink, H = white) highlighting the hydrogen-bonding network (cyan dotted lines) involving the components of I (the benzyl H atoms have been omitted for clarity).

(ii) The association of chains leading to a three-dimensional network and resulting from a combination of weak inter­actions (Fig. 4[link]). Two types of ππ stacking inter­actions involving the phenyl rings of the di­benzyl­ammonium cations can be described (Fig. 5[link]): (a) centroid(C15–C20)–centroid (C15i–C20i) = 3.9384 (10) Å, inter­planar distance = 3.4310 (18) Å, slip angle (angle between the normal to the plane and the centroid–centroid vector) = 29.4, corresponding to a slippage distance of 1.933 Å; symmetry code: (i) 1 − x, 2 − y, 1 − z; (b) centroid(C8–C13)–centroid(C15ii–C20ii) = 4.0178 (10) Å, inter­planar distance = 3.5093 (6) Å, slip angle = 29.1°, corresponding to a slippage distance of 1.957 Å; symmetry code: (ii) 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z. In addition, the NH2 groups located in the para position of C6H4As(OH)O2, inter­act via hydrogen bonding with a water mol­ecule [N2—H2A⋯O41 = 3.165 (2) Å] and the O1 oxygen atom of an adjacent –As(OH)O2 function [N2—H2B⋯O1ii = 3.0769 (17) Å] (symmetry codes as in Table 1[link]).

[Figure 4]
Figure 4
Arrangement of the chains in the crystal of I and along the b-axis, leading to a three-dimensional network (Mercury representation; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]; colour code: C = grey, N = blue, O = red, As = pink, H = white). H atoms of phenyl and benzyl groups are omitted for clarity. The hydrogen bonds propagating the infinite chains are represented by dotted cyan lines.
[Figure 5]
Figure 5
View of the ππ stacking inter­actions between phenyl rings of the di­benzyl­ammonium cations of I [along the a-axis, Mercury representation (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]); colour code: C = grey, N = blue, H = white). H atoms of phenyl rings, anions and water mol­ecules have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (WebCSD update 11/2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), revealed that, to date, there are relatively few X-ray structures exhibiting the isolated hydrogen phenyl­arsonate moiety, C6H5As(OH)O2. To our knowledge, eleven examples including this fragment have already been identified: ammonium 4-nitro­phenyl­arsonate (AHILAE: Yang et al., 2002[Yang, J., Ma, J.-F., Liu, Y.-C., Zheng, G.-L., Li, L., Liu, J.-F., Hu, N.-H. & Jia, H.-Q. (2002). Acta Cryst. C58, m613-m614.]), guanidinium phenyl­arsonate guanidine dihydrate (DUSCIE: Smith & Wermuth, 2010[Smith, G. & Wermuth, U. D. (2010). Acta Cryst. E66, o1893-o1894.]), p-amino­phenyl­arsonic acid (CUDSEZ: Shimada, 1961[Shimada, A. (1961). Bull. Chem. Soc. Jpn, 34, 639-643.]; CUDSEZ01: Nuttall & Hunter, 1996[Nuttall, R. H. & Hunter, W. N. (1996). Acta Cryst. C52, 1681-1683.]), ammonium hydrogen (4-amino­phen­yl)arsonate monohydrate (KOKWOY: Smith & Wermuth, 2014[Smith, G. & Wermuth, U. D. (2014). Acta Cryst. C70, 738-741.]), 1-(4-hy­droxy-2-methyl­phen­yl)-2,4,6-tri­phenyl­pyridinium hydrogen o-arsanilate monohydrate (PAZRIS: Wojtas et al., 2006[Wojtas, Ł., Milart, P. & Stadnicka, K. (2006). J. Mol. Struct. 782, 157-164.]), tetra­butyl­ammonium hydrogen phenyl­arsonate–phenyl­arsonic acid (QECBEH: Reck & Schmitt, 2012[Reck, L. & Schmitt, W. (2012). Acta Cryst. E68, m1212-m1213.]), 3-ammonio-4-hy­droxy­phenyl­arsonate (ROBDAO: Lloyd et al., 2008[Lloyd, N. C., Morgan, H. W., Nicholson, B. K. & Ronimus, R. S. (2008). J. Organomet. Chem. 693, 2443-2450.]), hexa­aqua­manganese(II) bis­[hydrogen (4-amino­phen­yl)arsonate] tetra­hydrate (UBURIV: Smith & Wermuth, 2016a[Smith, G. & Wermuth, U. D. (2016a). IUCrData, 1, x161985.]), hexa­aqua-magnesium bis­(hydrogen (4-amino­phen­yl)arsonate) tetra­hydrate (UDAPIB: Smith & Wermuth, 2017a[Smith, G. & Wermuth, U. D. (2017a). Acta Cryst. E73, 203-208.]), 2,3-dimeth­oxy-10-oxostrychnidin-19-ium hydrogen (4-amino­phen­yl)arsonate tetra­hydrate (ULIROY: Smith & Wermuth, 2016b[Smith, G. & Wermuth, U. D. (2016b). Acta Cryst. E72, 751-755.]), 2,4-di­amino-5-(3,4,5-tri­meth­oxy­benz­yl)pyrimidinium 4-hy­droxy-3-nitro­phenyl­arsonate monohydrate (XEMZIZ: Pan et al., 2006[Pan, T.-T., Liu, B.-X. & Xu, D.-J. (2006). Acta Cryst. E62, m2198-m2199.]). In coordination chemistry, phenyl­arsonic acid and its derivatives constitute also suitable ligands to generate coordination polymers and heteropolyoxometalates in the presence of transition metals (Lesikar-Parrish et al., 2013[Lesikar-Parrish, L. A., Neilson, R. H. & Richards, A. F. (2013). J. Solid State Chem. 198, 424-432.]), main-group metals (Xie et al., 2008[Xie, Y.-P., Yang, J., Ma, J.-F., Zhang, L.-P., Song, S.-Y. & Su, Z.-M. (2008). Chem. Eur. J. 14, 4093-4103.]), alkali metals (Smith & Wermuth, 2017a[Smith, G. & Wermuth, U. D. (2017a). Acta Cryst. E73, 203-208.]) and alkali-earth metal precursors (Smith & Wermuth, 2017b[Smith, G. & Wermuth, U. D. (2017b). Acta Cryst. C73, 61-67.]). Regarding the di­benzyl­ammonium cation, [(C6H5CH2)2NH2]+, 117 hits incorporating such an entity were found in the Cambridge Structural Database.

5. Synthesis and crystallization

All chemicals were purchased from Sigma-Aldrich (Germany) and used without any further purification. (4-Amino­phen­yl)arsonic acid [H2NC6H4As(OH)2O] was prepared according to a previous work (Lewis & Cheetham, 1923[Lewis, W. L. & Cheetham, H. C. (1923). Org. Synth. 3, 13-16.]), by reacting aniline (C6H5NH2) and arsenic acid (As(OH)3O). The title salt was obtained by neutralization of an aqueous solution (20 mL) of (4-amino­phen­yl)arsonic acid (2.15 g, 9.90 mmol) with di­benzyl­amine ((C6H5CH2)2NH) (3.90 g, 19.80 mmol) dissolved in 20 mL of ethanol. The mixture was stirred for about two h at room temperature (301 K). After three days of slow solvent evaporation, colourless prism-shaped crystals of [(C6H5CH2)2NH2][H2NC6H4As(OH)O2]·H2O (5.25 g, 64% yield), suitable for an X-ray crystallographic analysis, were collected from the solvent (m.p. 393 K). FT–IR (ATR, Bruker Alpha FTIR spectrometer, cm−1): 3447, 3304, 3187, 1595, 1501, 1454, 1096, 923, 878, 825,752, 735, 695. Elemental analysis (Elemental Analyser, ThermoFisher FlashSmart CHNS/O) – analysis calculated for C20H23N2O3As·0.25H2O (418.83), salt I partially dehydrated: C, 57.35; H, 5.66; N, 6.69; O, 12.41; found: C, 57.82; H, 5.61; N, 6.62; O, 12.37%.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The asymmetric unit contains the di­benzyl­ammonium hydrogen (4-amino­phen­yl)arsonate mono­hydrate. The water mol­ecule was found disordered over two main positions with occupancy factors that converged to 0.94:0.06. Hence, the minor part of the water mol­ecule was refined only isotropically and without the hydrogen atoms. The hydrogen atoms for the major component of the water mol­ecule were refined geometrically as a rigid group (O—H = 0.87 Å) with Uiso(H) = 1.5Ueq(O). C-bound hydrogen atoms were placed at calculated positions [C—H = 0.95 Å (aromatic) or 0.99 Å (methyl­ene group)] and H atoms of the NH2 and OH terminal groups were placed geometrically (N—H = 0.83–0.84 Å, O—H = 0.83 Å) and refined as riding with Uiso(H) = 1.2Ueq(N, C).

Table 2
Experimental details

Crystal data
Chemical formula C14H16N+·C6H7AsNO3·H2O
Mr 432.34
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.8242 (5), 10.6574 (6), 19.2507 (11)
β (°) 97.7500 (18)
V3) 1997.15 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.73
Crystal size (mm) 0.5 × 0.25 × 0.18
 
Data collection
Diffractometer Bruker D8 VENTURE
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.610, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 67932, 4584, 4119
Rint 0.037
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.054, 1.07
No. of reflections 4584
No. of parameters 261
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.42, −0.21
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 V8.34A (Bruker, 2014); cell refinement: SAINT V8.34A (Bruker, 2013); data reduction: SAINT V8.34A (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

Dibenzylammonium hydrogen (4-aminophenyl)arsonate monohydrate top
Crystal data top
C14H16N+·C6H7AsNO3·H2OF(000) = 896
Mr = 432.34Dx = 1.438 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.8242 (5) ÅCell parameters from 9824 reflections
b = 10.6574 (6) Åθ = 2.8–27.5°
c = 19.2507 (11) ŵ = 1.73 mm1
β = 97.7500 (18)°T = 100 K
V = 1997.15 (19) Å3Prism, clear light colourless
Z = 40.5 × 0.25 × 0.18 mm
Data collection top
Bruker D8 VENTURE
diffractometer
4584 independent reflections
Radiation source: X-ray tube, Siemens KFF Mo 2K-90C4119 reflections with I > 2σ(I)
TRIUMPH curved crystal monochromatorRint = 0.037
Detector resolution: 1024 x 1024 pixels mm-1θmax = 27.5°, θmin = 2.8°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1313
Tmin = 0.610, Tmax = 0.746l = 2425
67932 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0228P)2 + 1.3431P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4584 reflectionsΔρmax = 0.42 e Å3
261 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
As0.15165 (2)0.51188 (2)0.42563 (2)0.01186 (5)
O10.04372 (11)0.38487 (9)0.42927 (6)0.0184 (2)
O20.09995 (10)0.63317 (9)0.47065 (5)0.0167 (2)
O30.31128 (10)0.46779 (10)0.45696 (5)0.0176 (2)
N20.08041 (14)0.62660 (14)0.11336 (7)0.0208 (3)
H2A0.062 (2)0.565 (2)0.0867 (10)0.025*
H2B0.043 (2)0.694 (2)0.1009 (10)0.025*
C10.13469 (13)0.55046 (13)0.32872 (7)0.0126 (3)
C20.13667 (14)0.45347 (13)0.27999 (7)0.0152 (3)
H20.1499370.3694450.2959520.018*
C30.11956 (15)0.47831 (14)0.20880 (7)0.0164 (3)
H30.1210180.4113630.1763260.020*
C40.10001 (14)0.60216 (14)0.18428 (7)0.0150 (3)
C50.10337 (14)0.69966 (13)0.23332 (8)0.0166 (3)
H50.0947570.7841460.2176040.020*
C60.11920 (14)0.67391 (13)0.30476 (7)0.0150 (3)
H60.1194680.7407210.3374500.018*
O40.94231 (17)0.85325 (13)0.45149 (7)0.0389 (3)0.94
H4A0.9993170.7904350.4551380.058*0.94
H4B0.8708360.8254320.4689170.058*0.94
N10.43532 (12)0.63057 (11)0.55144 (6)0.0142 (2)
H1A0.3916290.5706780.5229950.017*
H1B0.5232830.6044910.5643850.017*
C70.36565 (15)0.64208 (13)0.61550 (7)0.0156 (3)
H7A0.2687030.6670110.6016900.019*
H7B0.4111550.7085490.6462210.019*
C80.37054 (14)0.52036 (13)0.65533 (7)0.0134 (3)
C90.49603 (15)0.46656 (14)0.68231 (8)0.0167 (3)
H90.5793190.5062250.6746600.020*
C100.50021 (15)0.35571 (14)0.72019 (8)0.0194 (3)
H100.5861620.3195390.7381610.023*
C110.37894 (16)0.29743 (15)0.73190 (8)0.0227 (3)
H110.3817340.2214690.7578780.027*
C120.25392 (16)0.35050 (15)0.70557 (9)0.0251 (3)
H120.1708630.3110540.7138080.030*
C130.24933 (15)0.46135 (15)0.66711 (8)0.0200 (3)
H130.1632080.4968550.6488290.024*
C140.43754 (16)0.75047 (14)0.51084 (8)0.0194 (3)
H14A0.3421300.7754730.4930840.023*
H14B0.4868510.7365070.4699270.023*
C150.50659 (15)0.85489 (14)0.55510 (8)0.0182 (3)
C160.42794 (16)0.94873 (15)0.57986 (8)0.0220 (3)
H160.3308630.9474900.5681820.026*
C170.49027 (19)1.04468 (15)0.62169 (9)0.0277 (4)
H170.4358651.1086280.6385620.033*
C180.6313 (2)1.04676 (17)0.63861 (9)0.0322 (4)
H180.6739791.1122320.6671570.039*
C190.71081 (18)0.95354 (18)0.61403 (10)0.0323 (4)
H190.8078760.9554230.6256990.039*
C200.64919 (16)0.85748 (16)0.57247 (9)0.0249 (3)
H200.7039460.7935410.5558540.030*
H10.002 (3)0.386 (3)0.4638 (14)0.062 (8)*
O4B0.729 (2)0.7346 (18)0.4434 (10)0.026 (4)*0.06
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As0.01149 (7)0.01330 (7)0.01092 (7)0.00011 (5)0.00195 (5)0.00127 (5)
O10.0235 (5)0.0140 (5)0.0192 (5)0.0066 (4)0.0084 (4)0.0043 (4)
O20.0200 (5)0.0125 (5)0.0187 (5)0.0005 (4)0.0070 (4)0.0030 (4)
O30.0143 (5)0.0226 (5)0.0150 (5)0.0041 (4)0.0009 (4)0.0025 (4)
N20.0233 (7)0.0235 (7)0.0151 (6)0.0019 (6)0.0010 (5)0.0037 (5)
C10.0096 (6)0.0163 (6)0.0119 (6)0.0005 (5)0.0018 (5)0.0004 (5)
C20.0157 (7)0.0132 (6)0.0164 (7)0.0004 (5)0.0011 (5)0.0009 (5)
C30.0179 (7)0.0164 (7)0.0147 (7)0.0000 (5)0.0013 (5)0.0022 (5)
C40.0097 (6)0.0198 (7)0.0158 (7)0.0003 (5)0.0026 (5)0.0029 (5)
C50.0149 (7)0.0140 (6)0.0211 (7)0.0016 (5)0.0035 (5)0.0042 (5)
C60.0127 (6)0.0147 (6)0.0179 (7)0.0005 (5)0.0035 (5)0.0018 (5)
O40.0569 (10)0.0308 (7)0.0304 (7)0.0169 (7)0.0104 (7)0.0108 (6)
N10.0149 (6)0.0140 (6)0.0132 (6)0.0003 (4)0.0007 (4)0.0000 (4)
C70.0170 (7)0.0144 (6)0.0160 (7)0.0009 (5)0.0045 (5)0.0008 (5)
C80.0143 (6)0.0137 (6)0.0123 (6)0.0003 (5)0.0023 (5)0.0020 (5)
C90.0129 (6)0.0194 (7)0.0181 (7)0.0015 (5)0.0031 (5)0.0003 (6)
C100.0160 (7)0.0223 (7)0.0198 (7)0.0047 (6)0.0016 (6)0.0031 (6)
C110.0253 (8)0.0182 (7)0.0247 (8)0.0005 (6)0.0043 (6)0.0059 (6)
C120.0172 (7)0.0229 (8)0.0354 (9)0.0053 (6)0.0044 (7)0.0068 (7)
C130.0119 (7)0.0214 (7)0.0260 (8)0.0005 (5)0.0001 (6)0.0028 (6)
C140.0230 (8)0.0187 (7)0.0161 (7)0.0018 (6)0.0010 (6)0.0048 (6)
C150.0204 (7)0.0173 (7)0.0169 (7)0.0042 (6)0.0022 (6)0.0057 (6)
C160.0226 (8)0.0191 (7)0.0246 (8)0.0032 (6)0.0050 (6)0.0045 (6)
C170.0409 (10)0.0180 (7)0.0256 (8)0.0041 (7)0.0095 (7)0.0018 (6)
C180.0434 (10)0.0244 (8)0.0276 (9)0.0172 (8)0.0004 (8)0.0012 (7)
C190.0237 (8)0.0356 (10)0.0358 (10)0.0118 (7)0.0023 (7)0.0051 (8)
C200.0207 (8)0.0257 (8)0.0283 (8)0.0022 (6)0.0037 (6)0.0044 (7)
Geometric parameters (Å, º) top
As—O11.7267 (10)C7—C81.5044 (19)
As—O21.6730 (10)C8—C91.395 (2)
As—O31.6699 (10)C8—C131.392 (2)
As—C11.8955 (13)C9—H90.9500
O1—H10.83 (3)C9—C101.386 (2)
N2—H2A0.84 (2)C10—H100.9500
N2—H2B0.83 (2)C10—C111.389 (2)
N2—C41.3776 (19)C11—H110.9500
C1—C21.3978 (19)C11—C121.385 (2)
C1—C61.3957 (19)C12—H120.9500
C2—H20.9500C12—C131.392 (2)
C2—C31.384 (2)C13—H130.9500
C3—H30.9500C14—H14A0.9900
C3—C41.406 (2)C14—H14B0.9900
C4—C51.401 (2)C14—C151.506 (2)
C5—H50.9500C15—C161.387 (2)
C5—C61.391 (2)C15—C201.396 (2)
C6—H60.9500C16—H160.9500
O4—H4A0.8696C16—C171.391 (2)
O4—H4B0.8701C17—H170.9500
N1—H1A0.9100C17—C181.380 (3)
N1—H1B0.9100C18—H180.9500
N1—C71.4939 (17)C18—C191.386 (3)
N1—C141.4995 (18)C19—H190.9500
C7—H7A0.9900C19—C201.387 (2)
C7—H7B0.9900C20—H200.9500
O1—As—C1103.71 (6)C13—C8—C7120.22 (13)
O2—As—O1110.71 (5)C13—C8—C9119.09 (13)
O2—As—C1110.47 (6)C8—C9—H9119.7
O3—As—O1108.46 (5)C10—C9—C8120.55 (13)
O3—As—O2111.48 (5)C10—C9—H9119.7
O3—As—C1111.73 (5)C9—C10—H10120.0
As—O1—H1113.0 (19)C9—C10—C11120.09 (14)
H2A—N2—H2B116.7 (18)C11—C10—H10120.0
C4—N2—H2A116.7 (13)C10—C11—H11120.1
C4—N2—H2B116.7 (13)C12—C11—C10119.73 (14)
C2—C1—As119.52 (10)C12—C11—H11120.1
C6—C1—As121.39 (10)C11—C12—H12119.8
C6—C1—C2119.08 (13)C11—C12—C13120.33 (14)
C1—C2—H2119.6C13—C12—H12119.8
C3—C2—C1120.83 (13)C8—C13—H13119.9
C3—C2—H2119.6C12—C13—C8120.20 (14)
C2—C3—H3119.8C12—C13—H13119.9
C2—C3—C4120.33 (13)N1—C14—H14A109.2
C4—C3—H3119.8N1—C14—H14B109.2
N2—C4—C3120.31 (13)N1—C14—C15111.83 (12)
N2—C4—C5120.99 (13)H14A—C14—H14B107.9
C5—C4—C3118.69 (13)C15—C14—H14A109.2
C4—C5—H5119.7C15—C14—H14B109.2
C6—C5—C4120.62 (13)C16—C15—C14119.86 (14)
C6—C5—H5119.7C16—C15—C20119.40 (14)
C1—C6—H6119.8C20—C15—C14120.73 (14)
C5—C6—C1120.37 (13)C15—C16—H16119.8
C5—C6—H6119.8C15—C16—C17120.45 (15)
H4A—O4—H4B104.5C17—C16—H16119.8
H1A—N1—H1B107.7C16—C17—H17120.1
C7—N1—H1A108.8C18—C17—C16119.86 (16)
C7—N1—H1B108.8C18—C17—H17120.1
C7—N1—C14113.62 (11)C17—C18—H18119.9
C14—N1—H1A108.8C17—C18—C19120.13 (16)
C14—N1—H1B108.8C19—C18—H18119.9
N1—C7—H7A109.4C18—C19—H19119.9
N1—C7—H7B109.4C18—C19—C20120.25 (16)
N1—C7—C8111.30 (11)C20—C19—H19119.9
H7A—C7—H7B108.0C15—C20—H20120.0
C8—C7—H7A109.4C19—C20—C15119.91 (16)
C8—C7—H7B109.4C19—C20—H20120.0
C9—C8—C7120.67 (13)
As—C1—C2—C3177.66 (11)N1—C14—C15—C2074.49 (17)
As—C1—C6—C5178.33 (10)C7—N1—C14—C1557.65 (16)
O1—As—C1—C244.30 (12)C7—C8—C9—C10178.70 (13)
O1—As—C1—C6135.23 (11)C7—C8—C13—C12178.27 (14)
O2—As—C1—C2162.96 (10)C8—C9—C10—C110.3 (2)
O2—As—C1—C616.57 (13)C9—C8—C13—C120.3 (2)
O3—As—C1—C272.32 (12)C9—C10—C11—C120.0 (2)
O3—As—C1—C6108.15 (11)C10—C11—C12—C130.4 (3)
N2—C4—C5—C6178.11 (13)C11—C12—C13—C80.6 (2)
C1—C2—C3—C40.1 (2)C13—C8—C9—C100.2 (2)
C2—C1—C6—C51.2 (2)C14—N1—C7—C8178.14 (11)
C2—C3—C4—N2178.78 (13)C14—C15—C16—C17179.01 (14)
C2—C3—C4—C52.3 (2)C14—C15—C20—C19179.17 (15)
C3—C4—C5—C63.0 (2)C15—C16—C17—C180.1 (2)
C4—C5—C6—C11.3 (2)C16—C15—C20—C190.1 (2)
C6—C1—C2—C31.9 (2)C16—C17—C18—C190.0 (3)
N1—C7—C8—C960.72 (17)C17—C18—C19—C200.2 (3)
N1—C7—C8—C13120.76 (14)C18—C19—C20—C150.2 (3)
N1—C14—C15—C16104.55 (16)C20—C15—C16—C170.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.84 (2)2.37 (2)3.165 (2)158.0 (18)
N2—H2B···O1ii0.83 (2)2.25 (2)3.0769 (17)175.6 (18)
N1—H1A···O30.911.782.6842 (16)172
N1—H1B···O3iii0.911.892.7260 (15)151
O1—H1···O2iv0.83 (3)1.73 (3)2.5445 (15)170 (3)
O4—H4A···O2v0.871.952.8074 (18)169
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1; (v) x+1, y, z.
 

Acknowledgements

The authors are grateful for general and financial support from the University Cheikh Anta Diop-Dakar (Senegal), the University of Bourgogne-Dijon (France) and the Centre National de la Recherche Scientifique (CNRS-France). They would like to thank in particular Ms T. Régnier for elemental analysis measurements.

References

First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H., Liu, W., Cheng, L., Meledina, M., Meledin, A., Van Deun, R., Leus, K. & Van Der Voort, P. (2022). Chem. Eng. J. 429, 132162.  Web of Science CrossRef Google Scholar
First citationCowen, S., Duggal, M., Hoang, T. & Al-Abadleh, H. A. (2008). Can. J. Chem. 86, 942–950.  Web of Science CrossRef CAS Google Scholar
First citationDepalma, S. S. C. O. T. T., Cowen, S., Hoang, T. & Al-Abadleh, H. A. (2008). Environ. Sci. Technol. 42, 1922–1927.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEhrlich, P. & Bertheim, A. (1907). Ber. Dtsch. Chem. Ges. 40, 3292–3297.  CrossRef CAS Google Scholar
First citationFei, J., Wang, T., Zhou, Y., Wang, Z., Min, X., Ke, Y., Hu, W. & Chai, L. (2018). Chemosphere, 207, 665–675.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGarje, S. S. & Jain, V. K. (1999). Main Group Met. Chem. 22, 45–58.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJun, J. W., Tong, M., Jung, B. K., Hasan, Z., Zhong, C. & Jhung, S. H. (2015). Chem. Eur. J. 21, 347–354.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLesikar-Parrish, L. A., Neilson, R. H. & Richards, A. F. (2013). J. Solid State Chem. 198, 424–432.  CAS Google Scholar
First citationLewis, W. L. & Cheetham, H. C. (1923). Org. Synth. 3, 13–16.  Google Scholar
First citationLloyd, N. C., Morgan, H. W., Nicholson, B. K. & Ronimus, R. S. (2008). J. Organomet. Chem. 693, 2443–2450.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNuttall, R. H. & Hunter, W. N. (1996). Acta Cryst. C52, 1681–1683.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPan, T.-T., Liu, B.-X. & Xu, D.-J. (2006). Acta Cryst. E62, m2198–m2199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReck, L. & Schmitt, W. (2012). Acta Cryst. E68, m1212–m1213.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShimada, A. (1960). Bull. Chem. Soc. Jpn, 33, 301–304.  CSD CrossRef CAS Web of Science Google Scholar
First citationShimada, A. (1961). Bull. Chem. Soc. Jpn, 34, 639–643.  CSD CrossRef CAS Web of Science Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010). Acta Cryst. E66, o1893–o1894.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2014). Acta Cryst. C70, 738–741.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2016a). IUCrData, 1, x161985.  Google Scholar
First citationSmith, G. & Wermuth, U. D. (2016b). Acta Cryst. E72, 751–755.  CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2017a). Acta Cryst. E73, 203–208.  CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2017b). Acta Cryst. C73, 61–67.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTrivedi, D. R. & Dastidar, P. (2006). Cryst. Growth Des. 6, 2115-2121.  Google Scholar
First citationWilliams, K. J. (2009). J. R. Soc. Med. 102, 343–348.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWojtas, Ł., Milart, P. & Stadnicka, K. (2006). J. Mol. Struct. 782, 157–164.  Web of Science CSD CrossRef CAS Google Scholar
First citationXie, Y.-P., Yang, J., Ma, J.-F., Zhang, L.-P., Song, S.-Y. & Su, Z.-M. (2008). Chem. Eur. J. 14, 4093–4103.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYang, J., Ma, J.-F., Liu, Y.-C., Zheng, G.-L., Li, L., Liu, J.-F., Hu, N.-H. & Jia, H.-Q. (2002). Acta Cryst. C58, m613–m614.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYang, T., Wang, L., Liu, Y., Jiang, J., Huang, Z., Pang, S.-Y., Cheng, H., Gao, D. & Ma, J. (2018). Environ. Sci. Technol. 52, 13325–13335.   Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds